1
|
Wang XJ, Long Y, Wei CW, Gao SQ, Lin YW. Peroxidase activity of a Cu-Fe bimetallic hydrogel and applications for colorimetric detection of ascorbic acid. Phys Chem Chem Phys 2024; 26:1077-1085. [PMID: 38098362 DOI: 10.1039/d3cp05403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A Cu-Fe bimetallic hydrogel (2-QF-CuFe-G) was constructed through a simple method. The 2-QF-CuFe-G metallohydrogel possesses excellent peroxidase-like activity to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. The catalytic mechanism was confirmed by the addition of •OH radical scavenger isopropyl alcohol (IPA), tert-butyl alcohol (TBA) and ˙OH trapping agent terephthalic acid (TA). Remarkably, the resultant blue ox-TMB system can be used to selectively and sensitively detect ascorbic acid (AA) with an LOD of 0.93 μM in the range of 4-36 μM through the colorimetric method. Moreover, the assay based on the 2-QF-CuFe-G metallohydrogel can be successfully applied to detect AA in fresh fruits.
Collapse
Affiliation(s)
- Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yan Long
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
2
|
Song Y, Huang C, Li Y. Nanozyme Rich in Oxygen Vacancies Derived from Mn-Based Metal-Organic Gel for the Determination of Alkaline Phosphatase. Inorg Chem 2023; 62:12697-12707. [PMID: 37526919 DOI: 10.1021/acs.inorgchem.3c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Vacancy engineering as an effective strategy has been widely employed to regulate the enzyme-mimic activity of nanomaterials by adjusting the surface, electronic structure, and creating more active sites. Herein, we purposed a facile and simple method to acquire transition metal manganese oxide rich in oxygen vacancies (OVs-Mn2O3-400) by pyrolyzing the precursor of the Mn(II)-based metal-organic gel directly. The as-prepared OVs-Mn2O3-400 exhibited superior oxidase-like activity as oxygen vacancies participated in the generation of O2•-. Besides, steady state kinetic constant (Km) and catalytic kinetic constant (Ea) suggested that OVs-Mn2O3-400 had a stronger affinity toward 3,3',5,5'-tetramethylbenzidine and possessed prominent catalytic performance. By taking 2-phospho-l-ascorbic acid as the substrate, which can be converted into reducing substance ascorbic acid in the presence of alkaline phosphatase (ALP), OVs-Mn2O3-400 can be applied as an efficient nanozyme for ALP colorimetric analysis without the help of destructive H2O2. The colorimetric sensor established by OVs-Mn2O3-400 for ALP detection showed a good linearity from 0.1 to 12 U/L and a lower limit of detection of 0.054 U/L. Our work paves the way for designing enhanced enzyme-like activity nanozymes, which is of significance in biosensing.
Collapse
Affiliation(s)
- Yunfei Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
3
|
Dutta M, Banerjee S, Mandal M, Bhattacharjee M. A self-healable metallohydrogel for drug encapsulations and drug release. RSC Adv 2023; 13:15448-15456. [PMID: 37223407 PMCID: PMC10201648 DOI: 10.1039/d3ra00930k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
A self-healable metallohydrogel (MOG) of Mn(ii) has been prepared using a low molecular weight gelator, Na2HL {H3L = l-(3,5-di-tert-butyl-2-hydroxy-benzyl)amino aspartic acid}. The MOG has been characterized by MALDI TOF mass spectrometry, rheological studies, IR spectroscopy, and microscopic techniques. Non-steroidal anti-inflammatory drug (NSAID), indomethacin (IND) and anti-cancer drug gemcitabine (GEM) were encapsulated into the metallohydrogel. The GEM-loaded metallogel (MOG_GEM) shows better delivery and more adverse cytotoxicity than the drug against breast cancer cell lines MDA-MB-468 and 4T1. The anti-cancer property was evaluated with in vitro MTT cytotoxic assay, live-dead assay and cell migration assay. In vitro cytotoxicity assay against RAW 264.7 cell line with the treatment of MOG_IND shows the improved anti-inflammatory response in the case of MOG_IND compared to the drug alone.
Collapse
Affiliation(s)
- Mita Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302 India
| | - Shreya Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur 721302 India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur 721302 India
| | | |
Collapse
|
4
|
Wu X, Hu C, Xiao S, Wang X, Zhen S, Huang C, Li Y. A novel luminol-coordinated silver(I) organic gel with self-enhanced chemiluminescence applied for uric acid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122906. [PMID: 37257321 DOI: 10.1016/j.saa.2023.122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
A novel silver(I)-based metal-organic gel (AgMOG) consisting of luminol as the ligand was synthesized by a facile strategy, which was found to exhibit self-enhancing chemiluminescence (CL) property. Based on this, a new AgMOG-K2S2O8 CL system without additional catalyst was established. According to the results of CL spectra, electron spin resonance (ESR) spectra as well as the influence of radical scavengers to AgMOG-K2S2O8 system, the possible CL mechanism of this system was discussed. In this CL system, AgMOG exhibited the dual properties of catalysis and luminescence. On the one hand, AgMOG can catalyze K2S2O8 to produce SO4•-. The generated SO4•- can be converted to hydroxyl radical (OH•) under alkaline condition, and further converted to other radical oxygen species (ROS, such as 1O2 and O2•-). Furthermore, the reaction between the K2S2O8 and H2O can form H2O2, which also can be catalyzed by AgMOG to produce ROS. On the other hand, the AgMOG can be oxidized by ROS to emit strong CL signal. Then, based on the quenching effect of uric acid (UA) to this CL system, a method for UA detection was established with a good linearity over the range from 0.08 to 10 µmol·L-1. In this work, a new CL luminant with catalytic property was synthesized by a simple method, and a self-enhancing AgMOG-K2S2O8 CL system was developed for the first time, providing a novel direction for the application of MOG in the CL field.
