1
|
Liew WJM, Wong YS, Parikh AN, Venkatraman SS, Cao Y, Czarny B. Cell-mimicking polyethylene glycol-diacrylate based nanolipogel for encapsulation and delivery of hydrophilic biomolecule. Front Bioeng Biotechnol 2023; 11:1113236. [PMID: 36733962 PMCID: PMC9888760 DOI: 10.3389/fbioe.2023.1113236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Lipid based nanoparticulate formulations have been widely used for the encapsulation and sustain release of hydrophilic drugs, but they still face challenges such as high initial burst release. Nanolipogel (NLG) emerges as a potential system to encapsulate and deliver hydrophilic drug while suppressing its initial burst release. However, there is a lack of characterization of the drug release mechanism from NLGs. In this work, we present a study on the release mechanism of hydrophilic Dextran-Fluorescein Isothiocyanate (DFITC) from Poly (ethylene glycol) Diacrylate (PEGDA) NLGs by using different molecular weights of PEGDA to vary the mesh size of the nanogel core, drawing inspiration from the macromolecular crowding effect in cells, which can be viewed as a mesh network of undefined sizes. The effect is then further characterized and validated by studying the diffusion of DFITC within the nanogel core using Fluorescence Recovery after Photobleaching (FRAP), on our newly developed cell derived microlipogels (MLG). This is in contrast to conventional FRAP works on cells or bulk hydrogels, which is limited in our application. Our work showed that the mesh size of the NLGs can be controlled by using different Mw of PEGDA, such as using a smaller MW to achieve higher crosslinking density, which will lead to having smaller mesh size for the crosslinked nanogel, and the release of hydrophilic DFITC can be sustained while suppressing the initial burst release, up to 10-fold more for crosslinked PEGDA 575 NLGs. This is further validated by FRAP which showed that the diffusion of DFITC is hindered by the decreasing mesh sizes in the NLGs, as a result of lower mobile fractions. These findings will be useful for guiding the design of PEGDA NLGs to have different degree of suppression of the initial burst release as well as the cumulative release, for a wide array of applications. This can also be extended to other different types of nanogel cores and other nanogel core-based nanoparticles for encapsulation and release of hydrophilic biomolecules.
Collapse
Affiliation(s)
- Wen Jie Melvin Liew
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yee Shan Wong
- Biomedical Engineering, School of Engineering, Temasek Polytechnic, Singapore, Singapore
| | - Atul N. Parikh
- Biomedical Engineering and Materials Science and Engineering, University of California, Davis, Davis, CA, United States
| | - Subbu S. Venkatraman
- School of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Ye Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Sun L, Wang S, Zheng Y, Chen W, Li M, Yu N, Wang Y, Yang J, Xu Y, Sun N, Liu B, An X, Bai L, Liu H, Lin J, Huang W. Poly(diarylfluorene) Deep-Blue Polymer Light-Emitting Diodes Based on Submicrometer-Scale Morphological Films Induced by Trace β-Conformation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lili Sun
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Shengjie Wang
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yingying Zheng
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wenyu Chen
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Mengyuan Li
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ningning Yu
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yunhao Wang
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinghao Yang
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yang Xu
- School of Chemistry and ARC Centre of Excellence in Exciton Science, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Ning Sun
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Bin Liu
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang An
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lubing Bai
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Heyuan Liu
- School of Materials Science and Engineering, Institute of New Energy, College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jinyi Lin
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
3
|
Jia H, Liu Y, Hu JJ, Li G, Lou X, Xia F. Lifetime-Based Responsive Probes: Design and Applications in Biological Analysis. Chem Asian J 2022; 17:e202200563. [PMID: 35916038 DOI: 10.1002/asia.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Indexed: 11/10/2022]
Abstract
With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis. With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis.
