1
|
Liu TH, Okuno M. TMAO perturbs intermolecular vibrational motions of water revealed by low-frequency modes. Phys Chem Chem Phys 2024; 26:12397-12405. [PMID: 38619910 DOI: 10.1039/d4cp01025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Trimethylamine N-oxide (TMAO) as a representative natural osmolyte has received much attention because of its unique properties, including enhancement of hydrogen bonding networks in liquid water and stabilization of three-dimensional structures of proteins in living organisms. As a hydrogen bond maker and/or a protein stabilizer, its hydrated structures and orientation dynamics in aqueous solutions have been investigated by various spectroscopic methods. Particularly, distinct from other natural osmolytes, it has been found that TMAO molecules form complexes with water molecules even at low concentrations, showing extraordinarily long lifetimes and much larger effective dipole moments. In this study, we demonstrated that collective motions of water molecules are closely correlated to TMAO molecules, as revealed by the changes of the librational modes observed in hyper-Raman (HR) spectra in the low-frequency region (<1000 cm-1) for the first time. Based on HR spectra of the TMAO solutions at submolar concentrations, we observed that the librational bands originating from water apparently upshift (∼15 cm-1) upon the addition of TMAO molecules. Compared to the OH stretching band of water showing a negligible downshift (<5 cm-1), the librational bands of water are more sensitive to reflect changes in the hydrogen bonding networks in the TMAO solutions, suggesting formation of transient TMAO-water complexes plays an essential role toward surrounding water molecules in perturbing their librational motions. We expect to provide a supplementary approach to understand that water molecules in TMAO aqueous solutions are strongly affected by TMAO molecules, different from other osmolytes.
Collapse
Affiliation(s)
- Tsung-Han Liu
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan.
| | - Masanari Okuno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan.
| |
Collapse
|
2
|
Devlin SW, Bernal F, Riffe EJ, Wilson KR, Saykally RJ. Spiers Memorial Lecture: Water at interfaces. Faraday Discuss 2024; 249:9-37. [PMID: 37795954 DOI: 10.1039/d3fd00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
In this article we discuss current issues in the context of the four chosen subtopics for the meeting: dynamics and nano-rheology of interfacial water, electrified/charged aqueous interfaces, ice interfaces, and soft matter/water interfaces. We emphasize current advances in both theory and experiment, as well as important practical manifestations and areas of unresolved controversy.
Collapse
Affiliation(s)
- Shane W Devlin
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Franky Bernal
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Erika J Riffe
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Richard J Saykally
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Sharma H, Trivedi M, Nirmalkar N. Do Nanobubbles Exist in Pure Alcohol? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1534-1543. [PMID: 38176064 DOI: 10.1021/acs.langmuir.3c03592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The existence of nanobubbles in pure water has been extensively debated in recent years, and it is speculated that nanobubbles may be ion-stabilized. However, nanobubbles in the alcohol-water mixture and pure alcohols are still controversial due to the lack of ions present in the alcohol system. This work tested the hypothesis that stable nanobubbles exist in pure alcohol. The ultrasound and oscillatory pressure fields are used to generate nanobubbles in pure alcohol. The size distribution, concentration, diameter, and scattering intensity of the nanobubbles were measured by nanoparticle tracking analysis. The light scattering method measures the zeta potential. The Mie scattering theory and electromagnetic wave simulation are utilized to estimate the refractive index (RI) of nanobubbles from the experimentally measured scattering light intensity. The average RI of the nanobubbles in pure alcohols produced by ultrasound and oscillating pressure fields was estimated to be 1.17 ± 0.03. Degassing the nanobubble sample reduces its concentration and increases its size. The average zeta potential of the nanobubbles in pure alcohol was measured to be -5 ± 0.9 mV. The mechanical stability model, which depends on force balance around a single nanobubble, also predicts the presence of nanobubbles in pure alcohol. The nanobubbles in higher-order alcohols were found to be marginally colloidally stable. In summary, both experimental and theoretical results suggest the existence of nanobubbles in pure alcohol.
Collapse
Affiliation(s)
- Harsh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Mohit Trivedi
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Neelkanth Nirmalkar
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, India
| |
Collapse
|
4
|
Isogai T, Uranagase M, Motobayashi K, Ogata S, Ikeda K. Probing collective terahertz vibrations of a hydrogen-bonded water network at buried electrochemical interfaces. Chem Sci 2023; 14:6531-6537. [PMID: 37350835 PMCID: PMC10284101 DOI: 10.1039/d3sc01734f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 06/24/2023] Open
Abstract
The exceptional properties of liquid water such as thermodynamic, physical, and dielectric anomalies originate mostly from the hydrogen-bond networks of water molecules. The structural and dynamic properties of the hydrogen-bond networks have a significant impact on many biological and chemical processes in aqueous systems. In particular, the properties of interfacial water molecules with termination of the network at a solid surface are crucial to understanding the role of water in heterogeneous reactions. However, direct monitoring of the dynamics of hydrogen-bonded interfacial water molecules has been limited because of the lack of a suitable surface-selective spectroscopic means in the terahertz (THz) frequency range where collective vibrations of water exist. Here we show that hydrogen-bond vibrations below 9 THz can be measured in situ at an electrochemical interface, which is buried between two THz-opaque media, by using a density of states format of surface-enhanced inelastic light scattering spectra. The interpretation of the obtained spectra over the range 0.3-6 THz indicates that the negatively charged surface accelerates collective translational motions of water molecules in the lateral direction with the increase of hydrogen-bond defects. Alternatively, the positively charged surface results in suppression of lateral mobility. This work gives a new perspective on in situ spectroscopic investigations in heterogeneous reactions.
