1
|
Verma SK, Tyagi V, Sonika, Dutta T, Mishra SK. Flexible and wearable electronic systems based on 2D hydrogel composites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6300-6322. [PMID: 39219494 DOI: 10.1039/d4ay01124d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flexible electronics is a rapidly developing field of study, which integrates many other fields, including materials science, biology, chemistry, physics, and electrical engineering. Despite their vast potential, the widespread utilization of flexible electronics is hindered by several constraints, including elevated Young's modulus, inadequate biocompatibility, and diminished responsiveness. Therefore, it is necessary to develop innovative materials aimed at overcoming these hurdles and catalysing their practical implementation. In these materials, hydrogels are particularly promising owing to their three-dimensional crosslinked hydrated polymer networks and exceptional properties, positioning them as leading candidates for the development of future flexible electronics.
Collapse
Affiliation(s)
- Sushil Kumar Verma
- Centre for Sustainable Polymers, Technology Complex, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Varee Tyagi
- Centre for Sustainable Polymers, Technology Complex, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sonika
- Department of Physics, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh 791112, India
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. 711103, India
| | - Satyendra Kumar Mishra
- Space and Resilient Communications and Systems (SRCOM), Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Castelldefels, Spain.
| |
Collapse
|
2
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
3
|
Anwer AH, Ahtesham A, Shoeb M, Mashkoor F, Ansari MZ, Zhu S, Jeong C. State-of-the-art advances in nanocomposite and bio-nanocomposite polymeric materials: A comprehensive review. Adv Colloid Interface Sci 2023; 318:102955. [PMID: 37467558 DOI: 10.1016/j.cis.2023.102955] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
The modern eco-friendly materials used in research and innovation today consist of nanocomposites and bio-nanocomposite polymers. Their unique composite properties make them suitable for various industrial, medicinal, and energy applications. Bio-nanocomposite polymers are made of biopolymer matrices that have nanofillers dispersed throughout them. There are several types of fillers that can be added to polymers to enhance their quality, such as cellulose-based fillers, clay nanomaterials, carbon black, talc, carbon quantum dots, and many others. Biopolymer-based nanocomposites are considered a superior alternative to traditional materials as they reduce reliance on fossil fuels and promote the use of renewable resources. This review covers the current state-of-the-art in nanocomposite and bio-nanocomposite materials, focusing on ways to improve their features and the various applications they can be used for. The review article also investigates the utilization of diverse nanocomposites as a viable approach for developing bio-nanocomposites. It delves into the underlying principles that govern the synthesis of these materials and explores their prospective applications in the biomedical field, food packaging, sensing (Immunosensors), and energy storage devices. Lastly, the review discusses the future outlook and current challenges of these materials, with a focus on sustainability.
Collapse
Affiliation(s)
- Abdul Hakeem Anwer
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Afreen Ahtesham
- School of Chemical Sciences University Sains Malaysia, Penang, Malaysia
| | - Mohd Shoeb
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Shushuai Zhu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
4
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Porosity Tunable Poly(Lactic Acid)-Based Composite Gel Polymer Electrolyte with High Electrolyte Uptake for Quasi-Solid-State Supercapacitors. Polymers (Basel) 2022; 14:polym14091881. [PMID: 35567050 PMCID: PMC9105037 DOI: 10.3390/polym14091881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
The growing popularity of quasi-solid-state supercapacitors inevitably leads to the unrestricted consumption of commonly used petroleum-derived polymer electrolytes, causing excessive carbon emissions and resulting in global warming. Also, the porosity and liquid electrolyte uptake of existing polymer membranes are insufficient for well-performed supercapacitors under high current and long cycles. To address these issues, poly(lactic acid) (PLA), a widely applied polymers in biodegradable plastics is employed to fabricate a renewable biocomposite membrane with tunable pores with the help of non-solvent phase inversion method, and a small amount of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is introduced as a modifier to interconnect with PLA skeleton for stabilizing the porous structure and optimizing the aperture of the membrane. Owing to easy film-forming and tunable non-solvent ratio, the porous membrane possesses high porosity (ca. 71%), liquid electrolyte uptake (366%), and preferable flexibility endowing the GPE with satisfactory electrochemical stability in coin and flexible supercapacitors after long cycles. This work effectively relieves the environmental stress resulted from undegradable polymers and reveals the promising potential and prospects of the environmentally friendly membrane in the application of wearable devices.
