1
|
Ni B, González‐Rubio G, Van Gordon K, Bals S, Kotov NA, Liz‐Marzán LM. Seed-Mediated Growth and Advanced Characterization of Chiral Gold Nanorods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412473. [PMID: 39380379 PMCID: PMC11586823 DOI: 10.1002/adma.202412473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Indexed: 10/10/2024]
Abstract
The controlled growth of gold nanostructures with complex shapes and reduced symmetry, exemplified by chiral gold nanorods and nanoparticles, is one of the most dynamic fields of nanochemistry. A timely summary of underlying concepts, including growth mechanisms and redefined chirality measures, would further promote this research area. In this perspective, we aim to establish qualitative connections between the chiral shapes and growth conditions, specifically for the seed-mediated synthesis of chiral gold nanorods as a convenient case of chiral morphogenesis. The crystallographic and morphological features of achiral nanorods used as seeds, the experimental conditions during chiral growth, and the symmetry of the chiral inducers, can all be exploited to obtain nanorods with intricate chiral shapes. Chirality characterization (such as electron tomography techniques) and quantification (including chirality measures) emerge as critical aspects to comprehensively explore and understand such structures, enabling optimization of their geometric and optical features. We conclude by discussing relevant challenges to be addressed toward a better controlled synthesis of chiral plasmonic nanostructures.
Collapse
Affiliation(s)
- Bing Ni
- Department of Chemical EngineeringUniversity of Michigan2800 Plymouth RoadAnn ArborMichigan48109USA
- College of ChemistryBeijing Normal UniversityBeijing100875China
| | - Guillermo González‐Rubio
- Departamento de Química FísicaUniversidad Complutense de MadridAvenida Complutense s/nMadrid28040Spain
| | - Kyle Van Gordon
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 194Donostia‐San Sebastián20014Spain
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of ExcellenceUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Nicholas A. Kotov
- Department of Chemical EngineeringUniversity of Michigan2800 Plymouth RoadAnn ArborMichigan48109USA
| | - Luis M. Liz‐Marzán
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 194Donostia‐San Sebastián20014Spain
- IkerbasqueBasque Foundation for ScienceBilbao48009Spain
- Biomedical Research Networking CenterBioengineeringBiomaterials and NanomedicineCIBER‐BBNPaseo de Miramón 194Donostia‐San Sebastián20014Spain
- CinbioUniversidade de VigoCampus Universitario s/nVigo36310Spain
| |
Collapse
|
2
|
Podlesnaia E, Hoxha A, Achikkulathu S, Kandathikudiyil Antony A, Antony JP, Spörl K, Csáki A, Leiterer M, Fritzsche W. Variations in CTAC batches from different suppliers highly affect the shape yield in seed-mediated synthesis of gold nanotriangles. Sci Rep 2024; 14:19610. [PMID: 39179614 PMCID: PMC11344135 DOI: 10.1038/s41598-023-50337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 08/26/2024] Open
Abstract
The rapidly developing miniaturization in numerous fields require low-demanding but robust methods of nanomaterial production. Colloidal synthesis provides great flexibility in product material, size, and shape. Gold nanoparticle synthesis has been thoroughly studied, however, recent reports on mechanistic insights of crystal formation have been hindered by the numerous procedures and parameter optimization works. With every new study, scientists fill another blank space on the map of understanding anisotropic growth and find out the critical parameters. In the current work, we highlight the choice importance for surfactant supplier in achieving the gold nanotriangle formation. We systematically study the variation in the shape yield when utilizing five batches of cetyltrimethylammonium chloride (CTAC) from varied suppliers. Using analytical techniques, we search for deviations causing such variation, e.g. different impurity content. We found only a marginal effect of iodine contamination on the studied system, excluding this factor as decisive in contrast to what was proposed earlier in the literature, and leaving the high dependency of the yield to originate from yet unknown reagent characteristics. A deeper understanding of these factors would provide highly effective protocols lowering the reagent consumption and increasing the accessibility of nanomaterials manufactured in a sustainable manner.
Collapse
Affiliation(s)
- Ekaterina Podlesnaia
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany.
| | - Amarildo Hoxha
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Sreevalsan Achikkulathu
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Athulesh Kandathikudiyil Antony
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Jerestine Philomina Antony
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Kathrin Spörl
- Thüringer Landesamt für Landwirtschaft und Ländlichen Raum (TLLLR), 07743, Jena, Germany
| | - Andrea Csáki
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Matthias Leiterer
- Thüringer Landesamt für Landwirtschaft und Ländlichen Raum (TLLLR), 07743, Jena, Germany
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany.
| |
Collapse
|
3
|
Pedrazo-Tardajos A, Claes N, Wang D, Sánchez-Iglesias A, Nandi P, Jenkinson K, De Meyer R, Liz-Marzán LM, Bals S. Direct visualization of ligands on gold nanoparticles in a liquid environment. Nat Chem 2024; 16:1278-1285. [PMID: 38937593 DOI: 10.1038/s41557-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
The interactions between gold nanoparticles, their surface ligands and the solvent critically influence the properties of these nanoparticles. Although spectroscopic and scattering techniques have been used to investigate their ensemble structure, a comprehensive understanding of these processes at the nanoscale remains challenging. Electron microscopy makes it possible to characterize the local structure and composition but is limited by insufficient contrast, electron beam sensitivity and the requirement for ultrahigh-vacuum conditions, which prevent the investigation of dynamic aspects. Here we show that, by exploiting high-quality graphene liquid cells, we can overcome these limitations and investigate the structure of the ligand shell around gold nanoparticles and at the ligand-gold interface in a liquid environment. Using this graphene liquid cell, we visualize the anisotropy, composition and dynamics of ligand distribution on gold nanorod surfaces. Our results indicate a micellar model for surfactant organization. This work provides a reliable and direct visualization of ligand distribution around colloidal nanoparticles.
Collapse
Affiliation(s)
- Adrián Pedrazo-Tardajos
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Nathalie Claes
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Da Wang
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Donostia-San Sebastián, Spain
| | - Proloy Nandi
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Kellie Jenkinson
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Robin De Meyer
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Cinbio, Universidade de Vigo, Vigo, Spain
| | - Sara Bals
- EMAT-University of Antwerp, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Song Q, Liu B. Uniform colloidal synthesis of highly branched chiral gold nanoparticles. Chem Commun (Camb) 2024; 60:5602-5605. [PMID: 38712787 DOI: 10.1039/d4cc00869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We present a uniform colloidal synthesis of highly branched gold nanoparticles (GNPs) including nanospheres, nanoplatelets and nanorods by cysteine-assisted seeded growth. The highly branched GNPs show blackbody-like absorption and chirality simultaneously, holding great potential for plasmonic or photothermal applications.
Collapse
Affiliation(s)
- Qing Song
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Bing Liu
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
5
|
Shimpi JR, Thomas R, Meena SK, Prasad BLV. Influence of van der Waals Interactions between the Alkyl Chains of Surface Ligands on the Size and Size Distribution of Nanocrystals Prepared by the Digestive Ripening Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38012063 DOI: 10.1021/acs.langmuir.3c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Thermal heating of polydispersed nanocrystals (NCs) with surface-active organic ligands in a solvent leads to the formation of monodispersed NCs, and this process is known as digestive ripening (DR). Here, by performing DR on Au NCs using different-chain-length amine and thiol ligands, we evidently show that ligands with C12 chain length result in the formation of NCs with narrow size distributions when compared to C8, C16, and C20 chain length ligands. Furthermore, our findings also show that in the case of alkyl thiol, the NC size remains more or less the same, while the size distribution gets altered significantly with the chain length. On the other hand, both size and size distribution are affected significantly when the alkyl amine chain length is varied. Fourier transform infrared (FTIR) studies indicate that the van der Waals (vdW) interactions are weakest when the amine with C12 carbon chain is used as the DR agent, while in the case of thiols, molecules with C8 and C12 chain lengths have nearly the same vdW interactions (with C12 slightly weaker than C8), which are weaker than those of C16 and C20. Molecular dynamics (MD) simulation results corroborate the experimental observations and suggest that due to more defects in the alkyl chain, the C8 and C12 (amine as well as thiol) ligands are disordered and less stable on Au(111) and Au(100) surfaces. This could result in efficient etching and redeposition, making the ligands with C8 and C12 chain lengths the better DR agents.
Collapse
Affiliation(s)
- Jayesh R Shimpi
- Physical and Material Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rinto Thomas
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical Engineering and Process Development Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Santosh Kumar Meena
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical Engineering and Process Development Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Department of Chemical Engineering, Indian Institute of Technology (IIT), Ropar 140001, India
| | - Bhagavatula L V Prasad
- Physical and Material Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Centre for Nano and Soft Matter Sciences, Arkavathi, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru 562162, India
| |
Collapse
|
6
|
Huang Z, Krishnakumar H, Denomme R, Liu J. TMB +-mediated etching of urchin-like gold nanostructures for colorimetric sensing. NANOTECHNOLOGY 2023; 35:045501. [PMID: 37852225 DOI: 10.1088/1361-6528/ad0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
The morphology-dependent localized surface plasmon resonance of gold nanostructures has been widely utilized for designing sensors. One method relies on the color change of gold nanoparticles upon etching. In previous work, TMB2+oxidized from 3,3',5,5'-tetramethylbenzidine (TMB) was found to etch gold nanorods (AuNRs), leading to a spectrum of different colors. However, the preparation of TMB2+needs the addition of a strong acid and other harsh conditions. Herein, a new colorimetric biosensing platform was developed using urchin-like gold nanoparticles (AuNUs). Compared with AuNRs, the etching of AuNUs can happen under mild conditions by TMB+at pH 6, protecting enzymes and proteins from denaturation. The role of CTAB surfactant was dissected, and its bromide ions were found to be involved in the etching process. Based on these observations, a one-step colorimetric detection of H2O2was realized by using horseradish peroxidase and H2O2to oxidize TMB. Within 30 min, this system achieved a detection limit of 80 nM H2O2. This work offered fundamental insights into the etching of anisotropic gold nanostructures and optimized the etching conditions. These advancements hold promise for broader applications in biosensing and analytical chemistry.