Collapse
Affiliation(s)
- Taichi Isogai
- Department of Physical Science and Engineering, Nagoya Institute of Technology Nagoya 466-8555 Japan
| | - Masayuki Uranagase
- Department of Physical Science and Engineering, Nagoya Institute of Technology Nagoya 466-8555 Japan
| | - Kenta Motobayashi
- Department of Physical Science and Engineering, Nagoya Institute of Technology Nagoya 466-8555 Japan
| | - Shuji Ogata
- Department of Physical Science and Engineering, Nagoya Institute of Technology Nagoya 466-8555 Japan
| | - Katsuyoshi Ikeda
- Department of Physical Science and Engineering, Nagoya Institute of Technology Nagoya 466-8555 Japan
- Frontier Research Institute for Materials Science (FRIMS), Nagoya Institute of Technology Nagoya 466-8555 Japan
| |
Collapse
|
5
|
Pu D, Panahi A, Natale G, Benneker AM. Colloid thermophoresis in the dilute electrolyte concentration regime: from theory to experiment. SOFT MATTER 2023; 19:3464-3474. [PMID: 37129579 DOI: 10.1039/d2sm01668k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Colloid thermophoresis in aqueous media is vital for numerous applications in nanoscience and life sciences. To date, a general description of colloid thermophoresis in DI water has not been determined. Here, we describe a theoretical model within the framework of the Fokker-Planck formalism and the flickering cluster concept to describe the hydration entropy effect on the thermophoretic behaviour of colloids suspended in DI water and compare this to new experimental results. We built an experimental platform to allow for rapid and robust temperature control and investigate the thermophoretic behaviour of silica microspheres with different sizes at various background temperatures for comparison. In this work, the ionic shielding effect is accounted for by using the well-known Duhr-Dhont's model, and the hydration layer effect is determined using the developed theoretical model. For the latter, our model reveals that the sign of the Soret coefficient is governed by the interplay between the binding energy and the chemical potential of water molecules, which were found to be in the same order of magnitude. We show that our analysis accurately describes the experimental behaviour of colloidal particles that opens a new avenue for developing versatile trapping and separation techniques for various colloidal particles in aqueous systems according to their size and background temperature.
Collapse
Affiliation(s)
- Di Pu
- Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Amirreza Panahi
- Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Giovanniantonio Natale
- Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Anne M Benneker
- Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
6
|
Agarwal K, Trivedi M, Ohl CD, Nirmalkar N. On Nanobubble Dynamics under an Oscillating Pressure Field during Salting-out Effects and Its DLVO Potential. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5250-5262. [PMID: 37014662 DOI: 10.1021/acs.langmuir.2c03085] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We have investigated the origin, stability, and nanobubble dynamics under an oscillating pressure field followed by the salting-out effects. The higher solubility ratio (salting-out parameter) of the dissolved gases and pure solvent nucleates nanobubbles during the salting-out effect, and the oscillating pressure field enhances the nanobubble density further as solubility varies linearly with gas pressure by Henry's law. A novel method for refractive index estimation is developed to differentiate nanobubbles and nanoparticles based on the scattering intensity of light. The electromagnetic wave equations have been numerically solved and compared with the Mie scattering theory. The scattering cross-section of the nanobubbles was estimated to be smaller than the nanoparticles. The DLVO potentials of the nanobubbles predict the stable colloidal system. The zeta potential of nanobubbles varied by generating nanobubbles in different salt solutions, and it is characterized by particle tracking, dynamic light scattering, and cryo-TEM. The size of nanobubbles in salt solutions was reported to be higher than that in pure water. The novel mechanical stability model is proposed by considering both ionic cloud and electrostatic pressure at the charged interface. The ionic cloud pressure is derived by electric flux balance, and it is found to be twice the electrostatic pressure. The mechanical stability model for a single nanobubble predicts the existence of stable nanobubbles in the stability map.