Collapse
Affiliation(s)
- Xinjie Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Congyi Hu
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Siyu Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xue Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
5
|
Muthuramalingam S, Velusamy M, Singh Rajput S, Alam M, Mayilmurugan R. Nickel(II) Complexes of Tripodal Ligands as Catalysts for Fixation of Atmospheric CO 2 as Organic Carbonates. Chem Asian J 2023; 18:e202201204. [PMID: 36734191 DOI: 10.1002/asia.202201204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The fixation of atmospheric CO2 into value-added products is a promising methodology. A series of novel nickel(II) complexes of the type [Ni(L)(CH3 CN)2 ](BPh4 )2 1-5, where L=N,N-bis(2-pyridylmethyl)-N', N'-dimethylpropane-1,3-diamine (L1), N,N-dimethyl-N'-(2-(pyridin-2-yl)ethyl)-N'-(pyridin-2-ylmethyl) propane-1,3-diamine (L2), N,N-bis((4-methoxy-3,5-dimethylpyridin-2-ylmethyl)-N',N'-dimethylpropane-1,3-diamine (L3), N-(2-(dimethylamino) benzyl)-N',N'-dimethyl-N-(pyridin-2-ylmethyl) propane-1,3-diamine (L4) and N,N-bis(2-(dimethylamino)benzyl)-N', N'-dimethylpropane-1,3-diamine (L5) have been synthesized and characterized as the catalysts for the conversion of atmospheric CO2 into organic cyclic carbonates. The single-crystal X-ray structure of 2 was determined and exhibited distorted octahedral coordination geometry with cis-α configuration. The complexes have been used as a catalyst for converting CO2 and epoxides into five-membered cyclic carbonates under 1 atmospheric (atm) pressure at room temperature in the presence of Bu4 NBr. The catalyst containing electron-releasing -Me and -OMe groups afforded the maximum yield of cyclic carbonates, 34% (TON, 680) under 1 atm air. It was drastically enhanced to 89% (TON, 1780) under pure CO2 gas at 1 atm. It is the highest catalytic efficiency known for CO2 fixation using nickel-based catalysts at room temperature and 1 atm pressure. The electronic and steric factors of the ligands strongly influence the catalytic efficiency. Furthermore, all the catalysts can convert a wide range of epoxides (ten examples) into corresponding cyclic carbonate with excellent selectivity (>99%) under this mild condition.
Collapse
Affiliation(s)
- Sethuraman Muthuramalingam
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India.,Institut de Química Computacional i Catalisì (IQCC) and Departament de Química, Universitat de Girona, Girona, E-17003 Catalonia, Spain
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong, 793022, India
| | - Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India
| | - Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India
| | - Ramasamy Mayilmurugan
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India
| |
Collapse
|
6
|
A "heat set" Zr-Diimide based Fibrous Metallogel: Multiresponsive Sensor, Column-based Dye Separation, and Iodine Sequestration. J Colloid Interface Sci 2023; 633:441-452. [PMID: 36462267 DOI: 10.1016/j.jcis.2022.11.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Sensing and monitoring hazardous contaminants in water and radioactive iodine sequestration is pivotal due to their detrimental impact on biological ecosystems. In this context, herein, a water stable zirconium-diimide based metallogel (Zr@MG) with fibrous columnar morphology is accomplished through the "heat set" method. The presence of diimide linkage with long aromatic chain manifests active luminescence properties in the linker as well as in the supramolecular framework structure. The as-synthesized Zr@MG xerogel can selectively detectCr2O72- (LOD = 0.52 ppm) and 2,4,6-trinitrophenol (TNP) (LOD = 80.2 ppb) in the aqueous medium. The Zr@MG paper strip-based detection for Cr2O72- and nitro explosive makes this metallogel reliable and an attractive luminescent sensor for practical use. Moreover, a column-based dye separation experiment was performed to show selective capture of positively charged methylene blue (MB) dye with 98 % separation efficiency from the mixture of two dyes. Also, the Zr@MG xerogel showed effective iodine sequestration from the vapor phase (232 wt%).
Collapse
|
7
|
Gu D, Liu Y, Zhu H, Gan Y, Zhang B, Yang W, Hao J. Magnetic porphyrin-based metal organic gel for rapid RhB removal and enhanced antibacterial activity by heterogeneous Photo-Fenton reaction under visible light. CHEMOSPHERE 2022; 303:135114. [PMID: 35623427 DOI: 10.1016/j.chemosphere.2022.135114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials with visible light-driven catalytic ability are beneficial in controlling environmental pollutants. Porphyrin-based metal organic gel (MOG) was herein synthesized in one step and magnetic metal organic gel (MMOG) was successfully prepared via in-situ reaction of MOG and Fe3O4. This MMOG was developed as a novel visible light assisted Fenton-like catalyst. The catalytic experiments showed the high photo-Fenton activity of MMOG in the degradation of Rhodamine B (RhB) in the presence of visible light and H2O2 with a RhB degradation efficiency of 94.2% within 40 min. Notably, the obtained MMOG can kill E. coli and S. aureus with high killing rate (>99.999%) under visible light. Importantly, the MMOG can be recovered simply by an external magnetic field due to the unique magnetic property. This easily synthesized MMOG with photo-Fenton activity under visible light and magnetic property makes MOG based on the photo-Fenton reaction a prospective material for the environmental and biomedical applications.
