1
|
Chang XP, Zhao G, Zhang TS, Xie BB. Quantum mechanics/molecular mechanics studies on mechanistic photophysics of cytosine aza-analogues: 2,4-diamino-1,3,5-triazine and 2-amino-1,3,5-triazine in aqueous solution. Phys Chem Chem Phys 2023; 25:7669-7680. [PMID: 36857660 DOI: 10.1039/d2cp05639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The excited-state properties and photophysics of cytosine aza-analogues, i.e., 2,4-diamino-1,3,5-triazine (2,4-DT) and 2-amino-1,3,5-triazine (2-AT) in solution have been systematically explored using the QM(MS-CASPT2//CASSCF)/MM approach. The excited-state nonradiative relaxation mechanisms for the initially photoexcited S1(ππ*) state decay back to the S0 state are proposed in terms of the present computed minima, surface crossings (conical intersections and singlet-triplet crossings), and excited-state decay paths in the S1, S2, T1, T2, and S0 states. Upon photoexcitation to the bright S1(ππ*) state, 2,4-DT quickly relaxes to its S1 minimum and then overcomes a small energy barrier of 5.1 kcal mol-1 to approach a S1/S0 conical intersection, where the S1 system hops to the S0 state through S1 → S0 internal conversion (IC). In addition, at the S1 minimum, the system could partially undergo intersystem crossing (ISC) to the T1 state, followed by further ISC to the S0 state via the T1/S0 crossing point. In the T1 state, an energy barrier of 7.9 kcal mol-1 will trap 2,4-DT for a while. In parallel, for 2-AT, the system first relaxes to the S1 minimum and then S1 → S0 IC or S1 → T1 → S0 ISCs take place to the S0 state by surmounting a large barrier of 15.3 kcal mol-1 or 11.9 kcal mol-1, respectively, which heavily suppress electronic transition to the S0 state. Different from 2,4-DT, upon photoexcitation in the Franck-Condon region, 2-AT can quickly evolve in an essentially barrierless manner to nearby S2/S1 conical intersection, where the S2 and T1 states can be populated. Once it hops to the S2 state, the system will overcome a relatively small barrier (6.6 kcal mol-1vs. 15.3 kcal mol-1) through IC to the S0 state. Similarly, an energy barrier of 11.9 kcal mol-1 heavily suppresses the T1 state transformation to the S0 state. The present work manifests that the amination/deamination of the triazine rings can affect some degree of different vertical and adiabatic excitation energies and nonradiative decay pathways in solution. It not only rationalizes excited-state decay dynamics of 2,4-DT and 2-AT in aqueous solution but could also provide insights into the understanding of the photophysics of aza-nucleobases.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Geng Zhao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| |
Collapse
|
2
|
de Vries MS. Understanding How a New Hachimoji Nucleobase Alters Photodynamics of Genetic Building Blocks. Photochem Photobiol 2022; 99:857-859. [PMID: 36062299 DOI: 10.1111/php.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
This article is a highlight of the paper by Krul et al. in this issue of Photochemistry and Photobiology. It describes the excited state dynamics of 5-aza-7-deazaguanine (5N7C G), which has recently been proposed as an alternative nucleobase. Upon UV absorption to the lowest energy 1 ππ* state, 5N7C G returns to the electronic ground state an order of magnitude more slowly than guanine with a corresponding greater fluorescence quantum yield. These findings are significant because they suggest that 5N7C G is less UV photostable that its canonical nucleobase equivalent, which would have been a selective disadvantage in prebiotic conditions.