Collapse
Affiliation(s)
- Hui Jia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Yiheng Liu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Jing-Jing Hu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Guogang Li
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Xiaoding Lou
- China University of Geosciences, Faculty of Materials Science and Chemistry, 388 Lumo Road, Wuhan 430074, P. R. China, 430074, wuhan, CHINA
| | - Fan Xia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| |
Collapse
|
4
|
Near-Infrared-Emissive AIE Bioconjugates: Recent Advances and Perspectives. Molecules 2022; 27:molecules27123914. [PMID: 35745035 PMCID: PMC9229065 DOI: 10.3390/molecules27123914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Near-infrared (NIR) fluorescence materials have exhibited formidable power in the field of biomedicine, benefiting from their merits of low autofluorescence background, reduced photon scattering, and deeper penetration depth. Fluorophores possessing planar conformation may confront the shortcomings of aggregation-caused quenching effects at the aggregate level. Fortunately, the concept of aggregation-induced emission (AIE) thoroughly reverses this dilemma. AIE bioconjugates referring to the combination of luminogens showing an AIE nature with biomolecules possessing specific functionalities are generated via the covalent conjugation between AIEgens and functional biological species, covering carbohydrates, peptides, proteins, DNA, and so on. This perfect integration breeds unique superiorities containing high brightness, good water solubility, versatile functionalities, and prominent biosafety. In this review, we summarize the recent progresses of NIR-emissive AIE bioconjugates focusing on their design principles and biomedical applications. Furthermore, a brief prospect of the challenges and opportunities of AIE bioconjugates for a wide range of biomedical applications is presented.
Collapse
|
5
|
Owyong TC, Hong Y. Emerging fluorescence tools for the study of proteostasis in cells. Curr Opin Chem Biol 2022; 67:102116. [PMID: 35176555 DOI: 10.1016/j.cbpa.2022.102116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Understanding how cells maintain the functional proteome and respond to stress conditions is critical for deciphering molecular pathogenesis and developing treatments for conditions such as neurodegenerative diseases. Efforts towards finer quantification of cellular proteostasis machinery efficiency, phase transitions and local environment changes remain a priority. Herein, we describe recent developments in fluorescence-based strategy and methodology, building on the experimental toolkit, for the study of proteostasis (protein homeostasis) in cells. We hope this review can assist in bridging gaps between a multitude of research disciplines and promote interdisciplinary collaboration to address the crucial topic of proteostasis.
Collapse
Affiliation(s)
- Tze Cin Owyong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia; ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
6
|
Kwek G, Lingesh S, Chowdhury SZ, Xing B. Tumour enzyme affinity mediated peptide molecular crowding for targeted disruption of hyperactivated glucose uptake. Chem Commun (Camb) 2022; 58:1350-1353. [PMID: 34986211 DOI: 10.1039/d1cc06049j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An unconventional environment-responsive molecular crowding via specific binding between small molecule peptide inhibitor derivatives and an overexpressed tumour enzyme has been developed. Assemblies of such short peptides selectively localize on tumour surfaces and exhibited unique functions in disrupting hyperactivated glucose uptake, providing novel insights towards strategic tumour treatment.
Collapse
Affiliation(s)
- Germain Kwek
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore.
| | - Shonya Lingesh
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore.
| | - Sayba Zafrin Chowdhury
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore.
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
7
|
Rodríguez-Sevilla P, Thompson SA, Jaque D. Multichannel Fluorescence Microscopy: Advantages of Going beyond a Single Emission. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
| | - Sebastian A. Thompson
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) C/Faraday 9 Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria Hospital Ramón y Cajal Ctra. Colmenar km. 9,100 Madrid 28034 Spain
| |
Collapse
|
8
|
Gore M, Narvekar A, Bhagwat A, Jain R, Dandekar P. Macromolecular cryoprotectants for the preservation of mammalian cell culture: lessons from crowding, overview and perspectives. J Mater Chem B 2021; 10:143-169. [PMID: 34913462 DOI: 10.1039/d1tb01449h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cryopreservation is a process used for the storage of mammalian cells at a very low temperature, in a state of 'suspended animation.' Highly effective and safe macromolecular cryoprotectants (CPAs) have gained significant attention as they obviate the toxicity of conventional CPAs like dimethyl sulfoxide (DMSO) and reduce the risks involved in the storage of cultures at liquid nitrogen temperatures. These agents provide cryoprotection through multiple mechanisms, involving extracellular and intracellular macromolecular crowding, thereby impacting the biophysical and biochemical dynamics of the freezing medium and the cryopreserved cells. These CPAs vary in their structures and physicochemical properties, which influence their cryoprotective activities. Moreover, the introduction of polymeric crowders in the cryopreservation media enables serum-free storage at low-DMSO concentrations and high-temperature vitrification of frozen cultures (-80 °C). This review highlights the need for macromolecular CPAs and describes their mechanisms of cryopreservation, by elucidating the role of crowding effects. It also classifies the macromolecules based on their chemistry and their structure-activity relationships. Furthermore, this article provides perspectives on the factors that may influence the outcomes of the cell freezing process or may help in designing and evaluating prospective macromolecules. This manuscript also includes case studies about cellular investigations that have been conducted to demonstrate the cryoprotective potential of macromolecular CPAs. Ultimately, this review provides essential directives that will further improve the cell cryopreservation process and may encourage the use of macromolecular CPAs to fortify basic, applied, and translational research.