Collapse
Affiliation(s)
- Dongxu Gu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Hongyu Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Ying Gan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Biao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Weiting Yang
- School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, PR China.
| | - Jianyuan Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| |
Collapse
|
8
|
Li Y, Wei CW, Wang XJ, Gao SQ, Lin YW. Amino acid derivative-based Ln-metallohydrogels with multi-stimuli responsiveness and applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120901. [PMID: 35077980 DOI: 10.1016/j.saa.2022.120901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Metallohydrogels and lanthanide (Ln) fluorescent materials have gained much attention recently. In this study, we designed and synthesized a facile gelator of a phenylalanine-based derivative containing an indazole group (namely IZF). It was found that IZF can self-assemble to form hydrogel at pH ≤ 7. Meanwhile, IZF and Tb3+/Eu3+ can co-assemble to generate IZF-Tb and IZF-Eu metallohydrogels with green and red fluorescence, respectively, at pH 8-11, with excellent multi-stimuli responsiveness. The bimetallic hydrogels of IZF-Tb/Eu exhibit different colors under UV light by adjusting the ratio of Tb3+ and Eu3+. Moreover, white light emission was achieved with IZF-Tb/Eu bimetallic gels through doping carbon dots (CDs) by tailoring the stoichiometric ratio of Ln-complex and CDs. Remarkably, IZF-Tb and IZF-Eu could be used as fluorescent inks with excellent stability. This study indicates that the amino acid derivative-based Ln-metallohydrogels are excellent candidates for constructing information storage and multiple anti-counterfeiting materials.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Human Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Key Lab of Protein Structure and Function of Universities in Human Province, University of South China, Hengyang 421001, China.
| |
Collapse
|
9
|
Sharma P, Wang G. 4,6- O-Phenylethylidene Acetal Protected D-Glucosamine Carbamate-Based Gelators and Their Applications for Multi-Component Gels. Gels 2022; 8:191. [PMID: 35323304 PMCID: PMC8953293 DOI: 10.3390/gels8030191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of carbohydrate-based low molecular weight gelators has led to useful advanced soft materials. The interactions of the gelators with various cations and anions are important in creating novel molecular architectures and expanding the scope of the small molecular gelators. In this study, a series of thirteen new C-2 carbamates of the 4,6-O-phenylethylidene acetal-protected D-glucosamine derivatives has been synthesized and characterized. These compounds are rationally designed from a common sugar template. All carbamates synthesized were found to be efficient gelators and three compounds are also hydrogelators. The resulting gels were characterized using optical microscopy, atomic force microscopy, and rheology. The gelation mechanisms were further elucidated using 1H NMR spectroscopy at different temperatures. The isopropyl carbamate hydrogelator 7 formed hydrogels at 0.2 wt% and also formed gels with several tetra alkyl ammonium salts, and showed effectiveness in the creation of gel electrolytes. The formation of metallogels using earth-abundant metal ions such as copper, nickel, iron, zinc, as well as silver and lead salts was evaluated for a few gelators. Using chemiluminescence spectroscopy, the metal-organic xerogels showed enzyme-like properties and enhanced luminescence for luminol. In addition, we also studied the applications of several gels for drug immobilizations and the gels showed sustained release of naproxen from the gel matrices. This robust sugar carbamate-derived gelator system can be used as the scaffold for the design of other functional materials with various types of applications.
Collapse
Affiliation(s)
| | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA;
| |
Collapse
|
10
|
Khashei Siuki H, Ghamari Kargar P, Bagherzade G. New Acetamidine Cu(II) Schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Sci Rep 2022; 12:3771. [PMID: 35260647 PMCID: PMC8904776 DOI: 10.1038/s41598-022-07674-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
In this project, the new catalyst copper defines as Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, FESEM, EDX, VSM, TGA, and ICP analysis. All results showed that copper was successfully supported on the polymer-coated magnetic nanoparticles. One of the most important properties of a catalyst is the ability to be prepared from simple materials such as pectin that's a biopolymer that is widely found in nature. The catalytic activity of Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was examined in a classical, one pot, and the three-component reaction of terminal alkynes, alkyl halides, and sodium azide in water and observed, proceeding smoothly and completed in good yields and high regioselectivity. The critical potential interests of the present method include high yields, recyclability of catalyst, easy workup, using an eco-friendly solvent, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. The capability of the nanocomposite was compared with previous works, and the nanocomposite was found more efficient, economical, and reproducible. Also, the catalyst can be easily removed from the reaction solution using an external magnet and reused for five runs without reduction in catalyst activity.
Collapse
Affiliation(s)
- Hossein Khashei Siuki
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran.