Collapse
Affiliation(s)
- Mattanjah S de Vries
- Department of Chemistry and Biochemistry, University of California Santa Barbara, CA, 93106-9510, USA
| |
Collapse
|
3
|
Datar A, Paithankar H, Deb P, Chugh J, Bagchi S, Mukherjee A, Hazra A. Water-Controlled Keto-Enol Tautomerization of a Prebiotic Nucleobase. J Phys Chem B 2022; 126:5735-5743. [PMID: 35895006 DOI: 10.1021/acs.jpcb.2c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Barbituric acid is believed to be a proto-RNA nucleobase that was used for biological information transfer on prebiotic earth before DNA and RNA in their present forms evolved. Nucleobases have various tautomeric forms and the relative stability of these forms is critical to their biological function. It has been shown that barbituric acid has a tri-keto form in the gas phase and an enol form in the solid state. However, its dominant tautomeric form in aqueous medium that is most relevant for biology has been investigated only to a limited extent and the findings are inconclusive. We have used multiple approaches, namely, molecular dynamics, quantum chemistry, NMR, and IR spectroscopy to determine the most stable tautomer of barbituric acid in solution. We find a delicate balance in the stability of the two tautomers, tri-keto and enol, which is tipped toward the enol as the extent of solvation by water increases.
Collapse
Affiliation(s)
- Avdhoot Datar
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | | | - Pranab Deb
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | |
Collapse
|
4
|
On the Photostability of Cyanuric Acid and Its Candidature as a Prebiotic Nucleobase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041184. [PMID: 35208973 PMCID: PMC8875432 DOI: 10.3390/molecules27041184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/28/2022]
Abstract
Cyanuric acid is a triazine derivative that has been identified from reactions performed under prebiotic conditions and has been proposed as a prospective precursor of ancestral RNA. For cyanuric acid to have played a key role during the prebiotic era, it would have needed to survive the harsh electromagnetic radiation conditions reaching the Earth’s surface during prebiotic times (≥200 nm). Therefore, the photostability of cyanuric acid would have been crucial for its accumulation during the prebiotic era. To evaluate the putative photostability of cyanuric acid in water, in this contribution, we employed density functional theory (DFT) and its time-dependent variant (TD-DFT) including implicit and explicit solvent effects. The calculations predict that cyanuric acid has an absorption maximum at ca. 160 nm (7.73 eV), with the lowest-energy absorption band extending to ca. 200 nm in an aqueous solution and exhibiting negligible absorption at longer wavelengths. Excitation of cyanuric acid at 160 nm or longer wavelengths leads to the population of S5,6 singlet states, which have ππ* character and large oscillator strengths (0.8). The population reaching the S5,6 states is expected to internally convert to the S1,2 states in an ultrafast time scale. The S1,2 states, which have nπ* character, are predicted to access a conical intersection with the ground state in a nearly barrierless fashion (ca. ≤ 0.13 eV), thus efficiently returning the population to the ground state. Furthermore, based on calculated spin–orbit coupling elements of ca. 6 to 8 cm−1, the calculations predict that intersystem crossing to the triplet manifold should play a minor role in the electronic relaxation of cyanuric acid. We have also calculated the vertical ionization energy of cyanuric acid at 8.2 eV, which predicts that direct one-photon ionization of cyanuric acid should occur at ca. 150 nm. Collectively, the quantum-chemical calculations predict that cyanuric acid would have been highly photostable under the solar radiation conditions reaching the Earth’s surface during the prebiotic era in an aqueous solution. Of relevance to the chemical origin of life and RNA-first theories, these observations lend support to the idea that cyanuric acid could have accumulated in large quantities during the prebiotic era and thus strengthens its candidature as a relevant prebiotic nucleobase.
Collapse
|
5
|
Romeo-Gella F, Arpa EM, Corral I. A molecular insight into the photophysics of barbituric acid, a candidate for canonical nucleobases' ancestor. Phys Chem Chem Phys 2022; 24:1405-1414. [PMID: 34982082 DOI: 10.1039/d1cp04987a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This work investigates the photophysics of barbituric acid at different pH conditions using ab initio methods. Our calculations ascribe the most intense bands at ca. 260 nm at neutral pH and 210 nm at acidic pH conditions in the absorption spectra of this chromophore to the lowest lying ππ* transitions. Consistently with the ultrashort excited state lifetimes experimentally registered, the potential energy landscapes of both the neutral and deprotonated forms of barbituric acid combined with the interpretation of their transient absorption spectra suggest the deactivation of these systems along the singlet manifold. Compared to uracil, its closest natural nucleobase, barbituric acid presents a red shifted absorption spectrum, due to the lowering by more than 0.5 eV of the lowest-energy ππ* excited state, and a much more complex topography of the S1 potential energy surface, with several energetically accessible local minima. This fact, however, does not affect the excited state lifetimes, which for barbituric acid were experimentally registered in the sub-ps time scale.