Collapse
|
6
|
Lan L, Ping J, Xiong J, Ying Y. Sustainable Natural Bio-Origin Materials for Future Flexible Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200560. [PMID: 35322600 PMCID: PMC9130888 DOI: 10.1002/advs.202200560] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/27/2022] [Indexed: 05/12/2023]
Abstract
Flexible devices serve as important intelligent interfaces in various applications involving health monitoring, biomedical therapies, and human-machine interfacing. To address the concern of electronic waste caused by the increasing usage of electronic devices based on synthetic polymers, bio-origin materials that possess environmental benignity as well as sustainability offer new opportunities for constructing flexible electronic devices with higher safety and environmental adaptivity. Herein, the bio-source and unique molecular structures of various types of natural bio-origin materials are briefly introduced. Their properties and processing technologies are systematically summarized. Then, the recent progress of these materials for constructing emerging intelligent flexible electronic devices including energy harvesters, energy storage devices, and sensors are introduced. Furthermore, the applications of these flexible electronic devices including biomedical implants, artificial e-skin, and environmental monitoring are summarized. Finally, future challenges and prospects for developing high-performance bio-origin material-based flexible devices are discussed. This review aims to provide a comprehensive and systematic summary of the latest advances in the natural bio-origin material-based flexible devices, which is expected to offer inspirations for exploitation of green flexible electronics, bridging the gap in future human-machine-environment interactions.
Collapse
Affiliation(s)
- Lingyi Lan
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua University2999 North Renmin RoadShanghai201620China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| |
Collapse
|
7
|
Le PA, Le VQ, Nguyen NT, Phung VBT. Food seasoning-derived gel polymer electrolyte and pulse-plasma exfoliated graphene nanosheet electrodes for symmetrical solid-state supercapacitors. RSC Adv 2022; 12:1515-1526. [PMID: 35425167 PMCID: PMC8978909 DOI: 10.1039/d1ra07820h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022] Open
Abstract
Kitchen sea salt or table salt is used every day by cooks as a food seasoning. Here, it is introduced into a gel polymer (poly(vinyl) alcohol (PVA)-table salt) for use as an electrolyte, and an electrode was constructed from graphene nanosheets for use as symmetrical solid-state supercapacitors. The graphene sheets are prepared by a pulse control plasma method and used as an electrode material, and were studied by X-ray diffraction (XRD), Raman spectroscopy, as well as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A specific capacitance of 117.6 F g-1 at 5 mV s-1 was obtained in a three electrode system with table sea salt as an aqueous electrolyte. For a symmetrical solid-state supercapacitor: graphene/PVA-table sea salt/graphene gave a good specific capacitance of 31.67 F g-1 at 0.25 A g-1 with an energy density of 6.33 W h kg-1 at a power density of 600 W kg-1, with good charge-discharge stability, which was 87% after 8000 cycles. Thus, the development of table sea salt as an environmentally friendly electrolyte has a good potential for use in energy storage applications.
Collapse
Affiliation(s)
- Phuoc Anh Le
- Institute of Sustainability Science, VNU Vietnam Japan University, Vietnam National University Hanoi 100000 Vietnam
| | - Van Qui Le
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Nghia Trong Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology Hanoi 100000 Vietnam
| | - Viet Bac Thi Phung
- Institute of Sustainability Science, VNU Vietnam Japan University, Vietnam National University Hanoi 100000 Vietnam
| |
Collapse
|
8
|
Zhang K, Zhang X, Zou B, Zhu J, Zhu J, Li S, Zhang W, Wu J, Huo F. A leather-based electrolyte for all-in-one configured flexible supercapacitors. Chem Commun (Camb) 2022; 58:7070-7073. [DOI: 10.1039/d2cc02630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Leather based gel electrolytes were prepared from the top down method, and integrated flexible supercapacitors were developed by this method.
Collapse
Affiliation(s)
- Kang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xueyan Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Binghua Zou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jingyu Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jing Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiansheng Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
9
|
Li L, Meng J, Zhang M, Liu T, Zhang C. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. Chem Commun (Camb) 2021; 58:185-207. [PMID: 34881748 DOI: 10.1039/d1cc05526g] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Flexible electrochemical supercapacitors have shown great potential in the next-generation wearable and implantable energy-storage devices. Conductive polymer hydrogels usually possess unique porosity, high conductivity, and broadly tunable properties through molecular designs and structural regulations, thus holding tremendous promise as high-performance electrodes and electrolytes for flexible electrochemical supercapacitors. Numerous chemical and structural designs have provided unlimited opportunities to tune the properties of conductive polymer hydrogels to match the various practical demands. Various electrically and ionically conductive hydrogels have been developed to fabricate novel electrodes and electrolytes with satisfactory mechanical and electrochemical performance. This feature article focuses on the fabrication and applications of conductive polymer hydrogel composites and nanocomposites as respective electrodes and electrolytes for flexible electrochemical supercapacitors. First, we introduce the representative strategies to prepare electrically and ionically conductive polymer hydrogels. Second, conductive polymer hydrogel composites and nanocomposites as supercapacitor electrodes and electrolytes are presented and discussed. Finally, challenges and perspectives on conductive polymer hydrogel composites and nanocomposites for future flexible electrochemical supercapacitors are presented.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Meng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mingtong Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
10
|
Raghavan A, Ghosh S. Recent Advancements on Biopolymer‐ Based Flexible Electrolytes for Next‐Gen Supercaps and Batteries: A Brief Sketch. ChemistrySelect 2021. [DOI: 10.1002/slct.202103291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sutapa Ghosh
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
11
|
Muthukumaran P, Suresh Babu P, Shyamalagowri S, Kamaraj M, Manikandan A, Aravind J. Nanotechnological approaches as a promising way for heavy metal mitigation in an aqueous system. J Basic Microbiol 2021; 62:376-394. [PMID: 34609759 DOI: 10.1002/jobm.202100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
The ever-rising environmental problems because of heavy metals emerging from anthropogenic activities pose an impending threat to all biota globally. Considering their persistence and possibility in biomagnification, they are prominent among pollutants. There has been an apparent shift of research interest in advancing cost-effective and competent technologies to mitigate environmental contaminants, specifically heavy metals. In the recent two decades, tailored nanomaterials (NMs), nanoparticles, and NM-based adsorbents have been emerging for removing heavy metal pollution on a sustainable scale, especially the green synthesis of these nanoproducts effective and nonhazardous means. Hence, this review explores the various avenues in nanotechnology, an attempt to gauge nanotechnological approaches to mitigate heavy metals in the aqueous system, especially emphasizing the recent trends and advancements. Inputs on remediating heavy metal in sustainable and environmentally benign aspects recommended future directions to compensate for the voids in this domain have been addressed.