| |
Collapse
|
11
|
Veerakumar P, Velusamy N, Thanasekaran P, Lin KC, Rajagopal S. Copper supported silica-based nanocatalysts for CuAAC and cross-coupling reactions. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00095d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent advances in Cu/SiO2-based heterogeneous catalysts for click reaction, C–N, C–S, and C–O coupling reactions are reviewed and summarized.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Nithya Velusamy
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | |
Collapse
|
12
|
Lee IH, Bang KT, Yang HS, Choi TL. Recent Advances in Diversity-Oriented Polymerization Using Cu-Catalyzed Multicomponent Reactions. Macromol Rapid Commun 2021; 43:e2100642. [PMID: 34715722 DOI: 10.1002/marc.202100642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Indexed: 11/07/2022]
Abstract
Diversification of polymer structures is important for imparting various properties and functions to polymers, so as to realize novel applications of these polymers. In this regard, diversity-oriented polymerization (DOP) is a powerful synthetic strategy for producing diverse and complex polymer structures. Multicomponent polymerization (MCP) is a key method for realizing DOP owing to its combinatorial features and high efficiency. Among the MCP methods, Cu-catalyzed MCP (Cu-MCP) has recently paved the way for DOP by overcoming the synthetic challenges of the previous MCP methods. Here the emergence and progress of Cu-MCP, its current challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- In-Hwan Lee
- Department of Chemistry, Ajou University, Suwon, 16499, Korea
| | - Ki-Taek Bang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hee-Seong Yang
- Department of Energy System Research, Ajou University, Suwon, 16499, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
13
|
Ajaykamal T, Sharma M, Islam NS, Palaniandavar M. Rapid atmospheric carbon dioxide fixation by nickel(II) complexes: meridionally coordinated diazepane-based 3N ligands facilitate fixation. Dalton Trans 2021; 50:8045-8056. [PMID: 34018498 DOI: 10.1039/d1dt00299f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octahedral complexes of the type [Ni(L)(H2O)3](ClO4)2 (1 and 2), where L is the tridentate 3N ligand 4-methyl-1-(pyrid-2-ylmethyl)-1,4-diazacycloheptane (L1, 1), or 4-methyl-1-(N-methylimidazolyl)-1,4-diazacycloheptane (L2, 2), have been isolated and characterized using elemental analysis, ESI-MS and electronic absorption spectroscopy. The DFT optimized structures of 1 and 2 reveal that the tridentate 3N ligands are coordinated meridionally constituting a distorted octahedral coordination geometry around nickel(ii). In methanol solution, the complexes, upon treatment with triethylamine, generate the reactive red colored low-spin square planar Ni-OH intermediate [Ni(L1/L2)(OH)]+ (1a and 2a), as characterized by ESI-MS and electronic absorption spectroscopy, and energy minimized structures. The latter when exposed to the atmosphere rapidly absorbs atmospheric CO2 to produce the carbonate bridged dinickel(ii) complexes [Ni2(L1/L2)2(μ-CO3)(H2O)2](ClO4)2 (3 and 4), as characterized by elemental analysis and the IR spectral feature (∼1608 cm-1) characteristic of bridging carbonate. The single crystal X-ray structure of 3 reveals the presence of a dinickel(ii) core bridged by a carbonate anion in a symmetric mode. Both the Ni(ii) centers are identical to each other with each Ni(ii) possessing a distorted octahedral coordination geometry constituted by a meridionally coordinated 3N ligand, a carbonate ion and a water molecule. The decay kinetics of the red intermediates generated by 1 (kobs, 7.7 ± 0.1 × 10-5 s-1) and 2 (kobs, 5.8 ± 0.3 × 10-4 s-1) in basic methanol solution with atmospheric CO2 has been determined by absorption spectroscopy. DFT studies illustrate that meridional coordination of the 3N ligand and the electron-releasing imidazole ring as in 2 facilitate fixation of CO2. The carbonate complex 3 efficiently catalyzes the conversion of styrene oxide into cyclic carbonate by absorbing atmospheric and pure CO2 with excellent selectivity.
Collapse
Affiliation(s)
- Tamilarasan Ajaykamal
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| | - Mitu Sharma
- Department of Chemical Sciences, Tezpur University, Tezpur, Assam, India
| | - Nasreen S Islam
- Department of Chemical Sciences, Tezpur University, Tezpur, Assam, India
| | - Mallayan Palaniandavar
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| |
Collapse
|
14
|
Muthuramalingam S, Velusamy M, Mayilmurugan R. Fixation of atmospheric CO 2 as C1-feedstock by nickel(ii) complexes. Dalton Trans 2021; 50:7984-7994. [PMID: 34018501 DOI: 10.1039/d0dt03887c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The development of molecular catalysts for the activation and conversion of atmospheric carbon dioxide (CO2) into a value-added product is a great challenge. A series of nickel(ii) complexes, [Ni(L)(CH3CN)3](BPh4)2, 1-4 of diazepane based ligands, 4-methyl-1-[(pyridin-2-yl-methyl)]-1,4-diazepane (L1), 4-methyl-1-[2-(pyridine-2-yl)ethyl]-1,4-diazepane (L2), 4-methyl-1-[(quinoline-2-yl)-methyl]-1,4-diazepane (L3) and 1-[(4-methoxy-3,5-dimethyl-pyridin-2-yl)methyl]-4-methyl-1,4-diazepane (L4), have been synthesized and characterized as catalysts for the activation of atmospheric CO2. The single-crystal X-ray structure of 1 shows a distorted octahedral geometry with a cis-β configuration around the NiN6 coordination sphere. All the complexes are used as catalysts for the conversion of atmospheric CO2 and epoxides into cyclic carbonates at 1 atmosphere (atm) pressure and in the presence of Et3N. Catalyst 4 was found to be the most efficient catalyst and showed a 31% formation of cyclic carbonates with a TON of 620 under 1 atm air as the CO2 source. This yield was enhanced to 94% with a TON of 1880 under 1 atm pure CO2 gas and it is the highest catalytic efficiency known for nickel(ii)-based catalysts. Catalyst 4 enabled the transformation of a wide range of epoxides (eight examples) into corresponding cyclic carbonates with excellent selectivity (>99%) and yields of 59-94% and 11-31% under pure CO2 and atmospheric CO2, respectively. The catalytic efficiency is strongly influenced by the electronic nature of the complexes. The CO2 fixation reactions without an epoxide substrate led to the formation of the carbonate bridged dinuclear nickel(ii) complexes [(LNiII)2CO3](BPh4)21a-4a, which are speculated as catalytically active intermediates. The formation of these species was accompanied by the formation of new absorption bands around 592-681 nm and was further confirmed by the ESI-MS and IR spectral studies. The molecular structures of these carbonate-bridged key intermediates were determined by X-ray analysis. The structures contain two Ni2+-centers bridged via a carbonate ion that originated from CO2. Distorted square pyramidal geometries are adopted around each Ni(ii) center. All these results support that CO2 fixation reactions occur via CO2-bound nickel key intermediates.
