1
|
Liu H, Zhang J, Li W. The distinct binding modes of pesticides affect the phase transitions of lysozyme. CrystEngComm 2021. [DOI: 10.1039/d1ce00108f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studying the aggregation and nucleation of proteins in the presence of organic molecules is helpful for disclosing the mechanisms of protein crystallization.
Collapse
Affiliation(s)
- Han Liu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jinli Zhang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Wei Li
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Ming H, Zhu MF, Li L, Liu QB, Yu WH, Wu ZQ, Liu YM. A review of solvent freeze-out technology for protein crystallization. CrystEngComm 2021. [DOI: 10.1039/d1ce00005e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, we summarize important advances in solvent freeze-out (SFO) technology for protein crystallization, including the background of SFO, its fundamental principle, and some crucial conditions and factors for optimizing SFO technology.
Collapse
Affiliation(s)
- Hui Ming
- School of Bioengineering
- Sichuan University of Science and Engineering
- Zigong 643000
- PR China
| | - Ming-Fu Zhu
- School of Physics
- Zhengzhou University
- Zhengzhou
- PR China
- Henan Chuitian Technology Co. Ltd
| | - Lu Li
- School of Bioengineering
- Sichuan University of Science and Engineering
- Zigong 643000
- PR China
| | - Qing-Bin Liu
- School of Bioengineering
- Sichuan University of Science and Engineering
- Zigong 643000
- PR China
| | - Wen-Hua Yu
- Sichuan Food Fermentation Industry Research and Design Institute
- Chengdu 611130
- PR China
| | - Zi-Qing Wu
- School of Medical Engineering
- Xinxiang Medical University
- Xinxiang 453003
- PR China
| | - Yong-Ming Liu
- School of Bioengineering
- Sichuan University of Science and Engineering
- Zigong 643000
- PR China
| |
Collapse
|
3
|
Ferreira J, Castro F, Kuhn S, Rocha F. Controlled protein crystal nucleation in microreactors: the effect of the droplet volume versus high supersaturation ratios. CrystEngComm 2020. [DOI: 10.1039/d0ce00517g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Control of the enhanced lysozyme nucleation under high supersaturation ratios for a broad range of droplet volumes.
Collapse
Affiliation(s)
- Joana Ferreira
- Department of Chemical Engineering
- KU Leuven
- 3001 Leuven
- Belgium
- LEPABE – Laboratory for Process Engineering
| | - Filipa Castro
- LEPABE – Laboratory for Process Engineering
- Biotechnology and Energy
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - Simon Kuhn
- Department of Chemical Engineering
- KU Leuven
- 3001 Leuven
- Belgium
| | - Fernando Rocha
- LEPABE – Laboratory for Process Engineering
- Biotechnology and Energy
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| |
Collapse
|
4
|
Abstract
This study reports the first experimental evidence of using DNA as a polymeric additive to enhance protein crystallization. Using three kinds of DNA with different molecular weights—calf DNA, salmon DNA, and herring DNA—this study showed an improvement in the success rate of lysozyme crystallization, as compared to control experiments, especially at low lysozyme concentration. The improvement of crystallization is particularly significant in the presence of calf DNA with the highest molecular weight. Calf DNA also speeds up the induction time of lysozyme crystallization and increases the number of crystals per drop. We hypothesized the effect of DNA on protein crystallization may be due to the combination of excluded volume effect, change of water’s surface tension, and the water competition effect. This work confirms predications of the potential use of DNA as a polymeric additive to enhance protein crystallization, potentially applied to systems with limited protein available or difficult to crystallize.
Collapse
|
5
|
Determination of filtration and consolidation properties of protein crystal suspensions using analytical photocentrifuges with low volume samples. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Wu ZQ, Liu YM, Liu C, Chen JJ, Chen LL, Zhang TD, Zhou RB, Yang CQ, Shang P, Yin DC. A first attempt investigation on crystallization screening and crystal quality of lysozyme under different simulated gravities in a large-gradient magnetic field. CrystEngComm 2019. [DOI: 10.1039/c9ce00730j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A magnetic field has been proved useful in protein crystallization in that it can help to improve the crystal quality, which is essential for high-resolution diffraction using crystallography.
Collapse
|
7
|
Schieferstein JM, Pawate AS, Sun C, Wan F, Sheraden PN, Broecker J, Ernst OP, Gennis RB, Kenis PJA. X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization. BIOMICROFLUIDICS 2017; 11:024118. [PMID: 28469762 PMCID: PMC5403737 DOI: 10.1063/1.4981818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/10/2017] [Indexed: 05/10/2023]
Abstract
Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In prior work, we designed a novel, low-throughput X-ray transparent microfluidic device that automated the mixing of protein and lipid by diffusion for in meso crystallization trials. Here, we report X-ray transparent microfluidic devices for high-throughput crystallization screening and optimization that overcome the limitations of scale and demonstrate their application to the crystallization of several membrane proteins. Two complementary chips are presented: (1) a high-throughput screening chip to test 192 crystallization conditions in parallel using as little as 8 nl of membrane protein per well and (2) a crystallization optimization chip to rapidly optimize preliminary crystallization hits through fine-gradient re-screening. We screened three membrane proteins for new in meso crystallization conditions, identifying several preliminary hits that we tested for X-ray diffraction quality. Further, we identified and optimized the crystallization condition for a photosynthetic reaction center mutant and solved its structure to a resolution of 3.5 Å.
Collapse
Affiliation(s)
- Jeremy M Schieferstein
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ashtamurthy S Pawate
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Chang Sun
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Frank Wan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Paige N Sheraden
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jana Broecker
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S IA8, Canada
| | | | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Paul J A Kenis
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Chen RQ, Cheng QD, Chen JJ, Sun DS, Ao LB, Li DW, Lu QQ, Yin DC. An investigation of the effects of varying pH on protein crystallization screening. CrystEngComm 2017. [DOI: 10.1039/c6ce02136k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Nanev CN. Recent experimental and theoretical studies on protein crystallization. CRYSTAL RESEARCH AND TECHNOLOGY 2016. [DOI: 10.1002/crat.201600210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christo N. Nanev
- Rostislaw Kaischew Institute of Physical Chemistry; Bulgarian Academy of Sciences; Acad. G. Bonchev Str. Bl.11 1113 Sofia Bulgaria EU
| |
Collapse
|