Collapse
Affiliation(s)
- Kalyani Agarwal
- Department of Chemical Engineering, Indian Institute of Technology, Ropar 140001, India
| | - Mohit Trivedi
- Department of Chemical Engineering, Indian Institute of Technology, Ropar 140001, India
| | - Claus-Dieter Ohl
- Otto-von-Guericke University Magdeburg, Faculty of Natural Sciences, Institute for Physics, Department Soft Matter, Universitaetsplatz 2, Magdeburg 39106, Germany
| | - Neelkanth Nirmalkar
- Department of Chemical Engineering, Indian Institute of Technology, Ropar 140001, India
| |
Collapse
|
7
|
Begušić T, Blake GA. Two-dimensional infrared-Raman spectroscopy as a probe of water's tetrahedrality. Nat Commun 2023; 14:1950. [PMID: 37029146 PMCID: PMC10082090 DOI: 10.1038/s41467-023-37667-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Two-dimensional spectroscopic techniques combining terahertz (THz), infrared (IR), and visible pulses offer a wealth of information about coupling among vibrational modes in molecular liquids, thus providing a promising probe of their local structure. However, the capabilities of these spectroscopies are still largely unexplored due to experimental limitations and inherently weak nonlinear signals. Here, through a combination of equilibrium-nonequilibrium molecular dynamics (MD) and a tailored spectrum decomposition scheme, we identify a relationship between the tetrahedral order of liquid water and its two-dimensional IR-IR-Raman (IIR) spectrum. The structure-spectrum relationship can explain the temperature dependence of the spectral features corresponding to the anharmonic coupling between low-frequency intermolecular and high-frequency intramolecular vibrational modes of water. In light of these results, we propose new experiments and discuss the implications for the study of tetrahedrality of liquid water.
Collapse
Affiliation(s)
- Tomislav Begušić
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Geoffrey A Blake
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
8
|
Pireddu G, Rotenberg B. Frequency-Dependent Impedance of Nanocapacitors from Electrode Charge Fluctuations as a Probe of Electrolyte Dynamics. PHYSICAL REVIEW LETTERS 2023; 130:098001. [PMID: 36930930 DOI: 10.1103/physrevlett.130.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The frequency-dependent impedance is a fundamental property of electrical components. We show that it can be determined from the equilibrium dynamical fluctuations of the electrode charge in constant-potential molecular simulations, extending in particular a fluctuation-dissipation relation for the capacitance recovered in the low-frequency limit and provide an illustration on water-gold nanocapacitors. This Letter opens the way to the interpretation of electrochemical impedance measurements in terms of microscopic mechanisms, directly from the dynamics of the electrolyte, or indirectly via equivalent circuit models as in experiments.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
9
|
Koishi A, Lee SS, Fenter P, Fernandez-Martinez A, Bourg IC. Water Adsorption on Mica Surfaces with Hydrophilicity Tuned by Counterion Types (Na, K, and Cs) and Structural Fluorination. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:16447-16460. [PMID: 37881644 PMCID: PMC10597534 DOI: 10.1021/acs.jpcc.2c04751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/26/2022] [Indexed: 10/27/2023]
Abstract
The stability of adsorbed water films on mineral surfaces has far-reaching implications in the Earth, environmental, and materials sciences. Here, we use the basal plane of phlogopite mica, an atomically smooth surface of a natural mineral, to investigate water film structure and stability as a function of two features that modulate surface hydrophilicity: the type of adsorbed counterions (Na, K, and Cs) and the substitution of structural OH groups by F atoms. We use molecular dynamics simulations combined with in situ high-resolution X-ray reflectivity to examine surface hydration over a range of water loadings, from the adsorption of isolated water molecules to the formation of clusters and films. We identify four regimes characterized by distinct adsorption energetics and different sensitivities to cation type and mineral fluorination: from 0 to 0.5 monolayer film thickness, the hydration of adsorbed ions; from 0.5 to 1 monolayer, the hydration of uncharged regions of the siloxane surface; from 1 to 1.5 monolayer, the attachment of isolated water molecules on the surface of the first monolayer; and for >1.5 monolayer, the formation of an incipient electrical double layer at the mineral-water interface.
Collapse
Affiliation(s)
- Ayumi Koishi
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sang Soo Lee
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United
States
| | - Paul Fenter
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United
States
| | | | - Ian C. Bourg
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High
Meadows Environmental Institute, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Odendahl NL, Geissler PL. Local Ice-like Structure at the Liquid Water Surface. J Am Chem Soc 2022; 144:11178-11188. [PMID: 35696525 DOI: 10.1021/jacs.2c01827] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Experiments and computer simulations have established that liquid water's surfaces can deviate in important ways from familiar bulk behavior. Even in the simplest case of an air-water interface, distinctive layering, orientational biases, and hydrogen bond arrangements have been reported, but an overarching picture of their origins and relationships has been incomplete. Here we show that a broad set of such observations can be understood through an analogy with the basal face of crystalline ice. Using simulations, we demonstrate a number of structural similarities between water and ice surfaces, suggesting the presence of domains at the air-water interface with ice-like features that persist over 2-3 molecular diameters. Most prominent is a shared characteristic layering of molecular density and orientation perpendicular to the interface. Lateral correlations of hydrogen bond network geometry point to structural similarities in the parallel direction as well. Our results bolster and significantly extend previous conceptions of ice-like structure at the liquid's boundary and suggest that the much-discussed quasi-liquid layer on ice evolves subtly above the melting point into a quasi-ice layer at the surface of liquid water.