Collapse
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
| | | | | |
Collapse
|
15
|
Khalifeh R, Zarei Z, Rajabzadeh M. Imidazolium-based ionic liquid immobilized on functionalized magnetic hydrotalcite (Fe 3O 4/HT-IM): as an efficient heterogeneous magnetic nanocatalyst for chemical fixation of carbon dioxide under green conditions. NEW J CHEM 2021. [DOI: 10.1039/d0nj05225f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fe3O4/HT-IM with plate-like morphology was synthesized as a novel and highly effective magnetic nanocatalyst and applied in chemical fixation.
Collapse
Affiliation(s)
- Reza Khalifeh
- Department of Chemistry
- Shiraz University of Technology
- Shiraz 71555-313
- Iran
| | - Zeinab Zarei
- Department of Chemistry
- Shiraz University of Technology
- Shiraz 71555-313
- Iran
| | - Maryam Rajabzadeh
- Department of Chemistry
- Shiraz University of Technology
- Shiraz 71555-313
- Iran
| |
Collapse
|
16
|
Sun S, Wei C, Xiao Y, Li G, Zhang J. Zirconium-based metal-organic framework gels for selective luminescence sensing. RSC Adv 2020; 10:44912-44919. [PMID: 35516264 PMCID: PMC9058640 DOI: 10.1039/d0ra09035b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023] Open
Abstract
Metal-organic gelation represents a promising approach to fabricate functional nanomaterials. Herein a series of Zr-carboxylate gels are synthesized from rigid pyrene, porphyrin and tetraphenyl ethylene-derived tetracarboxylate linkers, namely Zr-TBAPy (H4TBAPy = 1,3,6,8-tetrakis(4-carboxylphenyl)pyrene), Zr-TCPE (H4TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), and Zr-TCPP (H4TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin). The gels are aggregated from metal-organic framework (MOF) nanoparticles. Zr-TBAPy gel consists of NU-901 nanoparticles, and Zr-TCPP gel consists of PCN-224 nanoparticles. The xerogels show high surface areas up to 1203 m2 g-1. MOF gel films are also anchored on the butterfly wing template to yield Zr-MOF/B composites. Zr-TBAPy and Zr-TCPE gels are luminescent for solution-phase sensing and vapour-phase sensing of volatile organic compounds, and exhibit a significant luminescence quenching effect for electron-deficient analytes. Arising from the high porosity and good dispersion of luminescent MOF gels, rapid and effective vapour-sensing of nitrobenzene and 2-nitrotoluene within 30 s has been achieved via Zr-TBAPy film or Zr-TBAPy/B.
Collapse
Affiliation(s)
- Shujian Sun
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Caifeng Wei
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yali Xiao
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Guangqin Li
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
17
|
Wang G, Wang D, Bietsch J, Chen A, Sharma P. Synthesis of Dendritic Glycoclusters and Their Applications for Supramolecular Gelation and Catalysis. J Org Chem 2020; 85:16136-16156. [PMID: 33301322 DOI: 10.1021/acs.joc.0c01978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycoclusters with three, four, and six arms of glycosyl triazoles were designed, synthesized, and characterized. The self-assembling properties of these molecules and their catalytic activity as ligands in copper-catalyzed azide and alkyne cycloaddition (CuAAC) reactions were studied. The compounds with a lower number of branches exhibit excellent gelation properties and can function as supramolecular gelators. The resulting gels were characterized using optical microcopy and atomic force microscopy. The glycoconjugates containing six branches showed significant catalytic activity for copper sulfate mediated cycloaddition reactions. In aqueous solutions, 1 mol % of glycoclusters to substrates was efficient at accelerating these reactions. Several trimeric compounds were found to be capable of forming co-gels with the catalytically active hexameric compounds. Using the organogels formed by the glycoconjugates as supramolecular catalysts, efficient catalysis was demonstrated for several CuAAC reactions. The metallogels with CuSO4 were also prepared as gel columns, which can be reused for the cycloaddition reactions several times. These include the preparation of a few glycosyl triazoles and aryl triazoles and isoxazoles. We expect that these sugar-based soft biomaterials will have applications beyond supramolecular catalysis for copper-catalyzed cycloaddition reactions. They may also be useful as ligands or gel matrixes for other metal-ion catalyzed organic reactions.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Dan Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Jonathan Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Pooja Sharma
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
18
|
Ma X, Li H, Xin H, Du W, Anderson EA, Dong X, Jiang Y. Copper-Catalyzed Intramolecular C–H Alkoxylation of Diaryltriazoles: Synthesis of Tricyclic Triazole Benzoxazines. Org Lett 2020; 22:5320-5325. [DOI: 10.1021/acs.orglett.0c01517] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xinyuan Ma
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Haotian Li
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Hong Xin
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Weigen Du
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | | | - Xian Dong
- College of Pharmaceutical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
19
|
Sutar P, Maji TK. Recent advances in coordination-driven polymeric gel materials: design and applications. Dalton Trans 2020; 49:7658-7672. [PMID: 32373858 DOI: 10.1039/d0dt00863j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, research attention has been directed towards the coordination driven synthesis of gels, including coordination polymer gels (CPGs) and metal-organic cage based gels, which have shown applications in diverse fields, including optoelectronics, catalysis, sensing, gas-storage, and self-healing. A wide variety of CPGs and metal-organic cage based gels have been reported, to date, by choosing the right combination of metal ions and rationally designed organic linkers. In this article, we focused on recent developments in CPGs and metal-organic cage based gels and their applications.