Collapse
Affiliation(s)
- Peraman Muthukumaran
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Palanisamy Suresh Babu
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Thandalam, Chennai, Tamil Nadu, India.,Department of Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | - Murugesan Kamaraj
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Arumugam Manikandan
- Department of Industrial Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Jeyaseelan Aravind
- Department of Civil Engineering, Environmental Research, Dhirajlal Gandhi College of Technology, Salem, Tamil Nadu, India
| |
Collapse
|
12
|
Mao Y, Ren H, Zhang J, Luo T, Liu N, Wang B, Le S, Zhang N. Modifying hydrogel electrolyte to induce zinc deposition for dendrite-free zinc metal anode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Zhang W, Wang M, Zhao H, Liu X, Liu R, Xie X, Wu Y. Synthesis and characterization of electrolyte substrate materials based on hyperbranched polyurethane elastomers for anodic bonding. J Appl Polym Sci 2021. [DOI: 10.1002/app.50872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weixuan Zhang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology Taiyuan China
| | - Mixue Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology Taiyuan China
| | - Haocheng Zhao
- Department of Mechanical and Electrical Engineering Shanxi Institute of Energy Jinzhong China
| | - Xin Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology Taiyuan China
| | - Ruoyun Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology Taiyuan China
| | - Xiaoling Xie
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
| | - Yuling Wu
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology Taiyuan China
| |
Collapse
|
14
|
Heng Y, Xie T, Wang X, Chen D, Wen J, Chen X, Hu D, Wang N, Wu YA. Raw cellulose/polyvinyl alcohol blending separators prepared by phase inversion for high-performance supercapacitors. NANOTECHNOLOGY 2021; 32:095403. [PMID: 33203815 DOI: 10.1088/1361-6528/abcb62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of a biodegradable cellulose-based separator with excellent performance has been of great research significance and application potential for the green development of supercapacitors. Herein, the regenerated porous cellulose/Polyvinyl alcohol films (CP-10, CP-15, CP-20, CP-25) with different mass ratio were successfully fabricated by a simple blending and phase inversion process. Their electrochemical properties as separators in assembled supercapacitor were evaluated. Fourier transform infrared spectroscopy and x-ray diffraction analysis indicate that intermolecular and intramolecular hydrogen bonding existed between cellulose and polyvinyl alcohol of the CP films. Compared with other CP films, the CP-20 film shows higher mechanical strength (28.02 MPa), better wettability (79.06°), higher porosity (59.69%) and electrolyte uptake (281.26 wt%). These properties of CP-20 are expected to show better electrochemical performance as separator. Indeed, the electrochemical tests, including electrochemical impedance spectroscopy, cyclic voltammetry, galvanostatic charge discharge, demonstrate that the SC-20 capacitor (with CP-20 as separator) shows the lowest equivalent series resistance of 0.57 Ω, the highest areal capacitance of 1.98 F cm-2 at 10 mV s-1, specific capacitance of 134.41 F g-1 and charge-discharge efficiency of 98.62% at 1 A g-1 among the four capacitors with CP films as separators. Comparing the assembled SC-40 and SC-30 with two commercial separators (TF4040 and MPF30AC) and SC-PVA with Polyvinyl alcohol (PVA) separator, the CV and GCD curves of SC-20 maintain the quasi rectangular and symmetrical triangular profiles respectively at different scan rates in potential window of 0-1 V. SC-20 exhibits the highest value of 28.24 Wh kg-1 at 0.5 A g-1 with a power density of 0.26 kW kg-1, and 13.41 Wh kg-1 at 10 A g-1 with a power density of 6.04 kW kg-1. SC-20 also shows the lowest voltage drop and the highest areal and specific capacitance. Moreover, SC-20 maintains the highest value of 86.81% after 4000 cycles compared to 21.18% of SC-40, 75.07% of SC-30, and 6.66% of SC-PVA, showing a superior rate capability of a supercapacitor. These results indicate that CP films can be served as promising separators for supercapacitors.