Collapse
Affiliation(s)
- Manish Gore
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Advait Bhagwat
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
9
|
He W, Zhang T, Bai H, Kwok RTK, Lam JWY, Tang BZ. Recent Advances in Aggregation-Induced Emission Materials and Their Biomedical and Healthcare Applications. Adv Healthc Mater 2021; 10:e2101055. [PMID: 34418306 DOI: 10.1002/adhm.202101055] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/18/2021] [Indexed: 12/22/2022]
Abstract
The emergence of the concept of aggregation-induced emission (AIE) has opened new opportunities in many research areas, such as biopsy analysis, biological processes monitoring, and elucidation of key physiological and pathological behaviors. As a new class of luminescent materials, AIE luminogens (AIEgens) possess many prominent advantages such as tunable molecular structures, high molar absorptivity, high brightness, large Stokes shift, excellent photostability, and good biocompatibility. The past two decades have witnessed a dramatic growth of research interest in AIE, and many AIE-based bioprobes with excellent performance have been widely explored in biomedical fields. This review summarizes some of the latest advancements of AIE molecular probes and AIE nanoparticles (NPs) with regards to biomedical and healthcare applications. According to the research areas, the review is divided into five sections, which are imaging and identification of cells and bacteria, photodynamic therapy, multimodal theranostics, deep tissue imaging, and fluorescence-guided surgery. The challenges and future opportunities of AIE materials in the advanced biomedical fields are briefly discussed. In perspective, the AIE-based bioprobes play vital roles in the exploration of advanced bioapplications for the ultimate goal of addressing more healthcare issues by integrating various cutting-edge modalities and techniques.
Collapse
Affiliation(s)
- Wei He
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
| | - Tianfu Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Haotian Bai
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong, Shenzhen 2001 Longxiang Boulevard, Longgang District Shenzhen Guangdong 518172 China
- State Key Laboratory of Luminescent Materials and Devices and Center for Aggregation‐Induced Emission (Guangzhou International Campus) South China University of Technology Guangzhou 510640 China
| |
Collapse
|
10
|
Sabouri S, Liu M, Zhang S, Yao B, Soleimaninejad H, Baxter AA, Armendariz-Vidales G, Subedi P, Duan C, Lou X, Hogan CF, Heras B, Poon IKH, Hong Y. Construction of a Highly Sensitive Thiol-Reactive AIEgen-Peptide Conjugate for Monitoring Protein Unfolding and Aggregation in Cells. Adv Healthc Mater 2021; 10:e2101300. [PMID: 34655462 DOI: 10.1002/adhm.202101300] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/24/2021] [Indexed: 01/09/2023]
Abstract
Impairment of the protein quality control network leads to the accumulation of unfolded and aggregated proteins. Direct detection of unfolded protein accumulation in the cells may provide the possibility for early diagnosis of neurodegenerative diseases. Here a new platform based on a peptide-conjugated thiol-reactive aggregation-induced emission fluorogen (AIEgen), named MI-BTD-P (or D1), for labeling and tracking unfolded proteins in cells is reported. In vitro experiments with model proteins show that the non-fluorescent D1 only becomes highly fluorescent when reacted with the thiol group of free cysteine (Cys) residues on unfolded proteins but not glutathione or folded proteins with buried or surface exposed Cys. When the labeled unfolded proteins form aggregates, D1 fluorescence intensity is further increased, and fluorescence lifetime is prolonged. D1 is then used to measure unfolded protein loads in cells by flow cytometry and track the aggregate formation of the D1 labeled unfolded proteins using confocal microscopy. In combination with fluorescence lifetime imaging technique, the proteome at different folding statuses can be better differentiated, demonstrating the versatility of this new platform. The rational design of D1 demonstrates the outlook of incorporation of diverse functional groups to achieve maximal sensitivity and selectivity in biological samples.