Collapse
Affiliation(s)
- Papri Sutar
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | | |
Collapse
|
20
|
A decade of advances in the reaction of nitrogen sources and alkynes for the synthesis of triazoles. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Xue M, Chen M, Chang W, Chen R, Li P. Luminescent lanthanide metallogels: situ fabrication, self-healing and rheological properties. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04598-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Liu Y, Liu M, Zhang Y, Cao Y, Pei R. Fabrication of injectable hydrogels via bio-orthogonal chemistry for tissue engineering. NEW J CHEM 2020. [DOI: 10.1039/d0nj02629h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Injectable hydrogels via bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Yuanshan Liu
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Min Liu
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
23
|
Karan CK, Mallick S, Raj CR, Bhattacharjee M. A Self‐Healing Metal–Organic Hydrogel for an All‐Solid Flexible Supercapacitor. Chemistry 2019; 25:14775-14779. [DOI: 10.1002/chem.201903561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Chandan Kumar Karan
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Sourav Mallick
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - C. Retna Raj
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Manish Bhattacharjee
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
24
|
Yu J, Cao M, Wang H, Li Y. Novel manganese(II)-based metal-organic gels: synthesis, characterization and application to chemiluminescent sensing of hydrogen peroxide and glucose. Mikrochim Acta 2019; 186:696. [PMID: 31612280 DOI: 10.1007/s00604-019-3808-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023]
Abstract
A metal-organic gel (MOG) was synthesized that is composed of manganese(II) as the central ion and 1,10-phenanthroline-2,9-dicarboxylic acid as the ligand. The resulting MOG exhibits excellent activity for catalyzing the chemiluminescence (CL) of the luminol/hydrogen peroxide system. The CL system was characterized by CL spectra, UV-vis absorption spectra and by studying potential interferences by common radical scavengers. The CL reaction was exploited in a new scheme for the determination of hydrogen peroxide. CL intensity increases linearly in the 0.4 μM ~ 3 mM hydrogen peroxide concentration range, and the limit of detection (LOD) is 0.12 μM. The method was extended to an enzymatic assay for glucose by using glucose oxidase and by measurement of the enzymatically formed hydrogen peroxide. The assay works in the 0.2 μM ~ 3 mM glucose concentration range, and the LOD is 0.08 μM. Graphical abstract Schematic representation of the synthesized Mn-containing MOGs catalyzing luminol-hydrogen peroxide chemiluminescent reaction, which can be used to establish a new CL method for the detection of hydrogen peroxide and glucose.
Collapse
Affiliation(s)
- Jiaqi Yu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Mengya Cao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Hao Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China.
| |
Collapse
|
25
|
Muthuramalingam S, Sankaralingam M, Velusamy M, Mayilmurugan R. Catalytic Conversion of Atmospheric CO2 into Organic Carbonates by Nickel(II) Complexes of Diazepane-Based N4 Ligands. Inorg Chem 2019; 58:12975-12985. [DOI: 10.1021/acs.inorgchem.9b01908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Muniyandi Sankaralingam
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
26
|
Wang X, Wei C, Gao S, He B, Lin Y. Assembly of (l+d)-Tryptophan Derivatives Containing an Imidazole Group Selectively Forms a Rare Purple Ni 2+-Hydrogel. ChemistryOpen 2019; 8:1172-1175. [PMID: 31497471 PMCID: PMC6718073 DOI: 10.1002/open.201900214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/08/2019] [Indexed: 01/09/2023] Open
Abstract
Design of metal-selective hydrogels is attractive due to potential applications in materials and biological sciences. Although much progress has been made, assembly of both l- and d-amino acid derivatives was less explored for design of metallohydrogels. In this study, we synthesized a facile and small tryptophan derivative containing an imidazole ligand with both l- and d- configurations (denoted as l/d-ImW). Intriguingly, the assembly of (l+d)-ImW gelators was found to selectively form a Ni2+-hydrogel in aqueous medium at room temperature, which shows a rare purple color and exhibits excellent multi-responsiveness. In addition to insights into the gelation mechanism, this study provides a novel approach to the design of metallohydrogels, by the assembly of (l+d)-amino acid derivatives containing both aromatic rings and multiple metal coordination sites.
Collapse
Affiliation(s)
- Xiao‐Juan Wang
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
| | - Chuan‐Wan Wei
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
| | - Shu‐Qin Gao
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001China
| | - Bo He
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
| | - Ying‐Wu Lin
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001China
| |
Collapse
|
27
|
He L, Li Y, Wu Q, Wang DM, Li CM, Huang CZ, Li YF. Ru(III)-Based Metal-Organic Gels: Intrinsic Horseradish and NADH Peroxidase-Mimicking Nanozyme. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29158-29166. [PMID: 31313570 DOI: 10.1021/acsami.9b09283] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Highly active, stable, and cost-effective enzyme-mimicking nanomaterials (nanozymes) hold the potential to be an alternative to replace natural enzymes for the catalysis of enzyme-like reactions in various applications. Here, novel 3D ruthenium-based metal-organic gels (Ru-MOGs) with fibrillar network structures have been successfully synthesized using a facile one-step strategy at room temperature. Surprisingly, the developed 3D fibrillar networked Ru-MOGs simultaneously possess intrinsic horseradish peroxidase and NADH peroxidase mimetic activities. Meanwhile, the horseradish peroxidase mimetic catalytic activity displays well in both acidic environment and alkaline condition. Kinetic analysis reveals that Ru-MOGs make an effective peroxidase mimic with exceptionally high catalytic velocity (Vm), substrate binding affinity (Km), and catalytic efficiency (Kcat/Km). Furthermore, as a proof-of-concept, the mimetic enzyme property of this material was further used to establish a chemiluminescent biosensing platform for glucose detection. These easily synthesized Ru-MOGs as highly active and novel nanozymes not only suggests a bright future for the nanomaterials as enzyme mimics but also provides new insights into the properties of MOGs, greatly broadening and advancing their applications in biocatalysis and bioassays.