Collapse
Affiliation(s)
- Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Harish Krishnakumar
- Nicoya Lifesciences Inc. 283 Duke St W Suite 226, Kitchener, N2H 3X7, Canada
| | - Ryan Denomme
- Nicoya Lifesciences Inc. 283 Duke St W Suite 226, Kitchener, N2H 3X7, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
7
|
Akavaram V, Kumar K, Sriram S, Narra S, Kumawat A, Meena SK, Pushpavanam K. Self-Assembled Amino Acid Microstructures as Biocompatible Physically Unclonable Functions (BPUFs) for Authentication of Therapeutically Relevant Hydrogels. Macromol Biosci 2023; 23:e2300091. [PMID: 37357814 DOI: 10.1002/mabi.202300091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Counterfeited biomedical products result in significant economic losses and pose a public health hazard for over a million people yearly. Hydrogels, a class of biomedical products, are being investigated as alternatives to conventional biomedical products and are equally susceptible to counterfeiting. Here, a biocompatible, physically unclonable function (BPUF) to verify the authenticity of therapeutically relevant hydrogels are developed. The principle of BPUF relies on the self-assembly of tyrosine into fibril-like structures which are incorporated into therapeutically relevant hydrogels resulting in their random dispersion. This unclonable arrangement leads to distinctive optical micrographs captured using an optical microscope. These optical micrographs are transformed into a unique security code through cryptographic techniques which are then used to authenticate the hydrogel. The temporal stability of the BPUFs are demonstrated and additionally, exploit the dissolution propensity of the structures upon exposure to an adulterant to identify the tampering of the hydrogel. Finally, a platform to demonstrate the translational potential of this technology in validating and detecting tampering of therapeutically relevant hydrogels is developed. The potential of BPUFs to combat hydrogel counterfeiting is exemplified by its simplicity in production, ease of use, biocompatibility, and cost-effectiveness.
Collapse
Affiliation(s)
- Vishwas Akavaram
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Kush Kumar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (N.C.L.), Dr. HomiBhabha Road, Pune, 411008, India
| | - Shreya Sriram
- Department of Computer Science and Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603110, India
| | - Saisrinath Narra
- Department of Computer Science and Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603110, India
| | - Akshant Kumawat
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Santosh Kumar Meena
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Karthik Pushpavanam
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
8
|
Zámbó D, Kovács D, Südi G, Zolnai Z, Deák A. Composite ligand shells on gold nanoprisms - an ensemble and single particle study. RSC Adv 2023; 13:30696-30703. [PMID: 37869380 PMCID: PMC10585614 DOI: 10.1039/d3ra05548e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
The attachment of thiolated molecules onto gold surfaces is one of the most extensively used and robust ligand exchange approaches to exploit the nanooptical features of nanoscale and nanostructured plasmonic materials. In this work, the impact of thiol adsorption on the optical properties of wet-chemically synthesized gold nanoprisms is studied both at the ensemble and single particle level to investigate the build-up of more complex ligand layers. Two prototypical ligands with different lengths have been investigated ((16-mercaptohexadecyl)trimethylammonium bromide - MTAB and thiolated polyethylene glycol - mPEG-SH). From ensemble experiments it is found that composite ligand layers are obtained by the sequential addition of the two thiols, and an island-like surface accumulation of the molecules can be anticipated. The single particle experiment derived chemical interface damping and resonance energy changes further support this and show additionally that when the two thiols are used simultaneously, a higher density, intermixed layer is formed. Hence, when working with more than a single type of ligand during surface modification, sequential adsorption is preferred for the combination of accessible essential surface functionalities, whereas for high overall loading the simultaneous use of the different ligand types is favourable.
Collapse
Affiliation(s)
- Dániel Zámbó
- Centre for Energy Research Konkoly-ThegeM. Str. 29-33 Budapest 1121 Hungary
| | - Dávid Kovács
- Centre for Energy Research Konkoly-ThegeM. Str. 29-33 Budapest 1121 Hungary
- Budapest University of Technology and Economics, Department of Physical Chemistry and Materials Science Budafoki Str. 6-8 Budapest 1117 Hungary
| | - Gergely Südi
- Centre for Energy Research Konkoly-ThegeM. Str. 29-33 Budapest 1121 Hungary
- Budapest University of Technology and Economics, Department of Physical Chemistry and Materials Science Budafoki Str. 6-8 Budapest 1117 Hungary
| | - Zsolt Zolnai
- Centre for Energy Research Konkoly-ThegeM. Str. 29-33 Budapest 1121 Hungary
| | - András Deák
- Centre for Energy Research Konkoly-ThegeM. Str. 29-33 Budapest 1121 Hungary
| |
Collapse
|
9
|
Cheng R, Jia D, Du Z, Cheng JX, Yang C. Gap-enhanced gold nanodumbbells with single-particle surface-enhanced Raman scattering sensitivity. RSC Adv 2023; 13:27321-27332. [PMID: 37711380 PMCID: PMC10498718 DOI: 10.1039/d3ra04365g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Gap-enhanced Raman tags (GERTs) have been widely used for surface-enhanced Raman scattering (SERS) imaging due to their excellent SERS performances. Here, we reported a synthetic strategy for novel gap-enhanced dumbbell-like nanoparticles with anisotropic shell coatings. Controlled shell growth at the tips of gold nanorods was achieved by using cetyltrimethylammonium bromide (CTAB) as a capping agent. A mechanism related to the shape-directing effects of CTAB was proposed to explain the findings. Optimized gap-enhanced gold dumbbells exhibited highly enhanced SERS responses compared to rod cores, with an enhancement ratio of 101.5. We further demonstrated that gap-enhanced AuNDs exhibited single-particle SERS sensitivity with an acquisition time as fast as 0.1 s per spectrum, showing great potential for high-speed SERS imaging.
Collapse
Affiliation(s)
- Ran Cheng
- Department of Chemistry, Boston University Boston MA 02215 USA
| | - Danchen Jia
- Department of Electrical & Computer Engineering, Boston University Boston MA 02215 USA
| | - Zhiyi Du
- Department of Chemistry, Boston University Boston MA 02215 USA
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University Boston MA 02215 USA
- Department of Biomedical Engineering, Boston University Boston MA 02215 USA
| | - Chen Yang
- Department of Chemistry, Boston University Boston MA 02215 USA
- Department of Electrical & Computer Engineering, Boston University Boston MA 02215 USA
| |
Collapse
|
10
|
Ye W. Nonlocal Optical Response of Particle Plasmons in Single Gold Nanorods. NANO LETTERS 2023; 23:7658-7664. [PMID: 37539992 DOI: 10.1021/acs.nanolett.3c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The investigation of particle plasmons in metal nanoparticles has predominantly relied on local optical response approximations. However, as the nanoparticle size approaches the average distance of electrons to the metal surface, mesoscopic effects such as size-dependent plasmon line width broadening and resonance energy blue shifts are expected to become observable. In this work, we compared the experimental spectral characteristics with simulated values obtained by using a generalized nonlocal optical response theory-based local analogue model. Our results show that the nonlocal plasmon damping effects in single nanoparticles are less pronounced than those observed in plasmon-coupled systems. Furthermore, our research demonstrates that single-particle dark-field spectroscopy is an effective tool for investigating the nonlocal optical response of particle plasmons in single nanoparticles. These results have important implications for the rational design of novel nanophotonic devices.
Collapse
Affiliation(s)
- Weixiang Ye
- Center for Theoretical Physics, School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Abstract
A significant challenge in the development of functional materials is understanding the growth and transformations of anisotropic colloidal metal nanocrystals. Theory and simulations can aid in the development and understanding of anisotropic nanocrystal syntheses. The focus of this review is on how results from first-principles calculations and classical techniques, such as Monte Carlo and molecular dynamics simulations, have been integrated into multiscale theoretical predictions useful in understanding shape-selective nanocrystal syntheses. Also, examples are discussed in which machine learning has been useful in this field. There are many areas at the frontier in condensed matter theory and simulation that are or could be beneficial in this area and these prospects for future progress are discussed.