Collapse
Affiliation(s)
- Soheila Sabouri
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Mengjie Liu
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Shouxiang Zhang
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Bicheng Yao
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Georgina Armendariz-Vidales
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Chong Duan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 4300078, China
| | - Xiaoding Lou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 4300078, China
| | - Conor F Hogan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
11
|
Niu J, Sun H, Xia H, Zhu Y, Chen J, Zhu C, Bai W. Visualization of Bulk Polymerization by Fluorescent Probe with Aggregation-induced Emission Characteristics. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Huang Q, Chen B, Shen J, Liu L, Li J, Shi J, Li Q, Zuo X, Wang L, Fan C, Li J. Encoding Fluorescence Anisotropic Barcodes with DNA Fameworks. J Am Chem Soc 2021; 143:10735-10742. [PMID: 34242004 DOI: 10.1021/jacs.1c04942] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence anisotropy (FA) holds great potential for multiplexed analysis and imaging of biomolecules since it can effectively discriminate fluorophores with overlapping emission spectra. Nevertheless, its susceptibility to environmental variation hampers its widespread applications in biology and biotechnology. In this study, we design FA DNA frameworks (FAFs) by scaffolding fluorophores in a fluorescent protein-like microenvironment. We find that the FA stability of the fluorophores is remarkably improved due to the sequestration effects of FAFs. The FA level of the fluorophores can be finely tuned when placed at different locations on an FAF, analogous to spectral shifts of protein-bound fluorophores. The high programmability of FAFs further enables the design of a spectrum of encoded FA barcodes for multiplexed sensing of nucleic acids and multiplexed labeling of live cells. This FAF system thus establishes a new paradigm for designing multiplexing FA probes for cellular imaging and other biological applications.
Collapse
Affiliation(s)
- Qiuling Huang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiajun Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
13
|
She M, Wang Z, Chen J, Li Q, Liu P, Chen F, Zhang S, Li J. Design strategy and recent progress of fluorescent probe for noble metal ions (Ag, Au, Pd, and Pt). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213712] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
15
|
|
16
|
Roberts P, Perry JK, Gupta RK, Karna SP, Frechette J. Confinement-Enhanced Luminescence in Protein-Gold Nanoclusters. J Phys Chem Lett 2020; 11:10278-10282. [PMID: 33216558 DOI: 10.1021/acs.jpclett.0c03054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Confinement has profound effects on protein functions. Nanoscale probes for confinement or excluded volume interactions could help us understand how these interactions influence protein functions. This work reports on the increased luminescence of BSA-gold nanoclusters when confined. Confinement of the BSA-gold nanoclusters occurred within reverse micelles (RMs), where the size of the RMs determined the degree of confinement. The confinement-enhanced luminescence is reversible, i.e., the emission returns to its original value following cyclic changes in RM size. Circular dichroism measurements show an increase in alpha-helical character of the BSA-stabilized nanoclusters with confinement, which could provide a mechanism for the increase in luminescence. The alpha-helical character of the native proteins also increases with confinement, suggesting that the protein-nanocluster might sense confinement in an analogous fashion as the proteins. When the RMs approach the size of the protein, the intensity becomes independent of alpha-helical character, suggesting a different mechanism for the luminescence increase.
Collapse
Affiliation(s)
| | - Jeneh Karima Perry
- CCDC Army Research Laboratory, Weapons and Material Research Directorate, 6300 Rodman Road, Aberdeen, Proving Ground, Maryland 21005, United States
| | - Raj K Gupta
- DoD Blast Injury Research Coordinating Office, U.S. Army Medical Research and Development Command, 504 Scott Street, Fort Detrick, Maryland 21702, United States
| | - Shashi P Karna
- CCDC Army Research Laboratory, Weapons and Material Research Directorate, 6300 Rodman Road, Aberdeen, Proving Ground, Maryland 21005, United States
| | | |
Collapse
|
17
|
Cao Y, Wong YS, Ben Mabrouk A, Anita V, Jie Liew MW, Tan YF, Venkatraman SS. Nanolipogels as a cell-mimicking platform for controlled release of biomacromolecules. NANOSCALE ADVANCES 2020; 2:1040-1045. [PMID: 36133062 PMCID: PMC9417634 DOI: 10.1039/d0na00093k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 06/16/2023]
Abstract
We present studies of protein (insulin) efflux rates from nano-sized core-shell systems with a gelled core and a lipid bilayer (nanolipogels). The efflux control mechanism is the manipulation of mesh size, and we show that diffusion control via crosslinking is the dominant mechanism for efflux control. The concept is inspired by the macromolecular crowding effect in human cells, which may be considered as a physical network of undefined mesh size. Our bio-inspired system is made of chemically crosslinked water-swellable poly(ethylene glycol) diacrylate cores, whose mesh size can be manipulated to yield a quantifiable crowding effect that then leads to predictable release rates for biomacromolecules.
