1
|
Okuwaki K, Watanabe N, Kato K, Watanabe C, Nakayama N, Kato A, Mochizuki Y, Nakano T, Honma T, Fukuzawa K. Geometry Optimization Using the Frozen Domain and Partial Dimer Approaches in the Fragment Molecular Orbital Method: Implementation, Benchmark, and Applications to Protein Ligand-Binding Sites. J Chem Inf Model 2024; 64:9449-9458. [PMID: 39621552 DOI: 10.1021/acs.jcim.4c01280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The frozen domain (FD) approximation with the fragment molecular orbital (FMO) method is efficient for partial geometry optimization of large systems. We implemented the FD formulation (FD and frozen domain dimer [FDD] methods) already proposed by Fedorov, D. G. et al. (J. Phys. Chem. Lett. 2011, 2, 282-288); proposed a variation of it, namely frozen domain and partial dimer (FDPD) method; and applied it to several protein-ligand complexes. The computational time for geometry optimization at the FDPD/HF/6-31G* level for the active site (six fragments) of the largest β2-adrenergic G-protein-coupled receptor (440 residues) was almost half that of the conventional partial geometry optimization method. In the human estrogen receptor, the crystal structure was refined by FDPD geometry optimization of estradiol, surrounding hydrogen-bonded residues and a water molecule. The rather polarized ligand binding site of influenza virus neuraminidase was also optimized by FDPD optimization, which relaxed steric repulsion around the ligand in the crystal structure and optimized hydrogen bonding. For Serine-Threonine Kinase Pim1 and six inhibitors, the structures of the ligand binding site, Lys67, Glu121, Arg122, and benzofuranone ring and indole/azaindole ring of the ligand, were optimized at FDPD/HF/6-31G* and the ligand binding energy was estimated at the FMO-MP2/6-31G* level. As a result of examining three different optimization regions, the correlation coefficient between pIC50 and ligand binding energy was considerably improved by expanding the optimized region; in other words, better structure-activity relationships was obtained. Thus, this approach is promising as a high-precision structure refinement method for structure-based drug discovery.
Collapse
Affiliation(s)
- Koji Okuwaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Osaka, Suita 565-0871, Japan
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Tokyo, Shinagawa-ku 142-8501, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-72-22 Suehiro-cho, Yokohama, Tsurumi-ku 230-0045, Japan
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Materials and Life Science Department, Engineering Technology Division, JSOL Corporation, KUDAN-KAIKAN TERRACE, Kudanminami, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Naoki Watanabe
- Mizuho Research & Technologies, Tokyo, 2-3 Kanda Nishiki-cho, Chiyoda-ku 101-8443, Japan
| | - Koichiro Kato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka, Noshi-ku 819-0395, Japan
| | - Chiduru Watanabe
- RIKEN Center for Biosystems Dynamics Research, 1-72-22 Suehiro-cho, Yokohama, Tsurumi-ku 230-0045, Japan
| | - Naofumi Nakayama
- CONFLEX Corporation, Shinagawa Center Building 6F, 3-23-17 Takanawa, Tokyo, Minato-ku 108-0074, Japan
| | - Akifumi Kato
- Scorpion Tech LLC, 471-5 Okada, Tateyama City 294-0024, Japan
| | - Yuji Mochizuki
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Tokyo, Meguro-ku 153-8505, Japan
| | - Tatsuya Nakano
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kawasaki-ku 210-9501, Japan
| | - Teruki Honma
- RIKEN Center for Biosystems Dynamics Research, 1-72-22 Suehiro-cho, Yokohama, Tsurumi-ku 230-0045, Japan
| | - Kaori Fukuzawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Osaka, Suita 565-0871, Japan
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Tokyo, Shinagawa-ku 142-8501, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Sendai, Aoba-ku 980-8579, Japan
| |
Collapse
|
2
|
Fedorov DG. Importance of Charge Balance for the Embedding of Zwitterionic Solutes in the Fragment Molecular Orbital Method. J Phys Chem A 2024. [PMID: 39668332 DOI: 10.1021/acs.jpca.4c07218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Three new schemes of induced solvent charges for the auxiliary polarization formulation of the fragment molecular orbital method are proposed and compared to the original approach. It is found that the charge balance of the solute and solvent embeddings is crucial for maintaining a proper gap between occupied and virtual orbitals of fragments for zwitterionic systems in solution. The original instability is eliminated with the new scheme of fragment-specific solvent charges. The developed stable embedding method is applied to perform MP2/aug-cc-pVTZ calculations of a protein-ligand complex containing 1102 amino acid residues.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
3
|
Dymova M, Vasileva N, Malysheva D, Ageenko A, Shchugoreva I, Artyushenko P, Tomilin F, Kichkailo AS, Kuligina E, Richter V. Using Computer Modeling and Experimental Methods to Screen for Aptamers That Bind to the VV-GMCSF-LACT Virus. Molecules 2024; 29:5424. [PMID: 39598813 PMCID: PMC11597249 DOI: 10.3390/molecules29225424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Oncolytic virotherapy is a promising approach for cancer treatment. However, when introduced into the body, the virus provokes the production of virus-neutralizing antibodies, which can reduce its antitumor effect. To shield viruses from the immune system, aptamers that can cover the membrane of the viral particle are used. Aptamers that specifically bind to the JX-594 strain of the vaccinia virus were developed earlier. However, the parameters for binding to the recombinant virus VV-GMCSF-Lact, developed based on the LIVP strain of the vaccinia virus, may differ due its different repertoire of antigenic determinants on its membrane compared to JX-594. In this work, the spatial atomic structures of aptamers to JX-594 and bifunctional aptamers were determined using molecular modeling. The efficiency of viral particles binding to the aptamers (EC50), as well as the cytotoxicity and stability of the aptamers were studied. The synergistic effect of the VV-GMCSF-Lact combination with the aptamers in the presence of serum was investigated using human glioblastoma cells. This proposed approach allowed us to conduct a preliminary screening of sequences using in silico modeling and experimental methods, and identified potential candidates that are capable of shielding VV-GMCSF-Lact from virus-neutralizing antibodies.