Collapse
Affiliation(s)
- Kristen A Fichthorn
- Department of Chemical Engineering and Department of Physics The Pennsylvania State University University Park, Pennsylvania 16803 United States
| |
Collapse
|
12
|
Chen A, Leff AC, Forcherio GT, Boltersdorf J, Woehl TJ. Examining Silver Deposition Pathways onto Gold Nanorods with Liquid-Phase Transmission Electron Microscopy. J Phys Chem Lett 2023; 14:1379-1388. [PMID: 36729066 DOI: 10.1021/acs.jpclett.2c03666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid-phase transmission electron microscopy (LP-TEM) enables one to directly visualize the formation of plasmonic nanoparticles and their postsynthetic modification, but the relative contributions of plasmonic hot electrons and radiolysis to metal precursor reduction remain unclear. Here we show silver deposition onto plasmonic gold nanorods (AuNRs) during LP-TEM is dominated by water radiolysis-induced chemical reduction. Silver was observed with LP-TEM to form bipyramidal shells at higher surfactant coverage and tip-preferential lobes at lower surfactant coverage. Ex situ silver photodeposition formed nanometer-thick shells on AuNRs with preferential deposition in inter-rod gaps, while chemical reduction deposited silver at AuNR tips at low surfactant coverage and formed pyramidal shells at higher surfactant coverage, consistent with LP-TEM. Silver deposition locations during LP-TEM were inconsistent with simulated near-field enhancement and hot electron generation hot spots. Collectively, the results indicate chemical reduction dominated during LP-TEM, indicating observation of plasmonic hot electron-induced photoreduction will necessitate suppression of radiolysis.
Collapse
Affiliation(s)
- Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Asher C Leff
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783, United States
- General Technical Services, LLC, Wall Township, New Jersey 07727, United States
| | - Gregory T Forcherio
- Electrooptic Technology Division, Naval Surface Warfare Center, Crane, Indiana 47522, United States
| | - Jonathan Boltersdorf
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
13
|
Choi BK, Kim J, Luo Z, Kim J, Kim JH, Hyeon T, Mehraeen S, Park S, Park J. Shape Transformation Mechanism of Gold Nanoplates. ACS NANO 2023; 17:2007-2018. [PMID: 36692347 DOI: 10.1021/acsnano.2c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shape control is of key importance in utilizing the structure-property relationship of nanocrystals. The high surface-to-volume ratio of nanocrystals induces dynamic surface reactions on exposed facets of nanocrystals, such as adsorption, desorption, and diffusion of surface atoms, all of which are important in overall shape transformation. However, it is difficult to track shape transformation of nanocrystals and understand the underlying mechanism at the level of distinguishing events on individual facets. Herein, we investigate changes of individual surface-exposed facets during diverse shape transformations of Au nanocrystals using liquid phase TEM in various chemical potentials and kinetic Monte Carlo simulations. The results reveal that the diffusion of surface atoms on nanocrystals is the governing factor in determining the final structure in shape transformation, causing the fast transformation of unstable facets to truncated morphology with minimized surface energy. The role of surface diffusion introduced here can be further applied to understanding the formation mechanism of variously shaped nanocrystals.
Collapse
Affiliation(s)
- Back Kyu Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Zhen Luo
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Joodeok Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Shafigh Mehraeen
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, 145, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16229, Republic of Korea
| |
Collapse
|
14
|
Jung I, Kim J, Lee S, Park W, Park S. Multiple Stepwise Synthetic Pathways toward Complex Plasmonic 2D and 3D Nanoframes for Generation of Electromagnetic Hot Zones in a Single Entity. Acc Chem Res 2023; 56:270-283. [PMID: 36693060 DOI: 10.1021/acs.accounts.2c00670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ConspectusRational design of nanocrystals with high controllability via wet chemistry is of critical importance in all areas of nanoscience and nanotechnology research. Specifically, morphologically complex plasmonic nanoparticles have received considerable attention because light-matter interactions are strongly associated with the size and shape of nanoparticles. Among many types of nanostructures, plasmonic nanoframes (NFs) with controllable structural intricacy could be excellent candidates as strong light-entrappers with inner voids as well as high surface area, leading to highly effective interaction with light and analytes compared to their solid counterparts. However, so far studies on single-rim-based NFs have suffered from insufficient near-field focusing capability due to their structural simplicity (e.g., a single rim or NF molded from simple platonic solids), which necessitates a conceptually new NF architecture. If one considers a stereoscopic nanostructure with dual, triple, and multiple resonant intra-nanogaps on each crystallographic facet of nanocrystals, unprecedented physicochemical properties could be expected. Realizing such complex multiple NFs with intraparticle surface plasmon coupling via localized surface plasmon resonance is very challenging due to the lack of synthetic strategic principles with systematic structural control, all of which require a deep understanding of surface chemistry. Moreover, realizing those complex architectures with high homogeneity in size and shape via a bottom-up method where diverse particle interactions are involved is more challenging. Although there have been several reports on NFs used for catalysis, techniques for production of structurally complex NFs with high uniformity and an understanding of the correlation between such complexity in a single plasmonic entity and electromagnetic near-field focusing have remained highly elusive.In this Account, we will summarize and highlight the rational synthetic pathways for the design of complex two-dimensional (2D) and three-dimensional (3D) NFs with unique inner rim structures and characterize their optical properties. This systematic strategy is based on publications from our group during the last 10 years. First, we will introduce a chemical step of shape transformation of triangular Au nanoplates to circular and hexagonal plates, which are used as sacrificial layers for the formation of NFs. Then, we will describe the methods on how to synthesize monorim-based plasmonic NFs using Pt scaffolds with different shapes and correlate with their electromagnetic near-field. Then, we will describe a multiple stepwise synthetic method for the formation of 2D complex NFs wherein different starting Au nanocrystals evolved from systematic shape transformation are used to produce circular, triangular, hexagonal, crescent, and Y-shaped inner hot zones. Then, we will discuss how one can synthesize NFs with multiple rims wherein rims with different diameters are concentrically connected, by exploiting chemical toolkits such as eccentric and concentric growth of Au, borrowing the concept of total synthesis that is frequently adopted in organic chemistry. We then introduce dual-rim-faceted NFs and frame-in-frame 3D matryoshka NF geometries via well-faceted growth of Au with high control of intra-nanogaps. Finally, and importantly, we will provide examples of more advanced hierarchical NF architectures produced by controlling geometrical shapes of nanoparticles, number of rims, and different components, leading to the expansion of the NF library.
Collapse
Affiliation(s)
- Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Institute of Basic Science, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Institute of Basic Science, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Tong L, Yuan J, Zhang Z, Tang J, Wang Z. Nanoscale subparticle imaging of vibrational dynamics using dark-field ultrafast transmission electron microscopy. NATURE NANOTECHNOLOGY 2023; 18:145-152. [PMID: 36509924 DOI: 10.1038/s41565-022-01255-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
An understanding of nanoscale energy transport and acoustic response is important for applications of nanomaterials but hinges on a complete characterization of their structural dynamics. The precise determination of the structural dynamics within nanoparticles, however, is still challenging and requires high spatiotemporal resolution and detection sensitivity. Here we present a centred dark-field imaging approach based on ultrafast transmission electron microscopy that is capable of directly mapping the picosecond-scale evolution of intrananoparticle vibration with a spatial resolution down to 3 nm. Using this approach, we investigated the photo-induced vibrational dynamics in individual gold heterodimers composed of a nanoprism and a nanosphere. We observed not only the retardation of in-plane vibrations in the nanoprisms, which we attribute to thermal and vibrational energy transferred from adjacent nanospheres mediated by surfactants, but also the existence of a complex multimodal oscillation and its spatial variation within individual nanoprisms. This work represents an advance in real-space mapping of vibrational dynamics on the subnanoparticle level with a high detection sensitivity.
Collapse
Affiliation(s)
- Ling Tong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Yuan
- School of Physics, Engineering and Technology, University of York, York, UK
| | - Zhiwei Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jau Tang
- The Institute for Technological Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Zhiwei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, People's Republic of China.
| |
Collapse
|
16
|
Guo Y, Liu Q, Wei A, Jiang S, Chen F, Huang J, He Y, Huang G, Wu Z. Spectrum and size controllable synthesis of high-quality gold nanorods using 1,7-dihydroxynaphthalene as a reducing agent. Dalton Trans 2023; 52:1052-1061. [PMID: 36602082 DOI: 10.1039/d2dt03646k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The spectrum and size controllable synthesis of gold nanorods is of great value for their widely applicable aspect ratio dependence of anisotropic surface plasmon resonance. Herein, 1,7-dihydroxynaphthalene with a relatively strong reducibility is proposed as a reducing agent for the controllable synthesis of gold nanorods. The result indicated that gold nanorods with high monodispersity, high shape yield, relatively small diameters, and maximum plasmon resonance wavelength of above 1000 nm can be acquired. More importantly, by virtue of the reducing agent used, fine and precise controls over the plasmon wavelength and diameter of the rod can be achieved via changes in experimental conditions. In particular, increases in the concentration of both silver ions and cetyltrimethylammonium bromide (CTAB) can increase the plasmon wavelength from around 600 nm to 1000 nm but respectively show a decreased diameter with the smallest value of around 14.3 nm and a mildly increased diameter from around 9.0 nm to 14.3 nm; moreover, increasing the concentration of reducing agents and gold seeds can simultaneously cause decreases in the plasmon wavelength from around 1000 nm to 800 nm and the diameters from around 14.3 nm to 9.0 and 7.3 nm, respectively. This powerful and efficient method of controllable synthesis of AuNRs could be valuable and attractive for the application of the as-obtained particles.