Collapse
Affiliation(s)
- Ye Cao
- School of Materials Science and Engineering, Nanyang Technological University Singapore
| | - Yee Shan Wong
- School of Materials Science and Engineering, Nanyang Technological University Singapore
| | - Amira Ben Mabrouk
- School of Materials Science and Engineering, Nanyang Technological University Singapore
| | - Vincent Anita
- School of Materials Science and Engineering, Nanyang Technological University Singapore
| | - Melvin Wen Jie Liew
- School of Materials Science and Engineering, Nanyang Technological University Singapore
| | - Yang Fei Tan
- School of Materials Science and Engineering, Nanyang Technological University Singapore
| | - Subbu S Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University Singapore
| |
Collapse
|
18
|
|
19
|
Wu F, Wu X, Duan Z, Huang Y, Lou X, Xia F. Biomacromolecule-Functionalized AIEgens for Advanced Biomedical Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804839. [PMID: 30740889 DOI: 10.1002/smll.201804839] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The advances in bioinformatics and biomedicine have promoted the development of biomedical imaging and theranostic systems to respectively extend the endogenous biomarker imaging with high contrast and enhance the therapeutic effect with high efficiency. The emergence of biomacromolecule-functionalized aggregation-induced emitters (AIEgens), utilizing AIEgens, and biomacromolecules (nucleic acids, peptides, glycans, and lipids), displays specific targeting ability to cancer cell, improved biocompatibility, reduced toxicity, enhanced therapeutic effect, and so forth. This review summarizes the rational design of biomacromolecule-functionalized AIEgens and their biomedical applications in recent ten years, including high-resolution optical imaging of cell, tissue, and small animal model with low background; the biomarker detection for early diagnosis and prognosis; the delivery and monitoring of prodrugs; image-guide photodynamic therapy and its combination with chemotherapy. Through illustrating their functional mechanisms and application, it is hoped that this review would open up a completely new train of research thought for attracted researchers in various fields.
Collapse
Affiliation(s)
- Feng Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhijuan Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
20
|
Soleimaninejad H, Ghiggino KP, Smith TA, Paige MF. Fluorescence anisotropy imaging of a polydiacetylene photopolymer film. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UV-illumination of phase-separated surfactant films prepared from mixtures of photopolymerizable 10,12-pentacosadiynoic acid and perfluorotetradecanoic acid results in the formation of fluorescent polydiacetylene fibers and aggregates. In this work, the orientation of polymer strands that comprise the resulting photopolymer structures has been probed using fluorescence anisotropy imaging in combination with defocused single-molecule fluorescence imaging. Imaging experiments indicate the presence of significant fiber-to-fiber heterogeneity, as well as anisotropy within each fiber (or aggregate), with both of these properties changing as a function of film preparation conditions. This anisotropy can be attributed to various alignments of the constituent polymer strands that comprise the larger fibers and aggregates. Intriguingly, when using defocused imaging, fiber images consisted of a series of discrete “doughnut” fluorescence emission patterns, which exhibited intermittent on–off blinking behavior; both of these properties are characteristic of individual emission transition dipoles (single molecules). Further, all of the individual emission transition dipoles had a uniform orientation with respect to the axis of the fiber, indicating a common orientation of discrete emitters in the larger polymer fiber. The implications of these results for future studies of the electronic properties of conjugated polymers in larger macroscopic systems are noted.