Collapse
Affiliation(s)
- Fernando Romeo-Gella
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Enrique M Arpa
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Inés Corral
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain. .,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
6
|
Kaur S, Grover P, Wetmore SD, Sharma P. Role of Stacking Interactions in the Stability of Primitive Genetics: A Quantum Chemical View. J Chem Inf Model 2021; 61:4321-4330. [PMID: 34491053 DOI: 10.1021/acs.jcim.1c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin of genetic material on earth is an age-old, entangled mystery that lacks a unanimous explanation. Recent studies have suggested that noncanonical bases such as barbituric acid (BA), melamine (MM), cyanuric acid (CA), and 2,4,6-triaminopyrimidine (TAP) may have undergone molecular selection within the "prebiotic soup" to spontaneously form supramolecular assemblies, which then covalently assembled into an RNA-like polymer (preRNA). However, information on the role of intrinsic interactions of these candidate heterocycles in their molecular selection as the components of preRNA, and the subsequent transition from preRNA to RNA, is currently missing in the literature. To fill this gap in our knowledge on the origin and evolution of primitive genetics, the present work employs density functional theory (B3LYP-D3) to evaluate and compare the stacking propensities of dimers containing prebiotic noncanonical (BA, MM, CA, and TAP) and/or canonical RNA bases (A, C, G, and U). Our detailed analysis of the variation in stacking strength with respect to four characteristic geometrical parameters between the monomers [i.e., the vertical distance, the angle of rotation, and (two) displacements in the x and y directions] reveals that stacking between nonidentical bases is preferred over identical bases for both prebiotic-prebiotic and canonical-canonical dimers. This not only underscores the similarity between the fundamental chemical properties of preRNA and RNA constituents but also supports the likelihood of the evolution of modern (RNA) genetics from primitive (preRNA) genetics. Furthermore, greater average stacking stabilization of canonical dimers than that of dimers containing one canonical and one preRNA nucleobase (by ∼5 kJ mol-1) or dimers solely containing preRNA nucleobases (by ∼12 kJ mol-1) indicates that enhanced stacking is an important factor that may have spurred the evolution of preRNA to an intermediate informational polymer to RNA. More importantly, our study identifies the central roles of CA, BA, and TAP in stacking stabilization within the preRNA and of BA in stacking interactions within the intermediate polymers and suggests that these heterocycles may have played distinct roles in various stages during the evolution from preRNA to RNA. Overall, our results highlight the significance of stacking interactions in the selection of nucleobase components of preRNA.
Collapse
Affiliation(s)
- Sarabjeet Kaur
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Payal Grover
- Department of Chemistry, Dayanand Anglo-Vedic (DAV) College, Sector 10, Chandigarh 16011, India
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
7
|
Rankine CD. Ultrafast excited-state dynamics of promising nucleobase ancestor 2,4,6-triaminopyrimidine. Phys Chem Chem Phys 2021; 23:4007-4017. [PMID: 33554987 DOI: 10.1039/d0cp05609j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultrafast excited-state dynamics of 2,4,6-triaminopyrimidine - thought to be a promising candidate for a proto-RNA nucleobase - have been investigated via static multireference quantum-chemical calculations and mixed-quantum-classical/trajectory surface-hopping dynamics with a focus on the lowest-lying electronic states of the singlet manifold and with a view towards understanding the UV(C)/UV(B) photostability of the molecule. Ultrafast internal conversion channels have been identified that connect the lowest-lying ππ* electronically-excited state of 2,4,6-triaminopyrimidine with the ground electronic state, and non-radiative decay has been observed to take place on the picosecond timescale via a ππ* out-of-plane NH2 ("oop-NH2") minimum-energy crossing point. The short excited-state lifetime is competitive with the excited-state lifetimes of the canonical pyrimidine nucleobases, affirming the promise of 2,4,6-triaminopyrimidine as an ancestor. Evidence for energy-dependent excited-state dynamics is presented, and the open question of intersystem crossing is discussed speculatively.