Collapse
Affiliation(s)
- Nathan L Odendahl
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phillip L Geissler
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Wu C, Li R, Yu K. Learning the Quantum Centroid Force Correction in Molecular Systems: A Localized Approach. Front Mol Biosci 2022; 9:851311. [PMID: 35664679 PMCID: PMC9161153 DOI: 10.3389/fmolb.2022.851311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular mechanics (MM) is a powerful tool to study the properties of molecular systems in the fields of biology and materials science. With the development of ab initio force field and the application of ab initio potential energy surface, the nuclear quantum effect (NQE) is becoming increasingly important for the robustness of the simulation. However, the state-of-the-art path-integral molecular dynamics simulation, which incorporates NQE in MM, is still too expensive to conduct for most biological and material systems. In this work, we analyze the locality of NQE, using both analytical and numerical approaches, and conclude that NQE is an extremely localized phenomenon in nonreactive molecular systems. Therefore, we can use localized machine learning (ML) models to predict quantum force corrections both accurately and efficiently. Using liquid water as example, we show that the ML facilitated centroid MD can reproduce the NQEs in both the thermodynamical and the dynamical properties, with a minimal increase in computational time compared to classical molecular dynamics. This simple approach thus largely decreases the computational cost of quantum simulations, making it really accessible to the studies of large-scale molecular systems.
Collapse
Affiliation(s)
| | | | - Kuang Yu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
12
|
Prasad D, Mitra N. High-temperature and high-pressure plastic phase of ice at the boundary of liquid water and ice VII. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2021.0958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Simultaneous high-temperature and high-pressure studies reveal phase transformation of bulk liquid water to an ice-VII-like structure having an eight coordination. It was demonstrated through this numerical study that the observed high-temperature and high-pressure phase of water obtained upon shock compression and equilibration has high rotational diffusion and thereby the hydrogen dynamics of these crystal structures are significantly complex compared with ice VII. The current work provides new characterization methods for the numerically observed plastic crystal phase of ice at the boundary of the liquid water and ice VII phases in which the molecules have a defined lattice position but rotate freely. It is anticipated that the present work will provide important data and guide new theoretical and experimental investigations in the search for plastic crystal phases of water. The power spectra plots of bulk liquid water subjected to different temperature and pressure conditions have also been presented in this numerical study, demonstrating significant differences between these high-temperature and high-pressure shock-equilibrated phases and those of pure ice VII at 10 GPa and liquid water at ambient temperature and pressure, as well as at elevated pressures and temperatures.
Collapse
Affiliation(s)
- Dipak Prasad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nilanjan Mitra
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore 21218, MD, USA
| |
Collapse
|
13
|
Brkljača Z, Butumović M, Bakarić D. Water does not dance as ions sing: A new approach in elucidation of ion-invariant water fluctuations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120907. [PMID: 35144056 DOI: 10.1016/j.saa.2022.120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Aqueous solutions of salts composed from monovalent ions are explored using temperature-dependent FT-IR spectroscopy in transmission. Water combination band, being extremely sensitive to the network of hydrogen bonds due to the contribution of water librations (ρLH2O), is analyzed in uni- and multivariate fashion. Univariate analysis of the combination band maximum (νmax) reveals that perturbation of water hydrogen bond network by ions is primary driven by electrostatic interactions between water and ions. Using multivariate curve resolution with alternating least squares and evolving factor analysis this band is separated into two components that represent low- and high-density water. The observed asymmetry in their behavior is interpreted in terms of fluctuations of a hydrogen bond network of two water components. The significance of the found phenomenon is unambiguously confirmed by performing analogous analysis in the spectral range that contains partial signature of water linear bending (δHOH) and is free from ρLH2O, in which the asymmetry is absent. Additionally, we show that this phenomenon, namely ion-invariant behavior of water fluctuations, persists even in the regime of high ionic strengths. Although ions indeed participate in shaping of water hydrogen bond network, this straightforward approach shows that its temperature-dependent fluctuations are ion-independent.
Collapse
Affiliation(s)
- Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Marija Butumović
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
14
|
Rheological behaviors and texture properties of semi-interpenetrating networks of hydroxypropyl methylcellulose and gellan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Isogai T, Motobayashi K, Ikeda K. A single spectroscopic probe for in situ analysis of electronic and vibrational information at both sides of electrode/electrolyte interfaces using surface-enhanced Raman scattering. J Chem Phys 2021; 155:204702. [PMID: 34852477 DOI: 10.1063/5.0067355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) at electrode/electrolyte interfaces includes inelastic light scattering not only by molecular vibrations in the electrolyte phase but also by conduction electrons in the metal electrode phase. While the former, i.e., vibrational SERS (VSERS), is widely used to obtain chemical information on electrode surfaces, the latter, i.e., electronic SERS (ESERS), is still under discussion as a possible origin of the SERS background. Given that electronic Raman scattering is essentially sensitive to the surface charge density of a metal, we conducted a thorough comparison of electrochemical potential dependence of SERS signals in both acidic and alkaline media. Significant intensity changes in the SERS background were observed close to the respective potentials of zero charge in acidic and alkaline media, supporting the contention that the generation of the SERS background can be explained by the ESERS mechanism. Moreover, the ESERS intensities, as the SERS background, were reversibly varied by anion adsorption/desorption at the electrochemical interfaces in conjunction with VSERS features originated from surface-adsorbate vibrations. The sensitivity to the surface charge was much higher in this method than in the conventional combined method of reflectance and SERS. In situ monitoring of both chemical and electronic structures at electrode/electrolyte interfaces using a single spectroscopic probe can avoid various experimental uncertainties caused by combined application of different spectroscopic methods leading to facilitation of our deeper understanding of electrode processes.