Collapse
Affiliation(s)
- Hamid Soleimaninejad
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kenneth P. Ghiggino
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Trevor A. Smith
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matthew F. Paige
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
21
|
Liu D, Cao Y, Yan X, Wang B. Two stimulus-responsive carbazole-substituted D–π–A pyrone compounds exhibiting mechanochromism and solvatochromism. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03742-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Xie S, Wong AYH, Chen S, Tang BZ. Fluorogenic Detection and Characterization of Proteins by Aggregation‐Induced Emission Methods. Chemistry 2019; 25:5824-5847. [DOI: 10.1002/chem.201805297] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Sheng Xie
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Alex Y. H. Wong
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of NeuroscienceDivision of Biomedical Engineering, and Division of Life Science, HKUST-Shenzhen Research InstituteThe Hong Kong University of Science and Technology, Kowloon Hong Kong S.A.R. China
- NSFC Center for Luminescence from Molecular AggregatesSCUT-HKUST Joint Research InstituteState Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 P.R. China
| |
Collapse
|
23
|
Effect of macromolecular crowding on the conformational behaviour of a porphyrin rotor. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Möckel C, Kubiak J, Schillinger O, Kühnemuth R, Della Corte D, Schröder GF, Willbold D, Strodel B, Seidel CAM, Neudecker P. Integrated NMR, Fluorescence, and Molecular Dynamics Benchmark Study of Protein Mechanics and Hydrodynamics. J Phys Chem B 2018; 123:1453-1480. [DOI: 10.1021/acs.jpcb.8b08903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christina Möckel
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jakub Kubiak
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Oliver Schillinger
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Ralf Kühnemuth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dennis Della Corte
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gunnar F. Schröder
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Claus A. M. Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Neudecker
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
25
|
Hancock R. Crowding, Entropic Forces, and Confinement: Crucial Factors for Structures and Functions in the Cell Nucleus. BIOCHEMISTRY (MOSCOW) 2018; 83:326-337. [PMID: 29626920 DOI: 10.1134/s0006297918040041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The view of the cell nucleus as a crowded system of colloid particles and that chromosomes are giant self-avoiding polymers is stimulating rapid advances in our understanding of its structure and activities, thanks to concepts and experimental methods from colloid, polymer, soft matter, and nano sciences and to increased computational power for simulating macromolecules and polymers. This review summarizes current understanding of some characteristics of the molecular environment in the nucleus, of how intranuclear compartments are formed, and of how the genome is highly but precisely compacted, and underlines the crucial, subtle, and sometimes unintuitive effects on structures and reactions of entropic forces caused by the high concentration of macromolecules in the nucleus.
Collapse
Affiliation(s)
- R Hancock
- Biosystems Group, Biotechnology Centre, Silesian University of Technology, Poland and Laval University Cancer Research Centre, Québec, G1R2J6, Canada.
| |
Collapse
|
26
|
Gnutt D, Brylski O, Edengeiser E, Havenith M, Ebbinghaus S. Imperfect crowding adaptation of mammalian cells towards osmotic stress and its modulation by osmolytes. MOLECULAR BIOSYSTEMS 2018; 13:2218-2221. [PMID: 28929156 DOI: 10.1039/c7mb00432j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Changes of the extracellular milieu could affect cellular crowding. To prevent detrimental effects, cells use adaptation mechanisms to react to such conditions. Using fluorescent crowding sensors, we show that the initial response to osmotic stress is fast but imperfect, while the slow response renders cells more tolerant to stress, particularly in the presence of osmolytes.
Collapse
Affiliation(s)
- David Gnutt
- Department of Physical Chemistry II, Ruhr University Bochum, Universitättstr. 150, 44801 Bochum, Germany.
| | | | | | | | | |
Collapse
|
27
|
Yu MN, Soleimaninejad H, Lin JY, Zuo ZY, Liu B, Bo YF, Bai LB, Han YM, Smith TA, Xu M, Wu XP, Dunstan DE, Xia RD, Xie LH, Bradley DDC, Huang W. Photophysical and Fluorescence Anisotropic Behavior of Polyfluorene β-Conformation Films. J Phys Chem Lett 2018; 9:364-372. [PMID: 29298074 DOI: 10.1021/acs.jpclett.7b03148] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate a systematic visualization of the unique photophysical and fluorescence anisotropic properties of polyfluorene coplanar conformation (β-conformation) using time-resolved scanning confocal fluorescence imaging (FLIM) and fluorescence anisotropy imaging microscopy (FAIM) measurements. We observe inhomogeneous morphologies and fluorescence decay profiles at various micrometer-sized regions within all types of polyfluorene β-conformational spin-coated films. Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) and poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF) β-domains both have shorter lifetime than those of the glassy conformation for the longer effective conjugated length and rigid chain structures. Besides, β-conformational regions have larger fluorescence anisotropy for the low molecular rotational motion and high chain orientation, while the low anisotropy in glassy conformational regions shows more rotational freedom of the chain and efficient energy migration from amorphous regions to β-conformation as a whole. Finally, ultrastable ASE threshold in the PODPF β-conformational films also confirms its potential application in organic lasers. In this regard, FLIM and FAIM measurements provide an effective platform to explore the fundamental photophysical process of conformational transitions in conjugated polymer.