Collapse
Affiliation(s)
- Yingqi Heng
- Wood Industry Research Institute, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Tianqi Xie
- Wood Industry Research Institute, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Ding Chen
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Jiahao Wen
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials-Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiyong Chen
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials-Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Dongying Hu
- Wood Industry Research Institute, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Nannan Wang
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials-Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, People's Republic of China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
15
|
Sacco P, Pedroso-Santana S, Kumar Y, Joly N, Martin P, Bocchetta P. Ionotropic Gelation of Chitosan Flat Structures and Potential Applications. Molecules 2021; 26:660. [PMID: 33513925 PMCID: PMC7865838 DOI: 10.3390/molecules26030660] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
The capability of some polymers, such as chitosan, to form low cost gels under mild conditions is of great application interest. Ionotropic gelation of chitosan has been used predominantly for the preparation of gel beads for biomedical application. Only in the last few years has the use of this method been extended to the fabrication of chitosan-based flat structures. Herein, after an initial analysis of the major applications of chitosan flat membranes and films and their usual methods of synthesis, the process of ionotropic gelation of chitosan and some recently proposed novel procedures for the synthesis of flat structures are presented.
Collapse
Affiliation(s)
- Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy;
| | - Seidy Pedroso-Santana
- Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, 4030000 Concepción, Chile;
| | - Yogesh Kumar
- Department of Physics, ARSD College, University of Delhi, Delhi 110021, India;
| | - Nicolas Joly
- Unité Transformations & Agroressources, Université d’Artois—UniLasalle, ULR7519, F-62408 Béthune, France; (N.J.); (P.M.)
| | - Patrick Martin
- Unité Transformations & Agroressources, Université d’Artois—UniLasalle, ULR7519, F-62408 Béthune, France; (N.J.); (P.M.)
| | - Patrizia Bocchetta
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
16
|
Wang H, Deng Y, Qiu J, Wu J, Zhang K, Shao J, Yan L. In Situ Formation of "Dimethyl Sulfoxide/Water-in-Salt"-Based Chitosan Hydrogel Electrolyte for Advanced All-Solid-State Supercapacitors. CHEMSUSCHEM 2021; 14:632-641. [PMID: 33047843 DOI: 10.1002/cssc.202002236] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Biodegradable hydrogel electrolytes are particularly attractive in the fabrication of all-solid-state supercapacitors due to environmental benignity and avoiding of leakage. The introduction of "water-in-salt" (WIS) electrolytes into hydrogels will further broaden the electrochemical stability window of aqueous supercapacitors significantly. Meanwhile, the addition of an organic co-solvent can effectively overcome the inevitable salt precipitation and extend the temperature adaptability. Herein, an in situ cross-linking approach was demonstrated without any extra binder to obtain a "dimethyl sulfoxide/water-in-salt"-based (DWIS) chitosan hydrogel electrolyte. Interestingly, the addition of 4-7 mol L-1 of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salts not only conforms to the criterion of WIS, but also promoted the successful gelation through the supramolecular complexation between Li+ -solvated complexes and chitosan chains. A hydrogel-based all-solid-state supercapacitor was fabricated using the DWIS chitosan hydrogel as the electrolyte and separator while nitrogen-doped graphene hydrogel (NG) was used as the electrode. The optimized supercapacitor with a wide operating voltage of 2.1 V showed a high specific capacitance of 107.6 F g-1 at 1 A g-1 , remarkable capacitance retention of 80.1 % after 5000 cycles, a superior energy density of 62.9 Wh kg-1 at a power density of 1025.5 W kg-1 , and excellent temperature stability in the range of -20 to 70 °C. These findings suggest that the as-prepared hydrogel electrolyte holds great potential in the practical application of high-performance solid-state energy storage devices.
Collapse
Affiliation(s)
- Hongfei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yongqi Deng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Jun Qiu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Juan Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Kefu Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Jingwen Shao
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
17
|
Cui L, An Y, Xu H, Jia M, Li Y, Jin X. An all-lignin-based flexible supercapacitor based on a nitrogen-doped carbon dot functionalized graphene hydrogel. NEW J CHEM 2021. [DOI: 10.1039/d1nj04054e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this manuscript, the synthesis of a nitrogen-doped carbon dot functionalized graphene hydrogel and its application as a supercapacitor electrode have been reported.