Collapse
Affiliation(s)
- Yuyang Guo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Qiuyue Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Anhua Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Suju Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Feifei Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Zihua Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
17
|
Ni B, González-Rubio G, Cölfen H. How a Facet of a Nanocrystal Is Formed: The Concept of the Symmetry Based Kinematic Theory. Chemphyschem 2023; 24:e202200480. [PMID: 36121760 PMCID: PMC10098540 DOI: 10.1002/cphc.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Indexed: 01/20/2023]
Abstract
Conventional nanocrystal (NC) growth mechanisms have overwhelmingly focused on the final exposed facets to explain shape evolution. However, how the final facets are formed from the initial nuclei or seeds, has not been specifically interrogated. In this concept paper, we would like to concentrate on this specific topic, and introduce the symmetry based kinematic theory (SBKT) to explain the formation and evolution of crystal facets. It is a crystallographic theory based on the classical crystal growth concepts developed to illustrate the shape evolution during the NC growth. The most important principles connecting the basic NC growth processes and morphology evolution are the preferential growth directions and the properties of kinematic waves. On the contrary, the final facets are just indications of how the crystal growth terminates, and their formation and evolution rely on the NC growth processes: surface nucleation and layer advancement. Accordingly, the SBKT could even be applied to situations where non-faceted NCs such as spheres are formed.
Collapse
Affiliation(s)
- Bing Ni
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | | | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
18
|
Rizalputri LN, Anshori I, Handayani M, Gumilar G, Septiani NLW, Hartati YW, Annas MS, Purwidyantri A, Prabowo BA, Yuliarto B. Facile and controllable synthesis of monodisperse gold nanoparticle bipyramid for electrochemical dopamine sensor. NANOTECHNOLOGY 2022; 34:055502. [PMID: 36301678 DOI: 10.1088/1361-6528/ac9d3f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
We demonstrated potential features of gold nanoparticle bipyramid (AuNB) for an electrochemical biosensor. The facile synthesis method and controllable shape and size of the AuNB are achieved through the optimization of cetyltrimethylammonium chloride (CTAC) surfactant over citric acid (CA) ratio determining the control of typically spherical Au seed size and its transition into a penta-twinned crystal structure. We observe that the optimized ratio of CTAC and CA facilitates flocculation control in which Au seeds with size as tiny as ∼14.8 nm could be attained and finally transformed into AuNB structures with an average length of ∼55 nm with high reproducibility. To improve the electrochemical sensing performance of a screen-printed carbon electrode, surface modification with AuNB via distinctive linking procedures effectively enhanced the electroactive surface area by 40%. Carried out for the detection of dopamine, a neurotransmitter frequently linked to the risk of Parkinson's, Alzheimer's, and Huntington's diseases, the AuNB decorated-carbon electrode shows outstanding electrocatalytic activity that improves sensing performance, including high sensitivity, low detection limit, wide dynamic range, high selectivity against different analytes, such as ascorbic acid, uric acid and urea, and excellent reproducibility.
Collapse
Affiliation(s)
- Lavita Nuraviana Rizalputri
- Department of Nanotechnology, Graduate School, Bandung Institute of Technology, Bandung, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| | - Isa Anshori
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
- Department of Biomedical Engineering, Bandung Institute of Technology, Bandung, Indonesia
| | - Murni Handayani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Gilang Gumilar
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
- Advanced Functional Materials Laboratory, Engineering Physics Department, Bandung Institute of Technology, Bandung, Indonesia
| | - Ni Luh Wulan Septiani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center of Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Agnes Purwidyantri
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, United Kingdom
| | - Briliant Adhi Prabowo
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung, Indonesia
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Brian Yuliarto
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
19
|
Liu M, Liu K, Gao C. Effects of Ligands on Synthesis and Surface‐Engineering of Noble Metal Nanocrystals for Electrocatalysis. ChemElectroChem 2022. [DOI: 10.1002/celc.202200651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Moxuan Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| | - Kai Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| | - Chuanbo Gao
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| |
Collapse
|
20
|
Sabaté Del Río J, Woo HK, Park J, Ha HK, Kim JR, Cho YK. SEEDING to Enable Sensitive Electrochemical Detection of Biomarkers in Undiluted Biological Samples. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200981. [PMID: 35429065 DOI: 10.1002/adma.202200981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical biosensors have shown great potential for simple, fast, and cost-effective point-of-care diagnostic tools. However, direct analysis of complex biological fluids such as plasma has been limited by the loss of sensitivity caused by biofouling. By increasing the surface area, the nanostructured electrode can improve detection sensitivity. However, like a double-edged sword, a large surface area increases the nonspecific adsorption of contaminating proteins. The use of nanoporous structures may prevent fouling proteins. However, there is no straightforward approach for creating nanostructured and nanoporous surfaces compatible with microfabricated thin-film electrodes. Herein, the preferential etching of chloride and surfactant-assisted anisotropic gold reduction to create homogeneous, nanostructured, and nanoporous gold electrodes is demonstrated, yielding a 190 ± 20 times larger surface area within a minute without using templates. This process, "surfactant-based electrochemical etch-deposit interplay for nanostructure/nanopore growth" (SEEDING), on electrodes enhances the sensitivity and antibiofouling capabilities of amperometric biosensors, enabling direct analysis of tumor-derived extracellular vesicles (tEVs) in complex biofluids with a limit of detection of 300 tEVs µL-1 from undiluted plasma and good discrimination between patients with prostate cancer from healthy ones with an area under the curve of 0.91 in urine and 0.90 in plasma samples.
Collapse
Affiliation(s)
- Jonathan Sabaté Del Río
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hyun-Kyung Woo
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Juhee Park
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hong Koo Ha
- Department of Urology, Pusan National University Hospital, College of Medicine, Pusan National University, Busan, 49241, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
21
|
Impact of iodide ions in the transformation of Cu nanostructures from one-dimensional nanowires to two-dimensional microplates. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Nguyen HQ, Hwang D, Park S, Nguyen MCT, Kang SS, Tran VT, Lee J. One-Pot Synthesis of Magnetoplasmonic Au@Fe xO y Nanowires: Bioinspired Bouligand Chiral Stack. ACS NANO 2022; 16:5795-5806. [PMID: 35311268 DOI: 10.1021/acsnano.1c10904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One-dimensional hybrid nanostructures composed of a plasmonic gold nanowire core covered by a shell of magnetic oxide nanoparticles (Au@FexOy NWs) were synthesized by a one-pot solvothermal synthesis process. The effects of reaction temperature, time, reducing agent, and precursor as well as postsynthesis treatment were optimized to produce highly uniform NWs with a diameter of 226 ± 25 nm and a plasmonic core aspect ratio of 25 to 82. By exploiting the interaction of NWs with an external magnetic field, precise arrangements into highly periodic photonic structures were achieved, which can generate distinctive structural colors that are vividly iridescent and polarization-sensitive. Furthermore, a Bouligand-type chiral nematic film consisting of multistacked unidirectional layers of achiral NWs was fabricated using a modified layer-by-layer deposition method, which displays circular dichroism (CD) and chiral sensing capability. The addition of bovine serum albumin (BSA) as a model protein analyte induced a concentration-dependent wavelength shift of CD peaks. These intriguing properties of magnetoplasmonic anisotropic NWs and their self-assemblies could be consequently valuable for developing nature-inspired structural color imprints as well as solid-state chiral sensing devices.
Collapse
Affiliation(s)
- Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dajeong Hwang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sejeong Park
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - My-Chi Thi Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sohyun Sarah Kang
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Van Tan Tran
- Faculty of Biotechnology, Chemistry, and Environmental Engineering, Phenikaa University, Hanoi, 12116, Vietnam
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
23
|
Wu F, Tian Y, Luan X, Lv X, Li F, Xu G, Niu W. Synthesis of Chiral Au Nanocrystals with Precise Homochiral Facets for Enantioselective Surface Chemistry. NANO LETTERS 2022; 22:2915-2922. [PMID: 35362992 DOI: 10.1021/acs.nanolett.2c00094] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal surfaces with intrinsic chirality play an irreplaceable role in many significant enantioselective chemical processes such as enantioselective catalysis, sensing, and separation. Nonetheless, current methods for the precise preparation of such chiral surfaces suffer with issues of unscalable production and low surface areas. Herein, we report the synthesis of chiral Au nanoparticles with precisely determined homochiral facets. Though a scalable wet chemical method, {125̅8}R and {85̅12}S high-Miller-index facets are obtained with the l- and d-chiral Au nanocrystals, respectively. The growth process of these homochiral facets is investigated, and a new nanocrystal growth pathway is revealed. More importantly, the remarkable enantioselective recognition properties of these homochiral surfaces are demonstrated and enable an efficient electrochemical method for chiral discrimination of l-/d-tryptophan. These results provide a foundation of fundamental studies of heterogeneous enantioselective processes and may pave way for the development of nanocatalysts for enantioselective chemistry.
Collapse
Affiliation(s)
- Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaoxi Luan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiali Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Zech T, Schmutzler T, Noll DM, Appavou MS, Unruh T. Effect of Bromide on the Surfactant Stabilization Layer Density of Gold Nanorods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2227-2237. [PMID: 35113578 DOI: 10.1021/acs.langmuir.1c02733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Some studies have speculated that the concentration of bromide ions plays a crucial role in the surfactant density surrounding gold nanorods (AuNR). Small-angle X-ray and neutron scattering (SAXS and SANS) experiments were conducted to analyze any influence the bromide ions might have on the stabilization layer and the aggregation behavior of the ligand CTAB molecules in general. The AuNR were immersed in solutions containing a fixed CTA+ concentration of 2 mM and varying bromide ion concentrations from 0 to 22 mM. A patchy AuNR stabilization shell at low bromide ion concentrations was found, contrary to previously published SANS studies on the AuNR stabilization shell. However, with increasing bromide ion concentration, the density of the stabilization shell increases asymptotically toward a closed/collapsed bilayer configuration. AuNR grown under similar conditions show higher anisotropy with larger bromide ion concentrations. Both results indicate that anisotropic growth strongly depends on a sufficiently dense stabilization layer established by high bromide ion concentrations.