Collapse
Affiliation(s)
- Meng-Na Yu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Hamid Soleimaninejad
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jin-Yi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Zong-Yan Zuo
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Bin Liu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Yi-Fan Bo
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Lu-Bing Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Ya-Min Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Trevor A Smith
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Man Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Ping Wu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Dave E Dunstan
- Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Rui-Dong Xia
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Ling-Hai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Donal D C Bradley
- Departments of Engineering Science and Physics and Division of Mathematical, Physical and Life Sciences, Oxford University , 9 Parks Road, Oxford OX1 3PD, United Kingdom
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) , 127 West Youyi Road, Xi'an 710072, Shaanxi, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
28
|
Lee HB, Cong A, Leopold H, Currie M, Boersma AJ, Sheets ED, Heikal AA. Rotational and translational diffusion of size-dependent fluorescent probes in homogeneous and heterogeneous environments. Phys Chem Chem Phys 2018; 20:24045-24057. [DOI: 10.1039/c8cp03873b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macromolecular crowding effects on diffusion depend on the fluorophore structure, the concentration of crowding agents, and the technique employed.
Collapse
Affiliation(s)
- Hong Bok Lee
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Anh Cong
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Hannah Leopold
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Megan Currie
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | | | - Erin D. Sheets
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Ahmed A. Heikal
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| |
Collapse
|
29
|
Banerjee P, Pal S, Kundu N, Mondal D, Sarkar N. A cell-penetrating peptide induces the self-reproduction of phospholipid vesicles: understanding the role of the bilayer rigidity. Chem Commun (Camb) 2018; 54:11451-11454. [DOI: 10.1039/c8cc07176d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Model lipid vesicles (LAPC) self-reproduce to generate unilamellar daughter vesicles in the presence of a cell-penetrating peptide (R9) due to a loss of the bilayer rigidity.
Collapse
Affiliation(s)
- Pavel Banerjee
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Siddhartha Pal
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Niloy Kundu
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Dipankar Mondal
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Nilmoni Sarkar
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
30
|
Model MA, Petruccelli JC. Intracellular Macromolecules in Cell Volume Control and Methods of Their Quantification. CURRENT TOPICS IN MEMBRANES 2018; 81:237-289. [DOI: 10.1016/bs.ctm.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Liu M, Onchaiya S, Tan LYF, Haghighatbin MA, Luu T, Owyong TC, Hushiarian R, Hogan CF, Smith TA, Hong Y. 9-Vinylanthracene Based Fluorogens: Synthesis, Structure-Property Relationships and Applications. Molecules 2017; 22:molecules22122148. [PMID: 29207549 PMCID: PMC6149741 DOI: 10.3390/molecules22122148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/24/2017] [Accepted: 12/01/2017] [Indexed: 01/16/2023] Open
Abstract
Fluorescent dyes with aggregation-induced emission (AIE) properties exhibit intensified emission upon aggregation. They are promising candidates to study biomolecules and cellular changes in aqueous environments when aggregation formation occurs. Here, we report a group of 9-position functionalized anthracene derivatives that were conveniently synthesized by the palladium-catalyzed Heck reaction. Using fluorometric analyses, these dyes were confirmed to show AIE behavior upon forming aggregates at high concentrations, in viscous solvents, and when poorly solubilized. Their photophysical properties were then further correlated with their structural features, using density functional theory (DFT) calculation. Finally, we demonstrated their potential applications in monitoring pH changes, quantifying globular proteins, as well as cell imaging with confocal microscopy.
Collapse
Affiliation(s)
- Mengjie Liu
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Sawaros Onchaiya
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Lewis Yi Fong Tan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Mohammad A Haghighatbin
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Tracey Luu
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Tze Cin Owyong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010 Australia.
| | - Roozbeh Hushiarian
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Conor F Hogan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Trevor A Smith
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010 Australia.