Collapse
Affiliation(s)
- Linlin Cui
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East road, Haidian, 100083, Beijing, China
| | - Yingrui An
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East road, Haidian, 100083, Beijing, China
| | - Hanping Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East road, Haidian, 100083, Beijing, China
| | - Mengying Jia
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East road, Haidian, 100083, Beijing, China
| | - Yue Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East road, Haidian, 100083, Beijing, China
| | - Xiaojuan Jin
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East road, Haidian, 100083, Beijing, China
| |
Collapse
|
18
|
Ruano G, Tononi J, Curcó D, Puiggalí J, Torras J, Alemán C. Doped photo-crosslinked polyesteramide hydrogels as solid electrolytes for supercapacitors. SOFT MATTER 2020; 16:8033-8046. [PMID: 32785400 DOI: 10.1039/d0sm00599a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-performance hydrogels play a crucial role as solid electrolytes for flexible electrochemical supercapacitors (ESCs). More specifically, all solid-state ESCs based on renewable, biodegradable and/or biocompatible hydrogels doped with inorganic salts as electrolytes are attractive not only because of their contribution to reducing resource consumption and/or the generation of electronic garbage, but also due to their potential applicability in the biomedical field. Here, computer simulations have been combined with experimental measurements to probe the outstanding capability as solid electrolytes of photo-crosslinked unsaturated polyesteramide hydrogels containing phenylalanine, butenediol and fumarate, and doped with NaCl (UPEA-Phe/NaCl). Atomistic molecular dynamics simulations have shown the influence of the hydrogel pore structure in the migration of Na+ and Cl- ions, suggesting that UPEA-Phe/NaCl hydrogels prepared without completing the photo-crosslinking reaction will exhibit better behavior as solid electrolytes. Theoretical predictions have been confirmed by potentiodynamic and galvanostatic studies on ESCs fabricated using poly(3,4-ethylenedioxythiophene) electrodes and UPEA-Phe/NaCl hydrogels, which were obtained using different times of exposure to UV radiation (i.e. 4 and 8 h for incomplete and complete photo-crosslinking reaction). Moreover, the behavior as a solid electrolyte of the UPEA-Phe/NaCl hydrogel prepared using a photo-polymerization time of 4 h has been found to be significantly superior to those exhibited by different polypeptide and polysaccharide hydrogels, which were analyzed using ESCs with identical electrodes and experimental conditions.
Collapse
Affiliation(s)
- Guillem Ruano
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
19
|
Hydrogel-filled micropipette contact systems for solid state electrochemical measurements. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04651-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Ai S, Wang T, Li T, Wan Y, Xu X, Lu H, Qu T, Luo S, Jiang J, Yu X, Zhou D, Li L. A Chitosan/Poly(ethylene oxide)‐Based Hybrid Polymer Composite Electrolyte Suitable for Solid‐State Lithium Metal Batteries. ChemistrySelect 2020. [DOI: 10.1002/slct.202000260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shun Ai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 PR China
| | - Tianyi Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Tao Li
- Neutron Scattering Technical Engineering Research Center & School of Mechanical EngineeringDongguan University of Technology Dongguan 523808 China
| | - Yuanxin Wan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Xiaoqian Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Hongyan Lu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Tengfei Qu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Shaochuan Luo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Jing Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Xianghua Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 PR China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Liang Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 PR China
| |
Collapse
|
21
|
Zakariya’u I, Gultekin B, Singh V, Singh PK. Electrochemical double-layer supercapacitor using poly(methyl methacrylate) solid polymer electrolyte. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008319895556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prime objective of the present article is to develop an efficient supercapacitor based on polymer electrolyte doped with salt. Solution cast technique was adopted to develop a solid polymer electrolyte of polymer poly(methyl methacrylate) (PMMA) as host polymer and salt potassium hydroxide (KOH) as a dopant. Incorporation of salt increases the amorphicity and assisted in conductivity enhancement. Moreover, doping of salt increases the overall conductivity of polymer electrolyte film. Electrochemical impedance spectroscopy reveals the enhancement in conductivity (four orders of magnitude) by salt doping. Fourier transform infrared shows the complexation and composite nature of films. Polarized optical microscopy shows the reduction in crystallinity, which is further confirmed by Differential scanning calorimetry. Fabricated electrochemical double-layer supercapacitor using maximum conducting polymer—salt electrolyte and symmetric carbon nanotubes electrodes shows specific capacitance of 21.86 F g−1.