Collapse
Affiliation(s)
- Taichi Isogai
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Kenta Motobayashi
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Katsuyoshi Ikeda
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
16
|
Kessler A, Hedberg J, McCarrick S, Karlsson HL, Blomberg E, Odnevall I. Adsorption of Horseradish Peroxidase on Metallic Nanoparticles: Effects on Reactive Oxygen Species Detection Using 2',7'-Dichlorofluorescin Diacetate. Chem Res Toxicol 2021; 34:1481-1495. [PMID: 33856197 PMCID: PMC8220500 DOI: 10.1021/acs.chemrestox.0c00430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/28/2022]
Abstract
The fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA) together with the enzyme horseradish peroxidase (HRP) is widely used in nanotoxicology to study acellular reactive oxygen species (ROS) production from nanoparticles (NPs). This study examined whether HRP adsorbs onto NPs of Mn, Ni, and Cu and if this surface process influences the extent of metal release and hence the ROS production measurements using the DCFH assay in phosphate buffered saline (PBS), saline, or Dulbecco's modified Eagle's medium (DMEM). Adsorption of HRP was evident onto all NPs and conditions, except for Mn NPs in PBS. The presence of HRP resulted in an increased release of copper from the Cu NPs in PBS and reduced levels of nickel from the Ni NPs in saline. Both metal ions in solution and the adsorption of HRP onto the NPs can change the activity of HRP and thus influence the ROS results. The effect of HRP on the NP reactivity was shown to be solution chemistry dependent. Most notable was the evident affinity/adsorption of phosphate toward the metal NPs, followed by a reduced adsorption of HRP, the concomitant reduction in released manganese from the Mn NPs, and increased levels of released metals from the Cu NPs in PBS. Minor effects were observed for the Ni NPs. The solution pH should be monitored since the release of metals can change the solution pH and the activity of HRP is known to be pH-dependent. It is furthermore essential that solution pH adjustments are made following the addition of NaOH during diacetyl removal of DCFH-DA. Even though not observed for the given exposure conditions of this study, released metal ions could possibly induce agglomeration or partial denaturation of HRP, which in turn could result in steric hindrance for H2O2 to reach the active site of HRP. This study further emphasizes the influence of HRP on the background kinetics, its solution dependence, and effects on measured ROS signals. Different ways of correcting for the background are highlighted, as this can result in different interpretations of generated results. The results show that adsorption of HRP onto the metal NPs influenced the extent of metal release and may, depending on the investigated system, result in either under- or overestimated ROS signals if used together with the DCFH assay. HRP should hence be used with caution when measuring ROS in the presence of reactive metallic NPs.
Collapse
Affiliation(s)
- Amanda Kessler
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden
| | - Jonas Hedberg
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden
| | - Sarah McCarrick
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hanna L. Karlsson
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Eva Blomberg
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden
- RISE
Research Institute of Sweden, Division Bioeconomy
and Health, Material and Surface Design, Box 5604, SE-114 86 Stockholm, Sweden
| | - Inger Odnevall
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden
- AIMES
- Center for the Advancement of Integrated Medical and Engineering
Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 169 27 Stockholm, Sweden
- Department
of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
17
|
Altman RM, Richmond GL. Twist and Stretch: Assignment and Surface Charge Sensitivity of a Water Combination Band and Its Implications for Vibrational Sum Frequency Spectra Interpretations. J Phys Chem B 2021; 125:6717-6726. [DOI: 10.1021/acs.jpcb.1c03408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rebecca M. Altman
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Geraldine L. Richmond
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
18
|
Maurya M, Metya AK, Singh JK, Saito S. Effects of interfaces on structure and dynamics of water droplets on a graphene surface: A molecular dynamics study. J Chem Phys 2021; 154:164704. [PMID: 33940844 DOI: 10.1063/5.0046817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structure and dynamics of water droplets on a bilayer graphene surface are investigated using molecular dynamics simulations. The effects of solid/water and air/water interfaces on the local structure of water droplets are analyzed in terms of the hydrogen bond distribution and tetrahedral order parameter. It is found that the local structure in the core region of a water droplet is similar to that in liquid water. On the other hand, the local structure of water molecules at the solid/water and air/water interfaces, referred to as the interface and surface regions, respectively, consists mainly of three-coordinated molecules that are greatly distorted from a tetrahedral structure. This study reveals that the dynamics in different regions of the water droplets affects the intermolecular vibrational density of states: It is found that in the surface and interface regions, the intensity of vibrational density of states at ∼50 cm-1 is enhanced, whereas those at ∼200 and ∼500 cm-1 are weakened and redshifted. These changes are attributed to the increase in the number of molecules having fewer hydrogen bonds in the interface and surface regions. Both single-molecule and collective orientation relaxations are also examined. Single-molecule orientation relaxation is found to be marginally slower than that in liquid water. On the other hand, the collective orientation relaxation of water droplets is found to be significantly faster than that of liquid water because of the destructive correlation of dipole moments in the droplets. The negative correlation between distinct dipole moments also yields a blueshifted libration peak in the absorption spectrum. It is also found that the water-graphene interaction affects the structure and dynamics of the water droplets, such as the local water structure, collective orientation relaxation, and the correlation between dipole moments. This study reveals that the water/solid and water/air interfaces strongly affect the structure and intermolecular dynamics of water droplets and suggests that the intermolecular dynamics, such as energy relaxation dynamics, in other systems with interfaces are different from those in liquid water.