Collapse
Affiliation(s)
- Li He
- Education Ministry Key Laboratory on Luminescence and Real-Time Analytical Chemistry, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Yang Li
- Education Ministry Key Laboratory on Luminescence and Real-Time Analytical Chemistry, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Qing Wu
- Education Ministry Key Laboratory on Luminescence and Real-Time Analytical Chemistry, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Dong Mei Wang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analytical Chemistry, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Chun Mei Li
- Chongqing Key Laboratory of Biomedical Analysis, Chongqing Science & Technology Commission, College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Cheng Zhi Huang
- Chongqing Key Laboratory of Biomedical Analysis, Chongqing Science & Technology Commission, College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Yuan Fang Li
- Education Ministry Key Laboratory on Luminescence and Real-Time Analytical Chemistry, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| |
Collapse
|
28
|
Karan CK, Bhattacharjee M. A Copper Metal-Organic Hydrogel as a Catalyst for SO2
and CO2
Fixation under Ambient Conditions. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chandan Kumar Karan
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Manish Bhattacharjee
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| |
Collapse
|
29
|
Silver-based metal-organic gels as novel coreactant for enhancing electrochemiluminescence and its biosensing potential. Biosens Bioelectron 2019; 134:29-35. [DOI: 10.1016/j.bios.2019.03.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023]
|
30
|
Wu H, Zheng J, Kjøniksen AL, Wang W, Zhang Y, Ma J. Metallogels: Availability, Applicability, and Advanceability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806204. [PMID: 30680801 DOI: 10.1002/adma.201806204] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Introducing metal components into gel matrices provides an effective strategy to develop soft materials with advantageous properties such as: optical activity, conductivity, magnetic response activity, self-healing activity, catalytic activity, etc. In this context, a thorough overview of application-oriented metallogels is provided. Considering that many well-established metallogels start from serendipitous discoveries, insights into the structure-gelation relationship will offer a profound impact on the development of metallogels. Initially, design strategies for discovering new metallogels are discussed, then the advanced applications of metallogels are summarized. Finally, perspectives regarding the design of metallogels, the potential applications of metallogels and their derivative materials are briefly proposed.
Collapse
Affiliation(s)
- Huiqiong Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Anna-Lena Kjøniksen
- Faculty of Engineering, Østfold University College, P.O. Box 700, 1757, Halden, Norway
| | - Wei Wang
- Department of Chemistry and Center for Pharmacy, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, 410082, Changsha, China
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
31
|
Wei C, Wang X, Gao S, Wen G, Lin Y. A Phenylalanine Derivative Containing a 4‐Pyridine Group Can Construct Both Single Crystals and a Selective Cu‐Ag Bimetallohydrogel. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chuan‐Wan Wei
- School of Chemistry and Chemical Engineering University of South China 421001 Hengyang China
| | - Xiao‐Juan Wang
- School of Chemistry and Chemical Engineering University of South China 421001 Hengyang China
| | - Shu‐Qin Gao
- Laboratory of Protein Structure and Function University of South China 421001 Hengyang China
| | - Ge‐Bo Wen
- Laboratory of Protein Structure and Function University of South China 421001 Hengyang China
| | - Ying‐Wu Lin
- School of Chemistry and Chemical Engineering University of South China 421001 Hengyang China
- Laboratory of Protein Structure and Function University of South China 421001 Hengyang China
| |
Collapse
|
32
|
Wei CW, Wang XJ, Gao SQ, Wen GB, Lin YW. A La 3+-selective metallohydrogel with a facile gelator of a phenylalanine derivative containing an imidazole group. Dalton Trans 2018; 47:13788-13791. [PMID: 30252009 DOI: 10.1039/c8dt03557a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first La3+-selective metallohydrogel was constructed by using a facile gelator of a phenylalanine derivative containing an imidazole group, N-(1H-imidazol-4-yl)methylidene-l-phenylalanine, namely La-ImF, which exhibits multi-stimuli responsive properties, including to heat, shearing, pH, etc. Various measurements were also carried out to obtain insights into the mechanism of gelation. Moreover, the La-ImF hydrogel can adsorb toxic dyes, making it a potential candidate for sewage treatment.
Collapse
Affiliation(s)
- Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | | | | | | | | |
Collapse
|
33
|
He L, Jiang ZW, Li W, Li CM, Huang CZ, Li YF. In Situ Synthesis of Gold Nanoparticles/Metal-Organic Gels Hybrids with Excellent Peroxidase-Like Activity for Sensitive Chemiluminescence Detection of Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28868-28876. [PMID: 30062878 DOI: 10.1021/acsami.8b08768] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Until now, despite much progress in the study of metal-organic gels (MOGs), the modification of transition-metal containing MOGs with noble metal nanoparticles (NPs) is far from fully developed. Herein, iron-based MOGs nanosheet hybrids with gold NPs (AuNPs) immobilization were first synthesized by a facile in situ grown strategy at ambient conditions. It is found that the as-prepared AuNPs/MOGs (Fe) hybrids exhibited enhanced mimicking peroxidase-like activity, making them endowed with outstanding performance in chemiluminescence (CL) field in the presence of H2O2. The remarkable CL enhancement by AuNPs/MOGs (Fe) hybrids was attributed to the modification of AuNPs on MOGs (Fe) nanosheets, which could synergistically accelerate the CL reaction by speeding up the generation of OH•, O2•-, and 1O2. Accordingly, a sensitive CL detection of organophosphorus pesticides was successfully achieved by the AuNPs/MOGs (Fe) hybrids CL enhancing system in the range of 5-800 nM with a detection limit of 1 nM. We envision that this highly active and novel enzyme mimetic catalyst can be applicable to other extended AuNPs/MOGs (Fe) hybrid-based CL systems for sensitive detection of various analytes.