Collapse
Affiliation(s)
- Conor D Rankine
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
8
|
Nunn AVW, Guy GW, Botchway SW, Bell JD. From sunscreens to medicines: Can a dissipation hypothesis explain the beneficial aspects of many plant compounds? Phytother Res 2020; 34:1868-1888. [PMID: 32166791 PMCID: PMC7496984 DOI: 10.1002/ptr.6654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/16/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Abstract
Medicine has utilised plant‐based treatments for millennia, but precisely how they work is unclear. One approach is to use a thermodynamic viewpoint that life arose by dissipating geothermal and/or solar potential. Hence, the ability to dissipate energy to maintain homeostasis is a fundamental principle in all life, which can be viewed as an accretion system where layers of complexity have built upon core abiotic molecules. Many of these compounds are chromophoric and are now involved in multiple pathways. Plants have further evolved a plethora of chromophoric compounds that can not only act as sunscreens and redox modifiers, but also have now become integrated into a generalised stress adaptive system. This could be an extension of the dissipative process. In animals, many of these compounds are hormetic, modulating mitochondria and calcium signalling. They can also display anti‐pathogen effects. They could therefore modulate bioenergetics across all life due to the conserved electron transport chain and proton gradient. In this review paper, we focus on well‐described medicinal compounds, such as salicylic acid and cannabidiol and suggest, at least in animals, their activity reflects their evolved function in plants in relation to stress adaptation, which itself evolved to maintain dissipative homeostasis.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | | | - Stanley W Botchway
- STFC, UKRI & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
9
|
Camiruaga A, Usabiaga I, D'mello VC, García GA, Wategaonkar S, Fernández JA. Revisiting the spectroscopy of xanthine derivatives: theobromine and theophylline. Phys Chem Chem Phys 2019; 21:26430-26437. [PMID: 31774088 DOI: 10.1039/c9cp05068j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We explore the influence of the relative position of the methyl substituent on the photophysics of theophylline and theobromine, two molecules that are structurally related to the DNA bases. Using a combination of spectroscopic techniques and quantum mechanical calculations, we show that moving the methyl group from N1 in theophylline to N7 in theobromine causes significant differences in their excited state properties, i.e., it produces pyramidalization of N7 in the excited state of the latter. Paradoxically, this modification seems to have little effect on the structural properties of the cation and the ionization process. It is suggested that similar effects may exist in the excited state properties of DNA bases.
Collapse
Affiliation(s)
- Ander Camiruaga
- Dep. of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Brister MM, Crespo-Hernández CE. Excited-State Dynamics in the RNA Nucleotide Uridine 5'-Monophosphate Investigated Using Femtosecond Broadband Transient Absorption Spectroscopy. J Phys Chem Lett 2019; 10:2156-2161. [PMID: 30995048 DOI: 10.1021/acs.jpclett.9b00492] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Damage to RNA from ultraviolet radiation induces chemical modifications to the nucleobases. Unraveling the excited states involved in these reactions is essential; however, investigations aimed at understanding the electronic-energy relaxation pathways of the RNA nucleotide uridine 5'-monophosphate (UMP) have not received enough attention. In this Letter, the excited-state dynamics of UMP is investigated in aqueous solution. Excitation at 267 nm results in a trifurcation event that leads to the simultaneous population of the vibrationally excited ground state, a long-lived 1nπ* state, and a receiver triplet state within 200 fs. The receiver state internally converts to the long-lived 3ππ* state in an ultrafast time scale. The results elucidate the electronic relaxation pathways and clarify earlier transient absorption experiments performed for uracil derivatives in solution. This mechanistic information is important because long-lived nπ* and ππ* excited states of both singlet and triplet multiplicities are thought to lead to the formation of harmful photoproducts.