Collapse
Affiliation(s)
- Manish Maurya
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Atanu K Metya
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihar 801106, India
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
19
|
Tundisi LL, Mostaço GB, Carricondo PC, Petri DFS. Hydroxypropyl methylcellulose: Physicochemical properties and ocular drug delivery formulations. Eur J Pharm Sci 2021; 159:105736. [PMID: 33516807 DOI: 10.1016/j.ejps.2021.105736] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
Hydroxypropyl methylcellulose (HPMC) is a cellulose ether widely used in drug formulations due to its biocompatibility, uncharged nature, solubility in water and thermoplastic behavior. Particularly for ocular and ophthalmic formulations, HPMC is applied as viscosity enhancer agent in eye drops, gelling agent in injections, and polymeric matrix in films, filaments and inserts. The different therapeutic approaches are necessary due to the complex anatomic structure of the eye. The natural ocular barriers and the low drug permeation into the circulatory system make the drug administration challenging. This review presents the eye anatomy and the usual local routes of drugs administration, which are facilitated by the physicochemical properties of HPMC. The relationship between chemical structure and physicochemical properties of HPMC is displayed. The different types of formulations (local application) including HPMC for ocular drug delivery are discussed with basis on recent literature reports and patents.
Collapse
Affiliation(s)
- L L Tundisi
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - G B Mostaço
- Ophthalmology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - P C Carricondo
- Ophthalmology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - D F S Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000São Paulo, Brazil.
| |
Collapse
|
20
|
Seki T, Yu CC, Yu X, Ohto T, Sun S, Meister K, Backus EHG, Bonn M, Nagata Y. Decoding the molecular water structure at complex interfaces through surface-specific spectroscopy of the water bending mode. Phys Chem Chem Phys 2020; 22:10934-10940. [PMID: 32373844 DOI: 10.1039/d0cp01269f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The structure of interfacial water determines atmospheric chemistry, wetting properties of materials, and protein folding. The challenge of investigating the properties of specific interfacial water molecules has frequently been confronted using surface-specific sum-frequency generation (SFG) vibrational spectroscopy using the O-H stretch mode. While perfectly suited for the water-air interface, for complex interfaces, a potential complication arises from the contribution of hydroxyl or amine groups of non-water species present at the surface, such as surface hydroxyls on minerals, or O-H and N-H groups contained in proteins. Here, we present a protocol to extract the hydrogen bond strength selectively of interfacial water, through the water bending mode. The bending mode vibrational frequency distribution provides a new avenue for unveiling the hydrogen bonding structure of interfacial water at complex aqueous interfaces. We demonstrate this method for the water-CaF2 and water-protein interfaces. For the former, we show that this method can indeed single out water O-H groups from surface hydroxyls, and that with increasing pH, the hydrogen-bonded network of interfacial water strengthens. Furthermore, we unveil enhanced hydrogen bonding of water, compared to bulk water, at the interface with human serum albumin proteins, a prototypical bio-interface.
Collapse
Affiliation(s)
- Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tang F, Ohto T, Sun S, Rouxel JR, Imoto S, Backus EHG, Mukamel S, Bonn M, Nagata Y. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation. Chem Rev 2020; 120:3633-3667. [PMID: 32141737 PMCID: PMC7181271 DOI: 10.1021/acs.chemrev.9b00512] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 12/26/2022]
Abstract
From a glass of water to glaciers in Antarctica, water-air and ice-air interfaces are abundant on Earth. Molecular-level structure and dynamics at these interfaces are key for understanding many chemical/physical/atmospheric processes including the slipperiness of ice surfaces, the surface tension of water, and evaporation/sublimation of water. Sum-frequency generation (SFG) spectroscopy is a powerful tool to probe the molecular-level structure of these interfaces because SFG can specifically probe the topmost interfacial water molecules separately from the bulk and is sensitive to molecular conformation. Nevertheless, experimental SFG has several limitations. For example, SFG cannot provide information on the depth of the interface and how the orientation of the molecules varies with distance from the surface. By combining the SFG spectroscopy with simulation techniques, one can directly compare the experimental data with the simulated SFG spectra, allowing us to unveil the molecular-level structure of water-air and ice-air interfaces. Here, we present an overview of the different simulation protocols available for SFG spectra calculations. We systematically compare the SFG spectra computed with different approaches, revealing the advantages and disadvantages of the different methods. Furthermore, we account for the findings through combined SFG experiments and simulations and provide future challenges for SFG experiments and simulations at different aqueous interfaces.