Collapse
Affiliation(s)
- Li He
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Zhong Wei Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Wei Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Chun Mei Li
- College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , P. R. China
| | - Cheng Zhi Huang
- College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| |
Collapse
|
34
|
Karan CK, Bhattacharjee M. Two Iron Complexes as Homogeneous and Heterogeneous Catalysts for the Chemical Fixation of Carbon Dioxide. Inorg Chem 2018; 57:4649-4656. [DOI: 10.1021/acs.inorgchem.8b00379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chandan Kumar Karan
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Manish Bhattacharjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
35
|
Wang X, Wei C, Su JH, He B, Wen GB, Lin YW, Zhang Y. A Chiral Ligand Assembly That Confers One-Electron O 2 Reduction Activity for a Cu 2+ -Selective Metallohydrogel. Angew Chem Int Ed Engl 2018; 57:3504-3508. [PMID: 29392823 DOI: 10.1002/anie.201801290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/11/2022]
Abstract
The design of functional metallohydrogels is attractive but challenging. A rational approach is introduced for designing functional metallohydrogels using chiral ligands, a phenylalanine derivative with a pyridyl group (l/d-PF). Intriguingly, the as-prepared metallohydrogel exhibits excellent O2 binding and activating properties. Insights into the O2 binding pathway reveals the presence of a novel [(l+d)-PF-Cu3+ -O2- ] species, which can efficiently reduce ferric cytochrome c with the reactive O2- by receiving an electron from reductant ascorbic acid. This study provides helpful instructions for developing new artificial systems with specific functions through the effective combination of chiral ligands with metal ions.
Collapse
Affiliation(s)
- Xiaojuan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Chuanwan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bo He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang, 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.,Laboratory of Protein Structure and Function, University of South China, Hengyang, 421001, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
36
|
Wang X, Wei C, Su JH, He B, Wen GB, Lin YW, Zhang Y. A Chiral Ligand Assembly That Confers One-Electron O2
Reduction Activity for a Cu2+
-Selective Metallohydrogel. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaojuan Wang
- School of Chemistry and Chemical Engineering; University of South China; Hengyang 421001 China
| | - Chuanwan Wei
- School of Chemistry and Chemical Engineering; University of South China; Hengyang 421001 China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance; Department of Modern Physics; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Bo He
- School of Chemistry and Chemical Engineering; University of South China; Hengyang 421001 China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function; University of South China; Hengyang 421001 China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering; University of South China; Hengyang 421001 China
- Laboratory of Protein Structure and Function; University of South China; Hengyang 421001 China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources; College of Chemistry and Chemical Engineering; Central South University; Changsha 410083 China
| |
Collapse
|
37
|
He L, Peng ZW, Jiang ZW, Tang XQ, Huang CZ, Li YF. Novel Iron(III)-Based Metal-Organic Gels with Superior Catalytic Performance toward Luminol Chemiluminescence. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31834-31840. [PMID: 28850212 DOI: 10.1021/acsami.7b08476] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel metal-organic gels (MOGs) consisting of iron (Fe3+) as the central ion and 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) as the ligand were synthesized by a mild facile strategy. The Fe(III)-containing metal-organic xerogels (Fe-MOXs), obtained after removing the solvents in MOGs, were found to exhibit outstanding performance in the catalysis of luminol chemiluminescence (CL) for the first time even in the absence of extra oxidants such as hydrogen peroxide. The possible CL mechanism was discussed according to the electro/optical measurements, including electron paramagnetic resonance (EPR), UV-vis absorption, and CL spectra, as well as the effects of radical scavengers on Fe-MOXs-catalyzed luminol CL system, suggesting that the CL emission of luminol might originate from the intrinsic oxidase-like catalytic activity of Fe-MOXs on the decomposition of dissolved oxygen. Additionally, the potential practical application of the resulting luminol-Fe-MOXs system was evaluated by the quantitative analysis of dopamine. Good linearity over the range from 0.05 to 0.6 μM was obtained with the limit of detection (LOD, 3σ) of 20.4 nM and acceptable recoveries ranging from 98.6 to 105.4% in human urine. These results may open up the promising application of novel metal-organic gels as highly effective catalysts in the field of chemiluminescence.
Collapse
Affiliation(s)
- Li He
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Zhe Wei Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Zhong Wei Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Xue Qian Tang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- College of Pharmaceutical Science, Southwest University , Chongqing 400716, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| |
Collapse
|
38
|
Zhang A, Zhang Y, Xu Z, Li Y, Yu X, Geng L. Naphthalimide-based fluorescent gelator for construction of both organogels and stimuli-responsive metallogels. RSC Adv 2017. [DOI: 10.1039/c7ra03184j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, we presented the first example that a gelator can form both organogels and metallogels with multiple gelation approaches tuned by multiple stimuli.
Collapse
Affiliation(s)
- Ao Zhang
- Hebei Research Center of Pharmaceutical and Chemical Engineering
- College of Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- PR China
| | - Yan Zhang
- Hebei Research Center of Pharmaceutical and Chemical Engineering
- College of Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- PR China
| | - Zhice Xu
- Hebei Research Center of Pharmaceutical and Chemical Engineering
- College of Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- PR China
| | - Yajuan Li
- Hebei Research Center of Pharmaceutical and Chemical Engineering
- College of Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- PR China
| | - Xudong Yu
- Hebei Research Center of Pharmaceutical and Chemical Engineering
- College of Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- PR China
| | - Lijun Geng
- Hebei Research Center of Pharmaceutical and Chemical Engineering
- College of Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- PR China
| |
Collapse
|