Collapse
Affiliation(s)
- Maya Dymova
- The Laboratory of Biotechnology, Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (N.V.); (D.M.); (A.A.); (E.K.); (V.R.)
| | - Natalia Vasileva
- The Laboratory of Biotechnology, Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (N.V.); (D.M.); (A.A.); (E.K.); (V.R.)
| | - Daria Malysheva
- The Laboratory of Biotechnology, Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (N.V.); (D.M.); (A.A.); (E.K.); (V.R.)
| | - Alisa Ageenko
- The Laboratory of Biotechnology, Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (N.V.); (D.M.); (A.A.); (E.K.); (V.R.)
| | - Irina Shchugoreva
- The Laboratory For Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Professor V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia; (I.S.); (P.A.); (A.S.K.)
- The Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia;
| | - Polina Artyushenko
- The Laboratory For Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Professor V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia; (I.S.); (P.A.); (A.S.K.)
- The Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia;
| | - Felix Tomilin
- The Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia;
- The Laboratory for Magnetic Phenomena, L.V. Kirensky Institute of Physics SB RAS, 660036 Krasnoyarsk, Russia
| | - Anna S. Kichkailo
- The Laboratory For Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Professor V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia; (I.S.); (P.A.); (A.S.K.)
- The Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia;
| | - Elena Kuligina
- The Laboratory of Biotechnology, Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (N.V.); (D.M.); (A.A.); (E.K.); (V.R.)
| | - Vladimir Richter
- The Laboratory of Biotechnology, Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (N.V.); (D.M.); (A.A.); (E.K.); (V.R.)
| |
Collapse
|
4
|
Sladek V, Artiushenko PV, Fedorov DG. Effect of Direct and Water-Mediated Interactions on the Identification of Hotspots in Biomolecular Complexes with Multiple Subsystems. J Chem Inf Model 2024; 64:7602-7615. [PMID: 39283296 DOI: 10.1021/acs.jcim.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Identification of important residues in biochemical complexes is often a crucial step for many problems in molecular biology and biochemistry. A method is proposed to identify hotspots in biomolecular complexes based on a new metric, derived from networks representing molecular subunits (residues, bridging solvent molecules, ligands etc.) connected by interactions. A singular value decomposition of the weighted adjacency matrix is used to construct a scalar rank for each subunit that reflects its importance in the residue interaction network. This metric is called the singular value centrality. In addition, a new formalism is proposed to account for water-mediated interactions in the ranking of residues. Interactions for a residue network can be provided by various computational methods. In this work interactions are obtained from full quantum-mechanical calculations of protein-protein complexes using the fragment molecular orbital method. The ranking results are shown to be in good agreement with earlier computational and experimental studies. The developed method can be used to gain a deeper insight into the role of subunits in complex biomolecular systems.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia
| | - Polina V Artiushenko
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat) National Institute of Advanced Industrial Science and Technology (AIST), Central 2 Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
5
|
Einsele R, Mitrić R. Nonadiabatic Exciton Dynamics and Energy Gradients in the Framework of FMO-LC-TDDFTB. J Chem Theory Comput 2024. [PMID: 39051619 DOI: 10.1021/acs.jctc.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We introduce a novel methodology for simulating the excited-state dynamics of extensive molecular aggregates in the framework of the long-range corrected time-dependent density-functional tight-binding fragment molecular orbital method (FMO-LC-TDDFTB) combined with the mean-field Ehrenfest method. The electronic structure of the system is described in a quasi-diabatic basis composed of locally excited and charge-transfer states of all fragments. In order to carry out nonadiabatic molecular dynamics simulations, we derive and implement the excited-state gradients of the locally excited and charge-transfer states. Subsequently, the accuracy of the analytical excited-state gradients is evaluated. The applicability to the simulation of exciton transport in organic semiconductors is illustrated on a large cluster of anthracene molecules. Additionally, nonadiabatic molecular dynamics simulations of a model system of benzothieno-benzothiophene molecules highlight the method's utility in studying charge-transfer dynamics in organic materials. Our new methodology will facilitate the investigation of excitonic transfer in extensive biological systems, nanomaterials, and other complex molecular systems consisting of thousands of atoms.