Collapse
Affiliation(s)
- Fujie Tang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shumei Sun
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Jérémy R. Rouxel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sho Imoto
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ellen H. G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, State Key Laboratory of Surface Physics and Key Laboratory
of Micro- and Nano-Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
22
|
Kowacz M, Pollack GH. Moving Water Droplets: The Role of Atmospheric CO2 and Incident Radiant Energy in Charge Separation at the Air–Water Interface. J Phys Chem B 2019; 123:11003-11013. [DOI: 10.1021/acs.jpcb.9b09161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Magdalena Kowacz
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| | - Gerald H. Pollack
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| |
Collapse
|
23
|
Ye T, Kowacz M, Pollack GH. Unexpected effects of incident radiant energy on evaporation of Water condensate. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Novelli F, Bernal Lopez M, Schwaab G, Roldan Cuenya B, Havenith M. Water Solvation of Charged and Neutral Gold Nanoparticles. J Phys Chem B 2019; 123:6521-6528. [DOI: 10.1021/acs.jpcb.9b02358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | | |
Collapse
|
25
|
Liang C, Jeon J, Cho M. Ab initio Modeling of the Vibrational Sum-Frequency Generation Spectrum of Interfacial Water. J Phys Chem Lett 2019; 10:1153-1158. [PMID: 30802060 DOI: 10.1021/acs.jpclett.9b00291] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the structural and dynamical features of interfacial water is of greatest interest in physics, chemistry, biology, and materials science. Vibrational sum-frequency generation (SFG) spectroscopy, which is sensitive to the molecular orientation and dynamics on the surfaces or at the interfaces, allows one to study a wide variety of interfacial systems. The structural and dynamical features of interfacial water at the air/water interface have been extensively investigated by SFG spectroscopy. However, the interpretations of the spectroscopic features have been under intense debate. Here, we report a simulated SFG spectrum of the air/water interface based on ab initio molecular dynamics simulations, which covers the OH stretching, bending, and libration modes of interfacial water. Quantitative agreement between our present simulations and the most recent experimental studies ensures that ab initio simulations predict unbiased structural features and electrical properties of interfacial systems. By utilizing the kinetic energy spectral density (KESD) analysis to decompose the simulated spectra, the spectroscopic features can then be assigned to specific hydrogen-bonding configurations of interfacial water molecules.
Collapse
Affiliation(s)
- Chungwen Liang
- Computational Modeling Core, Institute for Applied Life Sciences (IALS) , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Korea University , Seoul 02841 , Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Korea University , Seoul 02841 , Korea
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|
26
|
Gardner AM, Saeed KH, Cowan AJ. Vibrational sum-frequency generation spectroscopy of electrode surfaces: studying the mechanisms of sustainable fuel generation and utilisation. Phys Chem Chem Phys 2019; 21:12067-12086. [DOI: 10.1039/c9cp02225b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The electrocatalytic oxidation of water coupled to the reduction of carbon dioxide, to make carbon based products, or the reduction of protons to provide hydrogen, offers a sustainable route to generating useful fuels.
Collapse
Affiliation(s)
- Adrian M. Gardner
- Stephenson Institute for Renewable Energy and the Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - Khezar H. Saeed
- Stephenson Institute for Renewable Energy and the Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - Alexander J. Cowan
- Stephenson Institute for Renewable Energy and the Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| |
Collapse
|
27
|
Sengupta S, Moberg DR, Paesani F, Tyrode E. Neat Water-Vapor Interface: Proton Continuum and the Nonresonant Background. J Phys Chem Lett 2018; 9:6744-6749. [PMID: 30407831 DOI: 10.1021/acs.jpclett.8b03069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Whether the surface of neat water is "acidic" or "basic" remains an active and controversial field of research. Most of the experimental evidence supporting the preferential adsorption of H3O+ ions stems from nonlinear optical spectroscopy methods typically carried out at extreme pH conditions (pH < 1). Here, we use vibrational sum frequency spectroscopy (VSFS) to target the "proton continuum", an unexplored frequency range characteristic of hydrated protons and hydroxide ions. The VSFS spectra of neat water show a broad and nonzero signal intensity between 1700 and 3000 cm-1 in the three different polarization combinations examined. By comparing the SF response of water with that from dilute HCl and NaOH aqueous solutions, we conclude the intensity does not originate from either adsorbed H3O+ or OH- ions. Contributions from the nonresonant background are then critically considered by comparing the experimental results with many-body molecular dynamics (MB-MD) simulated spectra.