Collapse
Affiliation(s)
- Tobias Zech
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| | - Tilo Schmutzler
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| | - Dennis M Noll
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - Marie-Sousai Appavou
- Forschungszentrum Jülich, JCNS at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Tobias Unruh
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
25
|
Shi Q, Yong Z, Uddin MH, Fu R, Sikdar D, Yap LW, Fan B, Liu Y, Dong D, Cheng W. Cell Sheet-Like Soft Nanoreactor Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105630. [PMID: 34773416 DOI: 10.1002/adma.202105630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Tissues, which consist of groups of closely packed cell arrays, are essentially sheet-like biosynthesis plants. In tissues, individual cells are discrete microreactors working under highly viscous and confined environments. Herein, soft polystyrene-encased nanoframe (PEN) reactor arrays, as analogous nanoscale "sheet-like chemosynthesis plants", for the controlled synthesis of novel nanocrystals, are reported. Although the soft polystyrene (PS) is only 3 nm thick, it is elastic, robust, and permeable to aqueous solutes, while significantly slowing down their diffusion. PEN-associated palladium (Pd) crystallization follows a diffusion-controlled zero-order kinetics rather than a reaction-controlled first-order kinetics in bulk solution. Each individual PEN reactor has a volume in the zeptoliter range, which offers a unique confined environment, enabling a directional inward crystallization, in contrast to the conventional outward nucleation/growth that occurs in an unconfined bulk solution. This strategy makes it possible to generate a set of mono-, bi-, and trimetallic, and even semiconductor nanocrystals with tunable interior structures, which are difficult to achieve with normal systems based on bulk solutions.
Collapse
Affiliation(s)
- Qianqian Shi
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Zijun Yong
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Md Hemayet Uddin
- Melbourne Center for Nanofabrication, Clayton, Victoria, 3168, Australia
| | - Runfang Fu
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Debabrata Sikdar
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Lim Wei Yap
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Yiyi Liu
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Dashen Dong
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
26
|
Pniakowska A, Olesiak-Banska J. Plasmonic Enhancement of Two-Photon Excited Luminescence of Gold Nanoclusters. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030807. [PMID: 35164072 PMCID: PMC8838299 DOI: 10.3390/molecules27030807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/02/2022]
Abstract
Plasmonic-enhanced luminescence of single molecules enables imaging and detection of low quantities of fluorophores, down to individual molecules. In this work, we present two-photon excited luminescence of single gold nanoclusters, Au18(SG)14, in close proximity to bare gold nanorods (AuNRs). We observed 25-times enhanced emission of gold nanoclusters (AuNCs) in near infrared region, which was mainly attributed to the resonant excitation of localized surface plasmon resonance (LSPR) of AuNRs and spectral overlap of LSPR band with photoluminescence of AuNCs. This work is an initial step in application of combined nanoparticles: gold nanorods and ultrasmall nanoclusters in a wide range of multiphoton imaging and biosensing applications.
Collapse
|
27
|
Bolaños K, Sánchez-Navarro M, Giralt E, Acosta G, Albericio F, Kogan MJ, Araya E. NIR and glutathione trigger the surface release of methotrexate linked by Diels-Alder adducts to anisotropic gold nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112512. [PMID: 34857291 DOI: 10.1016/j.msec.2021.112512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
The administration and controlled release of drugs over time remains one of the greatest challenges of science today. In the nanomaterials field, anisotropic gold nanoparticles (AuNPs) with plasmon bands centered at the near-infrared region (NIR), such as gold nanorods (AuNRs) and gold nanoprisms (AuNPrs), under laser irradiation, locally increase the temperature, allowing the release of drugs. In this sense, temporally controlled drug delivery could be promoted by external stimuli using thermo-reversible chemical reactions, such as Diels-Alder cycloadditions from a diene and a dienophile fragment (compound a). In this study, an antitumor drug (methotrexate, MTX) was linked to plasmonic AuNPs by a Diels-Alder adduct (compound c), which after NIR suffers a retro-Diels-Alder reaction, producing release of the drug (compound b). We obtained two nanosystems based on AuNRs and AuNPrs. Both nanoconstructs were coated with BSA-r8 (Bovine Serum Albumin functionalized with Arg8, all-D octa arginine) in order to increase the colloidal stability and promote internalization of the nanosystems on HeLa and SK-BR-3 cells. In addition, the presence of BSA allows protecting the cargo from being released on the extracellular environment and promotes the photothermal release of the drug in the presence of glutathione (GSH). The nanosystems' drug release profile was evaluated after NIR irradiation in the presence and absence of glutathione (GSH), showing a considerable increase of drug release when NIR light and glutathione were combined. This work broadens the range of possibilities of using two complementary strategies for the controlled release of an antitumor drug from AuNRs and AuNPrs: the photothermal cleavage of a thermolabile adduct controlled by an external stimulus (laser irradiation), complemented with the use of the intracellular metabolite GSH.
Collapse
Affiliation(s)
- Karen Bolaños
- Advanced Center of Chronic Diseases, Santiago, Chile; Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | - Macarena Sánchez-Navarro
- Institute for Research in Biomedicine-Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine-Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Gerardo Acosta
- Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Spain
| | - Fernando Albericio
- Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Spain; School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Marcelo J Kogan
- Advanced Center of Chronic Diseases, Santiago, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
28
|
Meena SK, Meena C. The implication of adsorption preferences of ions and surfactants on the shape control of gold nanoparticles: a microscopic, atomistic perspective. NANOSCALE 2021; 13:19549-19560. [PMID: 34806728 DOI: 10.1039/d1nr05244f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shape modulation of nanoparticles is crucial for their tailored applications; however, it depends on surfactants, ions, reactants, and other additives present in the growth solution. Here we dissect the role of surfactants, their counterions (halide ions), silver ions, and gold reactant in gold nanoparticle anisotropic growth using polarizable surfaces and nanoseed molecular dynamics simulation models. Our planar surface models predict a 14%-16% increment in cetyltrimethylammonium bromide (CTAB) coverage on Au(111) and Au(100) due to the surface polarization effect. The CTAB micelle adsorbs compactly similar to that observed on non-polarizable surfaces. The cetyltrimethylammonium chloride (CTAC) micelle remains in solution leaving the polarizable gold surfaces unprotected, similar to that observed with the non-polarizable surfaces, which favors isotropic growth. The cetyltrimethylammonium iodide (CTAI) micelle adsorbs with higher surface densities than CTAB on all the surfaces. The surface polarizable penta-twinned nanoseed model predicts the total surface coverage of the cetyltrimethylammonium cation (CTA+), Br- and Ag+ to be around two times higher on the side as compared to the tip of the nanoseed, leading to a 2.6 times higher initial rate of adsorption of AuCl2- on the tip than on the side. Predicted CTA+ surface densities on the tip and the side of the nanoseed are consistent with experimental results. Our simulations explain the growth mechanism of anisotropic nanoparticles and the microscopic origin of their controlled shapes.
Collapse
Affiliation(s)
- Santosh Kumar Meena
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (NCL), Dr. HomiBhabha Road, Pune-411008, India.
| | - Chandrakala Meena
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (NCL), Dr. HomiBhabha Road, Pune-411008, India.
| |
Collapse
|
29
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
30
|
Meena SK, Lerouge F, Baldeck P, Andraud C, Garavelli M, Parola S, Sulpizi M, Rivalta I. On the origin of controlled anisotropic growth of monodisperse gold nanobipyramids. NANOSCALE 2021; 13:15292-15300. [PMID: 34486622 DOI: 10.1039/d1nr01768c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We elucidate the crucial role of the cetyl trimethylammonium bromide (CTAB) surfactant in the anisotropic growth mechanism of gold nano-bipyramids, nano-objects with remarkable optical properties and high tunability. Atomistic molecular dynamics simulations predict different surface coverages of the CTAB (positively charged) heads and their (bromide) counterions as function of the gold exposed surfaces. High concentration of CTAB surfactant promotes formation of gold nanograins in solution that work as precursors for the smooth anisotropic growth of more elongated nano-bipyramidal objects. Nanobipyramids feature higher index facets with respect to nanorods, allowing higher CTAB coverages that stabilize their formation and leading to narrower inter-micelles channels that smooth down their anisotropic growth. Absorption spectroscopy and scanning electron microscopy confirmed the formation of nanograins and demonstrated the importance of surfactant concentration on driving the growth towards nano-bipyramids rather than nanorods. The outcome explains the formation of the monodisperse bipyramidal nano-objects, the origin of their controlled shapes and sizes along with their remarkable stability.
Collapse
Affiliation(s)
- Santosh Kumar Meena
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (NCL), Dr. HomiBhabha Road, Pune-411008, India.
| | - Frederic Lerouge
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Patrice Baldeck
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Chantal Andraud
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy.
| | - Stephane Parola
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Marialore Sulpizi
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany.
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale "Toso Montanari", Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy.