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| |
Collapse
|
32
|
Takeuchi M, Kajimoto S, Nakabayashi T. Experimental Evaluation of the Density of Water in a Cell by Raman Microscopy. J Phys Chem Lett 2017; 8:5241-5245. [PMID: 29022721 DOI: 10.1021/acs.jpclett.7b02154] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report direct observation of a spatial distribution of water molecules inside of a living cell using Raman images of the O-H stretching band of water. The O-H Raman intensity of the nucleus was higher than that of the cytoplasm, indicating that the water density is higher in the nucleus than that in the cytoplasm. The shape of the O-H stretching band of the nucleus differed from that of the cytoplasm but was similar to that of the balanced salt solution surrounding cells, indicating less crowded environments in the nucleus. The concentration of biomolecules having C-H bonds was also estimated to be lower in the nucleus than that in the cytoplasm. These results indicate that the nucleus is less crowded with biomolecules than the cytoplasm.
Collapse
Affiliation(s)
- Mizuki Takeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
33
|
BODIPY-Triphenylamine with conjugated pyridines and a quaternary pyridium salt: Synthesis, aggregation-induced red emission and interaction with bovine serum albumin. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Siriwardana K, Vithanage BCN, Zou S, Zhang D. Quantification of the Depolarization and Anisotropy of Fluorophore Stokes-Shifted Fluorescence, On-Resonance Fluorescence, and Rayleigh Scattering. Anal Chem 2017; 89:6686-6694. [PMID: 28503920 DOI: 10.1021/acs.analchem.7b00907] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluorophores are important but optically complicated photonic materials as they are simultaneous photon absorbers, emitters, and scatterers. Existing studies on fluorophore optical properties have been focused almost exclusively on its photon absorption and Stokes-shifted fluorescence (SSF) with scant information on the fluorophore photon scattering and on-resonance fluorescence (ORF). Presented herein is a unified theoretical framework and experimental approach for quantification of the fluorophore SSF, ORF, and scattering depolarization and anisotropy using a combination of fluorophore UV-vis, fluorescence emission, and resonance synchronous spectroscopic spectral measurements. A mathematical model for calculating fluorophore ORF and scattering cross sections has been developed that uses polystyrene nanoparticles as the external reference. The fluorophore scattering cross section is ∼10-fold smaller than its ORF counterparts for all the six model fluorophores, but more than 6 orders of magnitude larger than the water scattering cross section. Another finding is that the fluorophore ORF has a depolarization close to 1, while its Rayleigh scattering has zero depolarization. This enables the experimental separation of the fluorophore ORF and photon scattering features in the fluorophore resonance synchronous spectra. In addition to opening a new avenue for material characterization, the methods and insights derived from this study should be important for developing new analytical methods that exploit the fluorophore ORF and photon scattering properties.
Collapse
Affiliation(s)
- Kumudu Siriwardana
- Department of Chemistry, Mississippi State University , Mississippi State, Mississippi 39762, United States
| | - Buddhini C N Vithanage
- Department of Chemistry, Mississippi State University , Mississippi State, Mississippi 39762, United States
| | - Shengli Zou
- Department of Chemistry, University of Central Florida , Orlando, Florida 32816, United States
| | - Dongmao Zhang
- Department of Chemistry, Mississippi State University , Mississippi State, Mississippi 39762, United States
| |
Collapse
|
35
|
Gao M, Hong Y, Chen B, Wang Y, Zhou W, Wong WWH, Zhou J, Smith TA, Zhao Z. AIE conjugated polyelectrolytes based on tetraphenylethene for efficient fluorescence imaging and lifetime imaging of living cells. Polym Chem 2017. [DOI: 10.1039/c7py00564d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
New conjugated polyelectrolytes based on tetraphenylethene are prepared, which show good performance in fluorescence imaging and fluorescence lifetime imaging of living cells.
Collapse
Affiliation(s)
- Mengxia Gao
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Yuning Hong
- School of Chemistry
- The University of Melbourne
- Australia
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
| | - Bin Chen
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Yinan Wang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Wenjun Zhou
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | | | - Jian Zhou
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | | | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
36
|
Xie H, Wu Y, Zeng F, Chen J, Wu S. An AIE-based fluorescent test strip for the portable detection of gaseous phosgene. Chem Commun (Camb) 2017; 53:9813-9816. [DOI: 10.1039/c7cc05313d] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An AIE-based ratiometric fluorescent test strip was developed for portable point-of-use detection of gaseous phosgene.
Collapse
Affiliation(s)
- Huiting Xie
- State Key Laboratory of Luminescent Materials and Devices
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Yinglong Wu
- State Key Laboratory of Luminescent Materials and Devices
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Junjie Chen
- State Key Laboratory of Luminescent Materials and Devices
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|