Collapse
Affiliation(s)
- Ibrahim Zakariya’u
- Material Research Laboratory, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Physics, Sokoto State University, Sokoto, Nigeria
| | | | - Vijay Singh
- Department of Chemical Engineering, Konkuk University, Seoul, South Korea
| | - Pramod K Singh
- Material Research Laboratory, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
22
|
Jian M, Zhang Y, Liu Z. Natural Biopolymers for Flexible Sensing and Energy Devices. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2379-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Gusain R, Kumar N, Ray SS. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213111] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Kasturi PR, Ramasamy H, Meyrick D, Sung Lee Y, Kalai Selvan R. Preparation of starch-based porous carbon electrode and biopolymer electrolyte for all solid-state electric double layer capacitor. J Colloid Interface Sci 2019; 554:142-156. [DOI: 10.1016/j.jcis.2019.06.081] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/08/2019] [Accepted: 06/24/2019] [Indexed: 01/06/2023]
|
25
|
Kumar MS, Rao M. Effect of Al 2O 3 on structural and dielectric properties of PVP-CH 3COONa based solid polymer electrolyte films for energy storage devices. Heliyon 2019; 5:e02727. [PMID: 31720469 PMCID: PMC6838940 DOI: 10.1016/j.heliyon.2019.e02727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 09/13/2019] [Accepted: 10/22/2019] [Indexed: 11/29/2022] Open
Abstract
Nanocomposite polymer (NCP) films were prepared by doping sodium acetate (CH3COONa) in polymer of polyvinyl pyrrolidone (PVP) by complete dispersion of aluminum oxide (Al2O3) with different wt% proportions using solution cast method. The acquired NCP films were systematically characterized. The crystalline structure of the prepared NCP films was confirmed by XRD. The little agglomeration and grain sizes involved in the films were analyzed by SEM. The chemical bond formation and interchange reaction between the host, dopant salt and the nanofiller were confirmed by FTIR and Raman. The lowest energy bandgap values were observed to be 3.0 eV for the synthesized film with wt% ratio of PVP + CH3COONa:Al2O3 (80:20:1%). The highest ionic conductivity was found to be 1.05 × 10-3 S/cm for the prepared film with wt% ratio of PVP + CH3COONa:Al2O3 (80:20:1%). From the charge discharge characteristics it was concluded that the film with wt% ratio of PVP + CH3COONa:Al2O3 (80:20:1%) possesses long durability when compared to the other prepared films.
Collapse
Affiliation(s)
- M. Seshu Kumar
- Department of Physics, Krishna University, Machilipatnam, 521001, India
- Department of Physics, Andhra Loyola College, Vijayawada, 520008, India
| | - M.C. Rao
- Department of Physics, Andhra Loyola College, Vijayawada, 520008, India
| |
Collapse
|
26
|
Wei J, Wei G, Shang Y, Zhou J, Wu C, Wang Q. Dissolution-Crystallization Transition within a Polymer Hydrogel for a Processable Ultratough Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900248. [PMID: 31183940 DOI: 10.1002/adma.201900248] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/05/2019] [Indexed: 05/14/2023]
Abstract
Although nonliquid electrolytes have been developed rapidly under the condition of safe demand of energy storage devices, the inherent weaknesses in ionic conductivity, mechanical properties, or interfacial compatibility severely hinder their application under a harsh environment. Inspired by the hybridized characteristics of composite materials and the potential advantages of hydrated crystals, a processable crystal-type gel electrolyte with good comprehensive performance via the dissolution-crystallization transition of NaAc within hydrogel is creatively prepared. The use of NaAc crystal within a hydrogel leads to nearly 26 000 times greater modulus (474.24 MPa) and higher operating voltage (2.0 V) than the hydrogel without the crystal. The reliable supercapacitor using this electrolyte can work in extreme environment (-40 to 80 °C, even in the fire or in liquid nitrogen within a short time) benefiting from its phase-transition capacity. This investigation offers a facile and versatile way to construct an ideal gel electrolyte for next-generation energy storage devices.
Collapse
Affiliation(s)
- Junjie Wei
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Gumi Wei
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yinghui Shang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jie Zhou
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Chu Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
27
|
Non suitability of silver ion conducting polymer electrolytes based on chitosan mediated by barium titanate (BaTiO3) for electrochemical device applications. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.081] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Lyu F, Zeng S, Sun Z, Qin N, Cao L, Wang Z, Jia Z, Wu S, Ma FX, Li M, Wang W, Li YY, Lu J, Lu Z. Lamellarly Stacking Porous N, P Co-Doped Mo 2 C/C Nanosheets as High Performance Anode for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805022. [PMID: 30698915 DOI: 10.1002/smll.201805022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Layered stacking and highly porous N, P co-doped Mo2 C/C nanosheets are prepared from a stable Mo-enhanced hydrogel. The hydrogel is formed through the ultrafast cross-linking of phosphomolybdic acid and chitosan. During the reduction of the composite hydrogel framework under inert gas protection, highly porous N and P co-doped carbon nanosheets are produced with the in situ formation of ultrafine Mo2 C nanoparticles highly distributed throughout the nanosheets which are entangled via a hierarchical lamellar infrastructure. This unique architecture of the N, P co-doped Mo2 C/C nanosheets tremendously promote the electrochemical activity and operate stability with high specific capacity and extremely stable cycling. In particular, this versatile synthetic strategy can also be extended to other polyoxometalate (such as phosphotungstic acid) to provide greater opportunities for the controlled fabrication of novel hierarchical nanostructures for next-generation high performance energy storage applications.
Collapse
Affiliation(s)
- Fucong Lyu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical Engineering, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Shanshan Zeng
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zhifang Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ning Qin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lujie Cao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenyu Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhe Jia
- Department of Mechanical Engineering, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shaofei Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fei-Xiang Ma
- Department of Mechanical Engineering, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Minchan Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenxi Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Yang Li
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jian Lu
- Department of Mechanical Engineering, Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
29
|
Wang J, Deng M, Xiao Y, Hao W, Zhu C. Dielectric and transport properties of cationic polyelectrolyte membrane P(NVP-co-DMDAAC)/PVA for solid-state supercapacitors. NEW J CHEM 2019. [DOI: 10.1039/c9nj00468h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cationic polyelectrolyte with good ionic conductivity and dielectric properties was prepared; the membrane thickness is a key parameter.