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| |
Collapse
|
31
|
Li Z, Ruiz VG, Kanduč M, Dzubiella J. Highly Heterogeneous Polarization and Solvation of Gold Nanoparticles in Aqueous Electrolytes. ACS NANO 2021; 15:13155-13165. [PMID: 34370454 DOI: 10.1021/acsnano.1c02668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The performance of gold nanoparticles (NPs) in applications depends critically on the structure of the NP-solvent interface, at which the electrostatic surface polarization is one of the key characteristics that affects hydration, ionic adsorption, and electrochemical reactions. Here, we demonstrate significant effects of explicit metal polarizability on the solvation and electrostatic properties of bare gold NPs in aqueous electrolyte solutions of sodium salts of various anions (Cl-, BF4-, PF6-, nitrophenolate, and 3- and 4-valent hexacyanoferrate), using classical molecular dynamics simulations with a polarizable core-shell model for the gold atoms. We find considerable spatial heterogeneity of the polarization and electrostatic potentials on the NP surface, mediated by a highly facet-dependent structuring of the interfacial water molecules. Moreover, ion-specific, facet-dependent ion adsorption leads to considerable alterations of the interfacial polarization. Compared to nonpolarizable NPs, surface polarization modifies water local dipole densities only slightly but has substantial effects on the electrostatic surface potentials and leads to significant lateral redistributions of ions on the NP surface. Besides, interfacial polarization effects cancel out in the far field for monovalent ions but not for polyvalent ions, as anticipated from continuum "image-charge" concepts. Far-field effective Debye-Hückel surface potentials change accordingly in a valence-specific fashion. Hence, the explicit charge response of metal NPs is crucial for the accurate description and interpretation of interfacial electrostatics (e.g., for charge transfer and interfacial polarization in catalysis and electrochemistry).
Collapse
Affiliation(s)
- Zhujie Li
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Victor G Ruiz
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, D-14109 Berlin, Germany
| | - Matej Kanduč
- Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, D-14109 Berlin, Germany
| |
Collapse
|
32
|
Yoo S, Go S, Son J, Kim J, Lee S, Haddadnezhad M, Hilal H, Kim JM, Nam JM, Park S. Au Nanorings with Intertwined Triple Rings. J Am Chem Soc 2021; 143:15113-15119. [PMID: 34369765 DOI: 10.1021/jacs.1c05189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We designed complex Au nanorings with intertwined triple rings (ANITs) in a single entity to amplify the efficacy of near-field focusing. Such a complex and unprecedented morphology at the nanoscale was realized through on-demand multistepwise reactions. Triangular nanoprisms were first sculpted into circular nanorings, followed by a series of chemical etching and deposition reactions eventually leading to ANITs wherein thin metal bridges hold the structure together without any linker molecules. In the multistepwise reaction, the well-faceted growth pattern of Au, which induces the growth of two distinctive flat facets in a lateral direction, is important to evolve the morphology from single to multiple nanorings. Although our synthesis proceeds through multiple steps in one batch without purification steps, it shows a remarkably high yield (>∼90%) at the final stage. The obtained high degree of homogeneity (in both shape and size) of the resulting ANITs allowed us to systematically investigate the corresponding localized surface plasmon resonance (LSPR) coupling with varying nanoring arrangements and observe their single-particle surface enhanced Raman scattering (SERS). Surprisingly, individual ANITs exhibited an enormously large enhancement factor (∼109), which confirms their superior near-field focusing relative to other reported nanoparticles.
Collapse
Affiliation(s)
- Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Sungeun Go
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | | | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| |
Collapse
|
33
|
Crook MF, Laube C, Moreno-Hernandez IA, Kahnt A, Zahn S, Ondry JC, Liu A, Alivisatos AP. Elucidating the Role of Halides and Iron during Radiolysis-Driven Oxidative Etching of Gold Nanocrystals Using Liquid Cell Transmission Electron Microscopy and Pulse Radiolysis. J Am Chem Soc 2021; 143:11703-11713. [PMID: 34292703 DOI: 10.1021/jacs.1c05099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Graphene liquid cell transmission electron microscopy (TEM) has enabled the observation of a variety of nanoscale transformations. Yet understanding the chemistry of the liquid cell solution and its impact on the observed transformations remains an important step toward translating insights from liquid cell TEM to benchtop chemistry. Gold nanocrystal etching can be used as a model system to probe the reactivity of the solution. FeCl3 has been widely used to promote gold oxidation in bulk and liquid cell TEM studies, but the roles of the halide and iron species have not been fully elucidated. In this work, we observed the etching trajectories of gold nanocrystals in different iron halide solutions. We observed an increase in gold nanocrystal etch rate going from Cl-- to Br-- to I--containing solutions. This is consistent with a mechanism in which the dominant role of halides is as complexation agents for oxidized gold species. Additionally, the mechanism through which FeCl3 induces etching in liquid cell TEM remains unclear. Ground-state bleaching of the Fe(III) absorption band observed through pulse radiolysis indicates that iron may react with Cl2·- radicals to form an oxidized transient species under irradiation. Complete active space self-consistent field (CASSCF) calculations indicate that the FeCl3 complex is oxidized to an Fe species with an OH radical ligand. Together our data indicate that an oxidized Fe species may be the active oxidant, while halides modulate the etch rate by tuning the reduction potential of gold nanocrystals.
Collapse
Affiliation(s)
- Michelle F Crook
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Christian Laube
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Ivan A Moreno-Hernandez
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, D-04318 Leipzig, Germany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, D-04318 Leipzig, Germany
| | - Justin C Ondry
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, University of California-Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aijia Liu
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, University of California-Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
34
|
Jang K, Kim SH, Jun H, Jung C, Yu J, Lee S, Choi PP. Three-dimensional atomic mapping of ligands on palladium nanoparticles by atom probe tomography. Nat Commun 2021; 12:4301. [PMID: 34262042 PMCID: PMC8280228 DOI: 10.1038/s41467-021-24620-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Capping ligands are crucial to synthesizing colloidal nanoparticles with functional properties. However, the synergistic effect between different ligands and their distribution on crystallographic surfaces of nanoparticles during colloidal synthesis is still unclear despite powerful spectroscopic techniques, due to a lack of direct imaging techniques. In this study, atom probe tomography is adopted to investigate the three-dimensional atomic-scale distribution of two of the most common types of these ligands, cetrimonium (C19H42N) and halide (Br and Cl) ions, on Pd nanoparticles. The results, validated using density functional theory, demonstrate that the Br anions adsorbed on the nanoparticle surfaces promote the adsorption of the cetrimonium cations through electrostatic interactions, stabilizing the Pd {111} facets. In contrast, the Cl anions are not strongly adsorbed onto the Pd surfaces. The high density of adsorbed cetrimonium cations for Br anion additions results in the formation of multiple-twinned nanoparticles with superior oxidation resistance.
Collapse
Affiliation(s)
- Kyuseon Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Se-Ho Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
- Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Hosun Jun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chanwon Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiwon Yu
- Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, Republic of Korea
| | - Sangheon Lee
- Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, Republic of Korea.
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea.
| | - Pyuck-Pa Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
35
|
Liu Y, Wei J, Frenkel D, Widmer-Cooper A. Modelling aggregates of cetyltrimethylammonium bromide on gold surfaces using dissipative particle dynamics simulations. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1948546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yawei Liu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, Australia
| | - Jiachen Wei
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
36
|
González-Rubio G, Hilbert H, Rosenberg R, Ni B, Fuhrer L, Cölfen H. Simple Determination of Gold Nanocrystal Dimensions by Analytical Ultracentrifugation via Surface Ligand-Solvent Density Matching. NANOMATERIALS 2021; 11:nano11061427. [PMID: 34071534 PMCID: PMC8228700 DOI: 10.3390/nano11061427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Analytical ultracentrifugation (AUC) is a powerful technique to observe colloidal nanocrystals (NCs) directly in solution and obtain critical information about their physical-chemical properties. Nevertheless, a more comprehensive implementation of AUC for the characterisation of such a class of crystalline colloids has been traditionally impaired by the requirement of having a priori knowledge of the complex, multilayered structure formed by NC in solution. This includes the nature (density and mass) of the surface ligands (SLs) that provide NC colloidal stability and the shell of solvent molecules formed on it. Herein, we propose a methodology to determine the NCs size by using SLs with a density equal to that of the solvent. Thereby, the buoyancy force of the SL shell is neutral, and the density of the NCs is sufficient a priori knowledge to calculate their related mass and size distributions. The simplicity and reliability of the method are evaluated with cetyltrimethylammonium bromide (CTAB) stabilized spherical gold NCs (AuNCs) of dimensions ranging from 1 to 17 nm. The proposed method has great potential to be transferred to any non-crystalline and crystalline colloids of different nature and composition, which have a density that is equal to the bulk and can be stabilized by SLs having a density that matches that of the solvent.