Collapse
Affiliation(s)
- Sanghamitra Sengupta
- Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| | | | | | - Eric Tyrode
- Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| |
Collapse
|
28
|
Jeon J, Hsieh CS, Nagata Y, Bonn M, Cho M. Hydrogen bonding and vibrational energy relaxation of interfacial water: A full DFT molecular dynamics simulation. J Chem Phys 2018; 147:044707. [PMID: 28764370 DOI: 10.1063/1.4995437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The air-water interface has been a subject of extensive theoretical and experimental studies due to its ubiquity in nature and its importance as a model system for aqueous hydrophobic interfaces. We report on the structure and vibrational energy transfer dynamics of this interfacial water system studied with equilibrium and non-equilibrium molecular dynamics simulations employing a density functional theory -based description of the system and the kinetic energy spectral density analysis. The interfacial water molecules are found to make fewer and weaker hydrogen (H)-bonds on average compared to those in the bulk. We also find that (i) the H-bonded OH groups conjugate to the free OH exhibit rather low vibrational frequencies (3000-3500 cm-1); (ii) the presence of a significant fraction (>10%) of free and randomly oriented water molecules at the interface ("labile water"), neither of whose OH groups are strong H-bond donors; (iii) the inertial rotation of free OH groups, especially from the labile water, contribute to the population decay of excited free OH groups with comparable rate and magnitude as intramolecular energy transfer between the OH groups. These results suggest that the labile water, which might not be easily detectable by the conventional vibrational sum frequency generation method, plays an important role in the surface water dynamics.
Collapse
Affiliation(s)
- Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Cho-Shuen Hsieh
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Yuki Nagata
- Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Mischa Bonn
- Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| |
Collapse
|
29
|
Mishra PK, Bettaque V, Vendrell O, Santra R, Welsch R. Prospects of Using High-Intensity THz Pulses To Induce Ultrafast Temperature-Jumps in Liquid Water. J Phys Chem A 2018; 122:5211-5222. [DOI: 10.1021/acs.jpca.8b00828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pankaj Kr. Mishra
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, D-22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Vincent Bettaque
- Department of Physics, University of Hamburg, Jungiusstraße 9, D-20355 Hamburg, Germany
| | - Oriol Vendrell
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, D-22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Jungiusstraße 9, D-20355 Hamburg, Germany
| | - Ralph Welsch
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, D-22607 Hamburg, Germany
| |
Collapse
|
30
|
Experimentally quantifying anion polarizability at the air/water interface. Nat Commun 2018; 9:1313. [PMID: 29615604 PMCID: PMC5882839 DOI: 10.1038/s41467-018-03598-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
The adsorption of large, polarizable anions from aqueous solution on the air/water interface controls important atmospheric chemistry and is thought to resemble anion adsorption at hydrophobic interfaces generally. While the favourability of adsorption of such ions is clear, quantifying adsorption thermodynamics has proven challenging because it requires accurate description of the structure of the anion and its solvation shell at the interface. In principle anion polarizability offers a structural window, but to the best of our knowledge there has so far been no experimental technique that allowed its characterization with interfacial specificity. Here, we meet this challenge using interface-specific vibrational spectroscopy of Cl–O vibrations of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{ClO}}_4^ -$$\end{document}ClO4- anion at the air/water interface and report that the interface breaks the symmetry of the anion, the anisotropy of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{ClO}}_4^ -$$\end{document}ClO4-’s polarizability tensor is more than two times larger than in bulk water and concentration dependent, and concentration-dependent polarizability changes are consistent with correlated changes in surface tension. Understanding anion-specific interactions with hydrophobic interfaces is challenging due to an absence of local structural probes. Here, the authors experimentally quantify the anisotropy of perchlorate’s polarizability at the air/water interface, a window into anion and solvation shell structure.
Collapse
|
31
|
Suzuki Y, Nojima Y, Yamaguchi S. Vibrational Coupling at the Topmost Surface of Water Revealed by Heterodyne-Detected Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2017; 8:1396-1401. [PMID: 28294626 DOI: 10.1021/acs.jpclett.7b00312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Unraveling vibrational coupling is the key to consistently interpret vibrational spectra of complex molecular systems. The vibrational spectrum of the water surface heavily suffers from vibrational coupling, which hinders complete understanding of the molecular structure and dynamics of the water surface. Here we apply heterodyne-detected sum frequency generation spectroscopy to the water surface and accomplish the assignment of a weak vibrational band located at the lower energy side of the free OH stretch. We find that this band is due to a combination mode of the hydrogen-bonded OH stretch and a low-frequency intermolecular vibration, and this combination band appears in the surface vibrational spectrum through anharmonic vibrational coupling that takes place exclusively at the topmost surface.
Collapse
Affiliation(s)
- Yudai Suzuki
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University , 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Yuki Nojima
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University , 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University , 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|