Collapse
Affiliation(s)
- Jin Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei 23009
- P. R. China
| | - Mengde Deng
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei 23009
- P. R. China
| | - Yahui Xiao
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei 23009
- P. R. China
| | - Wentao Hao
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei 23009
- P. R. China
| | - Chengfeng Zhu
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei 23009
- P. R. China
| |
Collapse
|
30
|
Plasticizer incorporated, novel eco-friendly bio-polymer based solid bio-membrane for electrochemical clean energy applications. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2018.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Cao L, Wang Z, Liu J, Wang B, Wang Z, Yang M, Pan H, Lu Z. A novel Mn/Co dual nanoparticle decorated hierarchical carbon structure derived from a biopolymer hydrogel as a highly efficient electro-catalyst for the oxygen reduction reaction. Chem Commun (Camb) 2019; 55:13900-13903. [DOI: 10.1039/c9cc07751k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Mn/Co dual nanoparticle-decorated hierarchical carbon structure was derived from a Zn/Mn/Co/chitosan composite hydrogel as a highly efficient electro-catalyst for the oxygen reduction reaction.
Collapse
Affiliation(s)
- Lujie Cao
- Department of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power
- Southern University of Science and Technology
- Shenzhen 518055
- P. R. China
| | - Zhenyu Wang
- Department of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power
- Southern University of Science and Technology
- Shenzhen 518055
- P. R. China
| | - Jinlong Liu
- Department of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power
- Southern University of Science and Technology
- Shenzhen 518055
- P. R. China
| | - Bingxue Wang
- Department of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power
- Southern University of Science and Technology
- Shenzhen 518055
- P. R. China
| | - Zhiqiang Wang
- Department of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power
- Southern University of Science and Technology
- Shenzhen 518055
- P. R. China
| | - Mingyang Yang
- Department of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power
- Southern University of Science and Technology
- Shenzhen 518055
- P. R. China
| | - Hui Pan
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering
- University of Macau
- Macao SAR
- P. R. China
- Department of Physics and Chemistry
| | - Zhouguang Lu
- Department of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power
- Southern University of Science and Technology
- Shenzhen 518055
- P. R. China
| |
Collapse
|
32
|
Na R, Lu N, Zhang S, Huo G, Yang Y, Zhang C, Mu Y, Luo Y, Wang G. Facile synthesis of a high-performance, fire-retardant organic gel polymer electrolyte for flexible solid-state supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Aziz SB, Faraj MG, Abdullah OG. Impedance Spectroscopy as a Novel Approach to Probe the Phase Transition and Microstructures Existing in CS:PEO Based Blend Electrolytes. Sci Rep 2018; 8:14308. [PMID: 30254202 PMCID: PMC6156599 DOI: 10.1038/s41598-018-32662-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/12/2018] [Indexed: 11/10/2022] Open
Abstract
In this work the role of phase transition of PEO from crystalline to amorphous phases on DC conductivity enhancement in chitosan-based polymer electrolyte was discussed. Silver ion-conducting polymer electrolytes based on chitosan (CS) incorporated with silver nitrate (AgNt) is prepared via solution cast technique. Various amounts of polyethylene oxide (PEO) are added to the CS:AgNt system to prepare blend polymer electrolytes. Ultraviolet-visible (UV-vis) spectrophotometry is used to confirm that the blended samples containing AgNt salt exhibit a broad absorption peak. From optical micrograph images it is apparent that small white specs appear on the surface of the samples. The SEM results clearly show the aggregated silver nanoparticles. The enlargement of the crystalline area was observed from the morphological emergence and impedance plots. The phase separation in SEM images was observed at high PEO concentration. The XRD consequences support the morphological manifestation. In this study a new approach is offered to explore the microstructures existing in the blend electrolytes. The width of the semicircle linked to crystalline phase in impedance spectra was found to be increased with the increase of PEO concentration. A slow increase of DC conductivity was observed at low temperatures while above 333 K an immediate change in DC conductivity was obtained. The rapid rise of DC conductivity at high temperatures is correlated with the DSC results and impedance studies at high temperatures.
Collapse
Affiliation(s)
- Shujahadeen B Aziz
- Prof. Hameed's Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Sulaimani, Kurdistan Regional Government, Iraq.