Collapse
Affiliation(s)
- Matthew M Brister
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Carlos E Crespo-Hernández
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
11
|
Karunakaran SC, Cafferty BJ, Weigert‐Muñoz A, Schuster GB, Hud NV. Spontaneous Symmetry Breaking in the Formation of Supramolecular Polymers: Implications for the Origin of Biological Homochirality. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Suneesh C. Karunakaran
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology USA
| | - Brian J. Cafferty
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology USA
| | - Angela Weigert‐Muñoz
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology USA
| | - Gary B. Schuster
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology USA
| |
Collapse
|
12
|
Karunakaran SC, Cafferty BJ, Weigert‐Muñoz A, Schuster GB, Hud NV. Spontaneous Symmetry Breaking in the Formation of Supramolecular Polymers: Implications for the Origin of Biological Homochirality. Angew Chem Int Ed Engl 2019; 58:1453-1457. [DOI: 10.1002/anie.201812808] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Suneesh C. Karunakaran
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology USA
| | - Brian J. Cafferty
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology USA
| | - Angela Weigert‐Muñoz
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology USA
| | - Gary B. Schuster
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology USA
| |
Collapse
|
13
|
Gate G, Szabla R, Haggmark MR, Šponer J, Sobolewski AL, de Vries MS. Photodynamics of alternative DNA base isoguanine. Phys Chem Chem Phys 2019; 21:13474-13485. [DOI: 10.1039/c9cp01622h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pump–probe experiments and quantum-chemical simulations of UV-excited isoguanine elucidate its tautomer dependent photochemical properties.
Collapse
Affiliation(s)
- Gregory Gate
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Rafał Szabla
- Institute of Physics
- Polish Academy of Sciences
- 02-668 Warsaw
- Poland
- Institute of Biophysics of the Czech Academy of Sciences
| | - Michael R. Haggmark
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences
- 61265 Brno
- Czech Republic
| | | | | |
Collapse
|
14
|
Zhou Z, Zhou X, Wang X, Jiang B, Li Y, Chen J, Xu J. Ultrafast Excited-State Dynamics of Cytosine Aza-Derivative and Analogues. J Phys Chem A 2017; 121:2780-2789. [DOI: 10.1021/acs.jpca.6b12290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhongneng Zhou
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xueyao Zhou
- Department
of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xueli Wang
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Bin Jiang
- Department
of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yongle Li
- Department
of Physics, International Center of Quantum and Molecular Structures,
Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China
| | - Jinquan Chen
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jianhua Xu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
15
|
Zhang Y, Beckstead AA, Hu Y, Piao X, Bong D, Kohler B. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy. Molecules 2016; 21:molecules21121645. [PMID: 27916910 PMCID: PMC5489438 DOI: 10.3390/molecules21121645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 11/20/2022] Open
Abstract
Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase) and its lysine derivative (a proto-nucleoside) using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps), but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Ashley A Beckstead
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Yuesong Hu
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Xijun Piao
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| | - Dennis Bong
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| | - Bern Kohler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Rapf RJ, Vaida V. Sunlight as an energetic driver in the synthesis of molecules necessary for life. Phys Chem Chem Phys 2016; 18:20067-84. [DOI: 10.1039/c6cp00980h] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This review considers how photochemistry and sunlight-driven reactions can abiotically generate prebiotic molecules necessary for the evolution of life.
Collapse
Affiliation(s)
- Rebecca J. Rapf
- Department of Chemistry and Biochemistry
- CIRES
- University of Colorado at Boulder
- Boulder
- USA
| | - Veronica Vaida
- Department of Chemistry and Biochemistry
- CIRES
- University of Colorado at Boulder
- Boulder
- USA
| |
Collapse
|