Collapse
Affiliation(s)
- Richard Einsele
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität, Würzburg 97074, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität, Würzburg 97074, Germany
| |
Collapse
|
6
|
Fedorov DG. The Peptide Bond: Resonance Increases Bond Order and Complicates Fragmentation. Chemphyschem 2024; 25:e202400170. [PMID: 38749916 DOI: 10.1002/cphc.202400170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Indexed: 06/28/2024]
Abstract
The enhancement of the peptide bond order by a resonance in the lone pair of N and the π-bond of CO is analyzed. A decomposition of the bond order in terms of localized molecular orbitals is developed and applied to the peptide bond. A combination of two rotations of hybrid orbitals is proposed to improve the boundary treatment in the fragment molecular orbital method. The developed approach is applied to peptide bonds, and it is found crucial to retain the π orbital in the variational space of both fragments across the boundary. The interaction energies between conventional amino acid residues in Trp-cage (1L2Y) are discussed.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan
| |
Collapse
|
7
|
Fedorov DG. Partition analysis of dipole moments in solution applied to functional groups in polypeptide motifs. Phys Chem Chem Phys 2024; 26:18614-18628. [PMID: 38919134 DOI: 10.1039/d4cp01654h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A partition analysis based on segments is developed for density functional theory defining solute dipole moments of functional groups, and the corresponding induced solvent dipoles representing solvent screening. The accuracy of dipoles from the fragment molecular orbital method is evaluated in comparison to unfragmented values. The analysis is applied to evaluate dipole moments of side chains, amino and carbonyl groups in common polypeptide motifs, α-helixes, β-turns, and random coils in solution. The membrane domain of the ATP synthase (1B9U) is analyzed, revealing the effect of the bend splitting of the α-helix into two pieces.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan.
| |
Collapse
|
8
|
Fedorov DG. Use of caps in the auxiliary basis set formulation of the fragment molecular orbital method. J Comput Chem 2024; 45:1540-1551. [PMID: 38490813 DOI: 10.1002/jcc.27345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
An auxiliary polarization formulation of the fragment molecular orbital (FMO) method is developed, combining a basis set correction computed for capped isolated fragments with a polarization obtained from uncapped fragments. For a set of organic and inorganic test systems, it is shown that the total energy and atomic charges are accurately reproduced with respect to full unfragmented calculations. It is demonstrated that the method is accurate for computing electronic excited states. The developed approach is applied to rank the isomers of chignolin from experimental NMR data (PDB: 1UAO) according to their relative energy. Contributions of polarization and basis set effects to pair interactions between fragments are elucidated.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
9
|
Fukumoto Y, Suzuki N, Hara R, Tanaka YK, Ogra Y. Development of a Biosafety Level 1 Cellular Assay for Identifying Small-Molecule Antivirals Targeting the Main Protease of SARS-CoV-2: Evaluation of Cellular Activity of GC376, Boceprevir, Carmofur, Ebselen, and Selenoneine. Int J Mol Sci 2024; 25:5767. [PMID: 38891954 PMCID: PMC11172239 DOI: 10.3390/ijms25115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
While research has identified several inhibitors of the main protease (Mpro) of SARS-CoV-2, a significant portion of these compounds exhibit reduced activity in the presence of reducing agents, raising concerns about their effectiveness in vivo. Furthermore, the conventional biosafety level 3 (BSL-3) for cellular assays using viral particles poses a limitation for the widespread evaluation of Mpro inhibitor efficacy in a cell-based assay. Here, we established a BSL-1 compatible cellular assay to evaluate the in vivo potential of Mpro inhibitors. This assay utilizes mammalian cells expressing a tagged Mpro construct containing N-terminal glutathione S-transferase (GST) and C-terminal hemagglutinin (HA) tags and monitors Mpro autodigestion. Using this method, GC376 and boceprevir effectively inhibited Mpro autodigestion, suggesting their potential in vivo activity. Conversely, carmofur and ebselen did not exhibit significant inhibitory effects in this assay. We further investigated the inhibitory potential of selenoneine on Mpro using this approach. Computational analyses of binding energies suggest that noncovalent interactions play a critical role in facilitating the covalent modification of the C145 residue, leading to Mpro inhibition. Our method is straightforward, cost-effective, and readily applicable in standard laboratories, making it accessible to researchers with varying levels of expertise in infectious diseases.