- Komar Research Center (KRC), Komar University of Science and Technology, Sulaimani, 46001, Kurdistan Regional Government, Iraq.
| | - M G Faraj
- Department of Physics, Faculty of Science and Health, Koya University, University Park, Koysinjaq, Kurdistan Regional Government, Iraq
| | - Omed Gh Abdullah
- Prof. Hameed's Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Sulaimani, Kurdistan Regional Government, Iraq
- Komar Research Center (KRC), Komar University of Science and Technology, Sulaimani, 46001, Kurdistan Regional Government, Iraq
| |
Collapse
|
34
|
Ding Q, Xu X, Yue Y, Mei C, Huang C, Jiang S, Wu Q, Han J. Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27987-28002. [PMID: 30043614 DOI: 10.1021/acsami.8b09656] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Conducting polymer hydrogels (CPHs) have emerged as a fascinating class of smart soft matters important for various advanced applications. However, achieving the synergistic characteristics of conductivity, self-healing ability, biocompatibility, viscoelasticity, and high mechanical performance still remains a critical challenge. Here, we develop for the first time a type of multifunctional hybrid CPHs based on a viscoelastic polyvinyl alcohol (PVA)-borax (PB) gel matrix and nanostructured CNFs-PPy (cellulose nanofibers-polypyrrole) complexes that synergizes the biotemplate role of CNFs and the conductive nature of PPy. The CNF-PPy complexes are synthesized through in situ oxidative polymerization of pyrrole on the surface of CNF templates, which are further well-dispersed into the PB matrix to synthesize homogeneous CNF-PPy/PB hybrid hydrogels. The CNF-PPy complexes not only tangle with PVA chains though hydrogen bonds, but also form reversibly cross-linked complexes with borate ions. The multi-complexation between each component leads to the formation of a hierarchical three-dimensional network. The CNF-PPy/PB-3 hydrogel prepared by 2.0 wt % of PVA, 0.4 wt % of borax, and CNF-PPy complexes with a mass ratio of 3.75/1 exhibits the highest viscoelasticity and mechanical strength. Because of a combined reinforcing and conductive network inside the hydrogel, its maximum storage modulus (∼0.1 MPa) and nominal compression stress (∼22 MPa) are 60 and 2240 times higher than those of pure CNF/PB hydrogel, respectively. The CNF-PPy/PB-3 electrode with a conductivity of 3.65 ± 0.08 S m-1 has a maximum specific capacitance of 236.9 F g-1, and its specific capacitance degradation is less than 14% after 1500 cycles. The CNF-PPy/PB hybrid hydrogels also demonstrate attractive characteristics, including high water content (∼94%), low density (∼1.2 g cm-3), excellent biocompatibility, plasticity, pH sensitivity, and rapid self-healing ability without additional external stimuli. Taken together, the combination of such unique properties endows the newly developed CPHs with potential applications in flexible bioelectronics and provides a practical platform to design multifunctional smart soft materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qinglin Wu
- School of Renewable Natural Resources , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Jingquan Han
- Dehua TB New Decoration Material Co., Ltd. , Deqing , Zhejiang 313200 , China
| |
Collapse
|
35
|
Pérez-Madrigal MM, Edo MG, Saborío MG, Estrany F, Alemán C. Pastes and hydrogels from carboxymethyl cellulose sodium salt as supporting electrolyte of solid electrochemical supercapacitors. Carbohydr Polym 2018; 200:456-467. [PMID: 30177187 DOI: 10.1016/j.carbpol.2018.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/25/2022]
Abstract
Different carboxymethyl cellulose sodium salt (NaCMC)-based pastes and hydrogels, both containing a salt as supporting electrolyte, have been prepared and characterized as potential solid state electrolyte (SSE) for solid electrochemical supercapacitors (ESCs).The characteristics of the NaCMC-based SSEs have been optimized by examining the influence of five different factors in the capacitive response of poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes: i) the chemical nature of the salt used as supporting electrolyte; ii) the concentration of such salt; iii) the concentration of cellulose used to prepare the paste; iv) the concentration of citric acid employed during NaCMC cross-linking; and v) the treatment applied to recover the supporting electrolyte after washing the hydrogel. The specific capacitance of the device prepared using the optimized hydrogel as SSE is 81.5 and 76.8 F/g by means of cyclic voltammetry and galvanostatic charge/discharge, respectively, these values decreasing to 60.7 and 75.5 F/g when the SSE is the paste.
Collapse
Affiliation(s)
- Maria M Pérez-Madrigal
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain.
| | - Miquel G Edo
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain
| | - Maricruz G Saborío
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Francesc Estrany
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|
36
|
Aziz SB. The Mixed Contribution of Ionic and Electronic Carriers to Conductivity in Chitosan Based Solid Electrolytes Mediated by CuNt Salt. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0862-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Zhong X, Tang J, Cao L, Kong W, Sun Z, Cheng H, Lu Z, Pan H, Xu B. Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.110] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Wang X, Wang J, Yang Y, Yang F, Wu D. Fabrication of multi-stimuli responsive supramolecular hydrogels based on host–guest inclusion complexation of a tadpole-shaped cyclodextrin derivative with the azobenzene dimer. Polym Chem 2017. [DOI: 10.1039/c7py00698e] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multi-responsive supramolecular hydrogels, based on host–guest complexation of tadpole-shaped cyclodextrin with the azobenzene dimer, possess reversible sol–gel transition behaviors and better biocompatibility.
Collapse
Affiliation(s)
- Xing Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Juan Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yanyu Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|