Collapse
|
37
|
Báez-Cruz R, Baptista LA, Ntim S, Manidurai P, Espinoza S, Ramanan C, Cortes-Huerto R, Sulpizi M. Role of pH in the synthesis and growth of gold nanoparticles using L-asparagine: a combined experimental and simulation study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:254005. [PMID: 33845472 DOI: 10.1088/1361-648x/abf6e3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The use of biomolecules as capping and reducing agents in the synthesis of metallic nanoparticles constitutes a promising framework to achieve desired functional properties with minimal toxicity. The system's complexity and the large number of variables involved represent a challenge for theoretical and experimental investigations aiming at devising precise synthesis protocols. In this work, we use L-asparagine (Asn), an amino acid building block of large biomolecular systems, to synthesise gold nanoparticles (AuNPs) in aqueous solution at controlled pH. The use of Asn offers a primary system that allows us to understand the role of biomolecules in synthesising metallic nanoparticles. Our results indicate that AuNPs synthesised in acidic (pH 6) and basic (pH 9) environments exhibit somewhat different morphologies. We investigate these AuNPs via Raman scattering experiments and classical molecular dynamics simulations of zwitterionic and anionic Asn states adsorbing on (111)-, (100)-, (110)-, and (311)-oriented gold surfaces. A combined analysis suggests that the underlying mechanism controlling AuNPs geometry correlates with amine's preferential adsorption over ammonium groups, enhanced upon increasing pH. Our simulations reveal that Asn (both zwitterionic and anionic) adsorption on gold (111) is essentially different from adsorption on more open surfaces. Water molecules strongly interact with the gold face-centred-cubic lattice and create traps, on the more open surfaces, that prevent the Asn from diffusing. These results indicate that pH is a relevant parameter in green-synthesis protocols with the capability to control the nanoparticle's geometry, and pave the way to computational studies exploring the effect of water monolayers on the adsorption of small molecules on wet gold surfaces.
Collapse
Affiliation(s)
- Ricardo Báez-Cruz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Physics, Faculty of Physical and Mathematical Science, University of Concepcion, PO Box 160-C, Concepcion, Chile
| | - Luis A Baptista
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Samuel Ntim
- Institut für Physik, Johannes Gutenberg Universität, Staudingerweg 7, 55128-Mainz, Germany
| | - Paulraj Manidurai
- Department of Physics, Faculty of Physical and Mathematical Science, University of Concepcion, PO Box 160-C, Concepcion, Chile
| | - Shirly Espinoza
- ELI Beamlines, Institute of Physics, Czech Academy of Science, Za Radnici 835, 25241 Dolni Brezany, Czech Republic
| | - Charusheela Ramanan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Marialore Sulpizi
- Institut für Physik, Johannes Gutenberg Universität, Staudingerweg 7, 55128-Mainz, Germany
| |
Collapse
|
38
|
Time Optimization of Seed-Mediated Gold Nanotriangle Synthesis Based on Kinetic Studies. NANOMATERIALS 2021; 11:nano11041049. [PMID: 33923968 PMCID: PMC8073722 DOI: 10.3390/nano11041049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
The synthesis of shape-anisotropic plasmonic nanoparticles such as gold nanotriangles is of increasing interest. These particles have a high potential for applications due to their notable optical properties. A key challenge of the synthesis is usually the low reproducibility. Even the optimized seed-based methods often lack in the synthesis yield or are labor- and time-consuming. In this work, a seed-mediated synthesis with high reproducibility is replicated in order to determine the necessary reaction time for each step. Online monitoring of the reaction mixtures by UV–VIS spectroscopy is used as a powerful tool to track the evolution of the synthesis. The kinetics of the individual stages is elucidated by real-time investigations. As a consequence, the complete synthesis could be optimized and can now be realized in a single day instead of three without any loss in the resulting sample quality.
Collapse
|
39
|
Zhang G, Ma Y, Li M, Ren S, Fu X, Huang H, Zheng Y. Crumpled Versus Flat Gold Nanosheets: Temperature-Regulated Synthesis and Their Plasmonic and Catalytic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4227-4235. [PMID: 33788565 DOI: 10.1021/acs.langmuir.1c00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a high-yield synthesis of gold (Au) nanosheets with tunable size and surface morphology in the aqueous phase. In particular, crumpled and flat Au nanosheets with a thickness of ∼10 nm could be selectively produced in high purity when the reaction was conducted at room temperature and in an ice-water bath, respectively. Unlike Au nanoplates/nanoprisms in the form of well-defined triangles or hexagons documented in previous studies, the current products exhibit random in-plane branches or holes, together with wavy edges. Strong absorbance in the NIR region was observed for all the Au nanosheet products. When serving as electrocatalysts for the ethanol oxidation reaction, the current products exhibited an enhanced activity and operation stability, as compared to quasi-spherical counterparts.
Collapse
Affiliation(s)
- Gongguo Zhang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273115, P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Mengfan Li
- School of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Shan Ren
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaowei Fu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273115, P. R. China
| | - Hongwen Huang
- School of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yiqun Zheng
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273115, P. R. China
| |
Collapse
|
40
|
Wang W, Wang J, Ding Y. Gold nanoparticle-conjugated nanomedicine: design, construction, and structure-efficacy relationship studies. J Mater Chem B 2021; 8:4813-4830. [PMID: 32227036 DOI: 10.1039/c9tb02924a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In comparison with conventional therapies, nanomedicine shows prominent clinical performance, with better therapeutic efficacy and less off-target toxicity. As an important component of nanomedicine, gold nanoparticle (GNP)-based nanodrugs have attracted considerable interest because of their excellent performance given by the unique structure. Although no pharmaceutical formulations of GNP-associated nanodrugs have been officially marketed yet, a substantial amount of research on this aspect is being carried out, producing numerous GNP-based drug delivery systems with potential clinical applications. In this review, we present an overview of our progress on GNP-based nanodrugs combined with other achievements in biomedical applications, including drug-conjugated GNPs prepared for disease treatments and specific tumour targeting, structure-efficacy relationship (SER) studies on GNP-conjugated nanodrugs, and therapeutic hybrid nanosystems composed of GNPs. In addition, we also put forward some proposals to guide future work in developing GNP-based nanomedicine. We hope that this review will offer some useful experience for our peers and GNP-based nanodrugs will be utilized in the clinic with further persistent efforts.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jing Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
41
|
Ghenaatian HR, Shakourian-Fard M, Kamath G. Interaction of Cu n, Ag n and Au n (n = 1-4) nanoparticles with ChCl:Urea deep eutectic solvent. J Mol Graph Model 2021; 105:107866. [PMID: 33677361 DOI: 10.1016/j.jmgm.2021.107866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
In this study, the interaction of noble metal nanoparticles (Mn, M = Cu, Ag, and Au; n = 1-4) with ChCl:Urea deep eutectic solvent was investigated using density functional theory (DFT) method. We find that ChCl:Urea mostly interact with the Mn nanoparticles through [Cl]- anion ([Cl]-…Mn) and nonconventional H-bonds of C-H⋯Mn and N-H⋯Mn. NBO, QTAIM, NCI and EDA analyses show that [Cl]-…Mn interactions are stronger than the nonconventional H-bonds interactions. Our results indicate that the nature of [Cl]-…Mn interactions is electrostatic, while the nonconventional H-bonds of C-H⋯Mn and N-H⋯Mn are van der Waals in nature. The negative values of enthalpy (ΔH) and free energy (ΔG) for the ChCl:Urea…Mn complexes reveal that the formation of ChCl:Urea…Mn complexes is exothermic and proceeds spontaneously. The calculation of binding energy (ΔEb) of Mn nanoparticles with ChCl:Urea shows that the strength of interaction of Aun nanoparticles with ChCl:Urea is more favorable than Cun and Agn, following the order ChCl:Urea…Aun > ChCl:Urea…Cun > ChCl:Urea…Agn. Furthermore, the ΔEb, ΔH and ΔG values enhance with increasing nanoparticle size from n = 1 to n = 4, ChCl:Urea…M4> ChCl:Urea…M3> ChCl:Urea…M2> ChCl:Urea…M1 (M = Cu, Ag, and Au).
Collapse
Affiliation(s)
| | - Mehdi Shakourian-Fard
- Department of Chemical Engineering, Birjand University of Technology, Birjand, P.O. Box 97175/569, Iran
| | - Ganesh Kamath
- Dalzierfiver LLC, 3500 Carlfied St, EL Sobrante, CA, 94803, USA
| |
Collapse
|
42
|
Simeral ML, Zhang A, Demers SME, Hughes HJ, Abdul-Moqueet M, Mayer KM, Hafner JH. Effects of Conformational Variation on Structural Insights from Solution-Phase Surface-Enhanced Raman Spectroscopy. J Phys Chem B 2021; 125:2031-2041. [PMID: 33617719 PMCID: PMC8046088 DOI: 10.1021/acs.jpcb.0c10576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectra contain information on the chemical structure on nanoparticle surfaces through the position and alignment of molecules with the electromagnetic near field. Time-dependent density functional theory (TDDFT) can provide the Raman tensors needed for a detailed interpretation of SERS spectra. Here, the impact of molecular conformations on SERS spectra is considered. TDDFT calculations of the surfactant cetyltrimethylammonium bromide with five conformers produced more accurate unenhanced Raman spectra than a simple all-trans structure. The calculations and measurements also demonstrated a loss of structural information in the CH2/CH3 scissor vibration band at 1450 cm-1 in the SERS spectra. To study lipid bilayers, TDDFT calculations on conformers of methyl phosphorylcholine and cis-5-decene served as models for the symmetric choline stretch in the lipid headgroup and the C═C stretch in the acyl chains of 1,2-oleoyl-glycero-3-phosphocholine. Conformer considerations enabled a measurement of the distribution of double-bond orientations with an order parameter of SC═C = 0.53.
Collapse
Affiliation(s)
| | - Aobo Zhang
- Department of Physics & Astronomy, Rice University, Houston, TX
| | | | | | | | - Kathryn M. Mayer
- Department of Physics & Astronomy, University of Texas at San Antonio, San Antonio, TX
| | - Jason H. Hafner
- Department of Physics & Astronomy, Rice University, Houston, TX
- Department of Chemistry, Rice University, Houston, TX
| |
Collapse
|
43
|
Johnson EC, Gresham IJ, Prescott SW, Nelson A, Wanless EJ, Webber GB. The direction of influence of specific ion effects on a pH and temperature responsive copolymer brush is dependent on polymer charge. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Zhang G, Ma Y, Liu Z, Fu X, Niu X, Qu F, Si C, Zheng Y. Seed-Morphology-Directed Synthesis of Concave Gold Nanocrystals with Tunable Sizes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15610-15617. [PMID: 33332124 DOI: 10.1021/acs.langmuir.0c03142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the fabrication of concave gold (Au) nanocrystals with a set of morphologies and controlled sizes via seeded growth. Starting with Au seeds with a well-defined morphology and uniform size, cubic and rodlike Au nanocrystals with a noticeable concave feature could be successfully obtained, respectively. We also track the growth process and record the shape evolution process. The effect of several reaction parameters on product morphology, such as capping agent and concentration of Ag+, are systematically investigated. Their optical and electrochemical properties are investigated via UV-vis extinction spectroscopy and cyclic voltammetry, respectively. Compared to spherical counterparts, the current concave Au nanocrystals exhibit a noticeable red shift of the absorbance peak in UV-vis extinction spectra and characterized electrochemical behavior of stepped facets, illustrating the morphological advantage.
Collapse
Affiliation(s)
- Gongguo Zhang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P.R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhiang Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273155, China
| | - Xiaowei Fu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P.R. China
| | - Xiankang Niu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273155, China
| | - Fengli Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273155, China
| | - Chongdian Si
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P.R. China
| | - Yiqun Zheng
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P.R. China
| |
Collapse
|
45
|
Ortiz-Castillo JE, Gallo-Villanueva RC, Madou MJ, Perez-Gonzalez VH. Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213489] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Li Z, Ruiz VG, Kanduč M, Dzubiella J. Ion-Specific Adsorption on Bare Gold (Au) Nanoparticles in Aqueous Solutions: Double-Layer Structure and Surface Potentials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13457-13468. [PMID: 33140973 DOI: 10.1021/acs.langmuir.0c02097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the solvation and electrostatic properties of bare gold (Au) nanoparticles (NPs) of 1-2 nm in size in aqueous electrolyte solutions of sodium salts of various anions with large physicochemical diversity (Cl-, BF4-, PF6-, Nip- (nitrophenolate), 3- and 4-valent hexacyanoferrate (HCF)) using nonpolarizable, classical molecular dynamics computer simulations. We find a substantial facet selectivity in the adsorption structure and spatial distribution of the ions at the AuNPs: while sodium and some of the anions (e.g., Cl-, HCF3-) adsorb more at the "edgy" (100) and (110) facets of the NPs, where the water hydration structure is more disordered, other ions (e.g., BF4-, PF6-, Nip-) prefer to adsorb strongly on the extended and rather flat (111) facets. In particular, Nip-, which features an aromatic ring in its chemical structure, adsorbs strongly and perturbs the first water monolayer structure on the NP (111) facets substantially. Moreover, we calculate adsorptions, radially resolved electrostatic potentials as well as the far-field effective electrostatic surface charges and potentials by mapping the long-range decay of the calculated electrostatic potential distribution onto the standard Debye-Hückel form. We show how the extrapolation of these values to other ionic strengths can be performed by an analytical Adsorption-Grahame relation between the effective surface charge and potential. We find for all salts negative effective surface potentials in the range from -10 mV for NaCl down to about -80 mV for NaNip, consistent with typical experimental ranges for the zeta potential. We discuss how these values depend on the surface definition and compare them to the explicitly calculated electrostatic potentials near the NP surface, which are highly oscillatory in the ±0.5 V range.
Collapse
Affiliation(s)
- Zhujie Li
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg D-79104, Germany
| | - Victor G Ruiz
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, Berlin D-14109, Germany
| | - Matej Kanduč
- Jožef Stefan Institute, Ljubljana SI-1000, Slovenia
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg D-79104, Germany
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, Berlin D-14109, Germany
| |
Collapse
|
47
|
Aramesh N, Hoseini SJ, Shahsavari HR, Nabavizadeh SM, Bahrami M, Halvagar MR, Giglio ED, Latronico M, Mastrorilli P. PtSn Nanoalloy Thin Films as Anode Catalysts in Methanol Fuel Cells. Inorg Chem 2020; 59:10688-10698. [PMID: 32701304 DOI: 10.1021/acs.inorgchem.0c01147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of SnX2 (X = Cl, Br) with [PtMe2(bipy)], 1, (bipy = 2,2'-bipyridine), followed by NaBH4 reduction at the toluene/water interface in the presence or absence of graphene oxide support rendered PtSn nanoalloy thin films. They were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. The electrocatalytical activity of the PtSn thin films was investigated in the methanol oxidation reaction. Our studies showed that the PtSn/reduced-graphene oxide (RGO) thin film gave better catalytic results for MOR in comparison to bare PtSn or Pt thin films. A maximum jf/jb ratio (jf and jb are the maximum current densities in the forward and backward scans, respectively) of 6.77 was obtained for the PtSn/RGO thin film deriving from the 1 + SnBr2 + NaBH4 sequence.
Collapse
Affiliation(s)
- Nahal Aramesh
- Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj 75918-74831, Iran
| | - S Jafar Hoseini
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran.,Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj 75918-74831, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| | - Mehrangiz Bahrami
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| | - Mohammad Reza Halvagar
- Department of Inorganic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14968-13151, Iran
| | - Elvira De Giglio
- Dipartimento di Chimica, Università degli studi di Bari "Aldo Moro", I-70125 Bari, Italy
| | | | | |
Collapse
|
48
|
Sheelam A, Muneeb A, Talukdar B, Ravindranath R, Huang SJ, Kuo CH, Sankar R. Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu2O/CuO thin films for electrochemical reduction of carbon dioxide. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01450-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Guo W, Johnston-Peck AC, Zhang Y, Hu Y, Huang J, Wei WD. Cooperation of Hot Holes and Surface Adsorbates in Plasmon-Driven Anisotropic Growth of Gold Nanostars. J Am Chem Soc 2020; 142:10921-10925. [PMID: 32484345 DOI: 10.1021/jacs.0c03342] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Light-driven synthesis of plasmonic metal nanostructures has garnered broad scientific interests. Although it has been widely accepted that surface plasmon resonance (SPR)-generated energetic electrons play an essential role in this photochemical process, the exact function of plasmon-generated hot holes in regulating the morphology of nanostructures has not been fully explored. Herein, we discover that those hot holes work with surface adsorbates collectively to control the anisotropic growth of gold (Au) nanostructures. Specifically, it is found that hot holes stabilized by surface adsorbed iodide enable the site-selective oxidative etching of Au0, which leads to nonuniform growths along different lateral directions to form six-pointed Au nanostars. Our studies establish a molecular-level understanding of the mechanism behind the plasmon-driven synthesis of Au nanostars and illustrate the importance of cooperation between charge carriers and surface adsorbates in regulating the morphology evolution of plasmonic nanostructures.
Collapse
Affiliation(s)
- Wenxiao Guo
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron C Johnston-Peck
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Yuchao Zhang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Yue Hu
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Jiawei Huang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Wei David Wei
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
50
|
Jimmy Huang PJ, Yang J, Chong K, Ma Q, Li M, Zhang F, Moon WJ, Zhang G, Liu J. Good's buffers have various affinities to gold nanoparticles regulating fluorescent and colorimetric DNA sensing. Chem Sci 2020; 11:6795-6804. [PMID: 34094129 PMCID: PMC8159396 DOI: 10.1039/d0sc01080d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Citrate-capped gold nanoparticles (AuNPs) are highly important for sensing, drug delivery, and materials design. Many of their reactions take place in various buffers such as phosphate and Good's buffers. The effect of buffer on the surface properties of AuNPs is critical, yet this topic has not been systematically explored. Herein, we used halides such as fluoride, chloride, and bromide as probes to measure the relative adsorption strength of six common buffers. Among them, HEPES had the highest adsorption affinity, while MES, citrate and phosphate were weakly adsorbed with an overall ranking of HEPES > PIPES > MOPS > MES > citrate, phosphate. The adsorption strength was reflected from the inhibited adsorption of DNA and from the displacement of pre-adsorbed DNA. This conclusion is also supported by surface enhanced Raman spectroscopy. Furthermore, some buffer molecules did not get adsorbed instantaneously, and the MOPS buffer took up to 1 h to reach equilibrium. Finally, a classic label-free AuNP-based colorimetric sensor was tested. Its sensitivity increased by 15.7-fold when performed in a MES buffer compared to a HEPES buffer. This study has articulated the importance of buffer for AuNP-based studies and how it can improve sensors and yield more reproducible experimental systems. Aside from maintaining pH, Good's buffers can be adsorbed on gold nanoparticles with different affinities, affecting the stability and its fluorescent and colorimetric sensing performance.![]()
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo ON N2L 3G1 Canada
| | - Jeffy Yang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo ON N2L 3G1 Canada
| | - Kellie Chong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo ON N2L 3G1 Canada
| | - Qianyi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo ON N2L 3G1 Canada
| | - Miao Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo ON N2L 3G1 Canada .,School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Fang Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo ON N2L 3G1 Canada .,College of Biological Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Woohyun J Moon
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo ON N2L 3G1 Canada
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo ON N2L 3G1 Canada
| |
Collapse
|