Collapse
Grants
- 19K07079 Ministry of Education, Culture, Sports, Science and Technology
- 21H04920 Ministry of Education, Culture, Sports, Science and Technology
- 19H05772 Ministry of Education, Culture, Sports, Science and Technology
- 22K05345 Ministry of Education, Culture, Sports, Science and Technology
- 24K09793 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Yasunori Fukumoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (N.S.); (Y.-k.T.); (Y.O.)
| | | | | | | | | |
Collapse
|
10
|
Fukumoto Y, Kyono R, Shibukawa Y, Tanaka YK, Suzuki N, Ogra Y. Differential molecular mechanisms of substrate recognition by selenium methyltransferases, INMT and TPMT, in selenium detoxification and excretion. J Biol Chem 2024; 300:105599. [PMID: 38159853 PMCID: PMC10844679 DOI: 10.1016/j.jbc.2023.105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
It is known that the recommended dietary allowance of selenium (Se) is dangerously close to its tolerable upper intake level. Se is detoxified and excreted in urine as trimethylselenonium ion (TMSe) when the amount ingested exceeds the nutritional level. Recently, we demonstrated that the production of TMSe requires two methyltransferases: thiopurine S-methyltransferase (TPMT) and indolethylamine N-methyltransferase (INMT). In this study, we investigated the substrate recognition mechanisms of INMT and TPMT in the Se-methylation reaction. Examination of the Se-methyltransferase activities of two paralogs of INMT, namely, nicotinamide N-methyltransferase and phenylethanolamine N-methyltransferase, revealed that only INMT exhibited Se-methyltransferase activity. Consistently, molecular dynamics simulations demonstrated that dimethylselenide was preferentially associated with the active center of INMT. Using the fragment molecular orbital method, we identified hydrophobic residues involved in the binding of dimethylselenide to the active center of INMT. The INMT-L164R mutation resulted in a deficiency in Se- and N-methyltransferase activities. Similarly, TPMT-R152, which occupies the same position as INMT-L164, played a crucial role in the Se-methyltransferase activity of TPMT. Our findings suggest that TPMT recognizes negatively charged substrates, whereas INMT recognizes electrically neutral substrates in the hydrophobic active center embedded within the protein. These observations explain the sequential requirement of the two methyltransferases in producing TMSe.
Collapse
Affiliation(s)
- Yasunori Fukumoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Rin Kyono
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yuka Shibukawa
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Noriyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Fedorov DG. Site-Specific Ionization Potentials and Electron Affinities in Large Molecular Systems at Coupled Cluster Level. J Phys Chem A 2023; 127:9357-9364. [PMID: 37782030 DOI: 10.1021/acs.jpca.3c04847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A many-body expansion of ionization potentials and electron affinities is developed based on a combination of the fragment molecular orbital method and equation-of-motion coupled-cluster (EOM-CC). In addition to site-specific values, obtained as one-body properties, pair and triple corrections are added to account for nonlocal EOM-CC contributions of the molecular environment of a chromophore. The developed method is applied to carboxylic acids, alkyl cations, a protein ubiquitin (Protein Data Bank ID 1UBQ), and a nano ribbon of white graphene elucidating the effect of environment on ionization potential and electron affinity.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
12
|
Fukumoto Y, Hoshino T, Nakayama Y, Ogra Y. The C-terminal tail of Rad17, iVERGE, binds the 9‒1‒1 complex independently of AAA+ ATPase domains to provide another clamp-loader interface. DNA Repair (Amst) 2023; 130:103567. [PMID: 37713925 DOI: 10.1016/j.dnarep.2023.103567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/17/2023] [Accepted: 09/03/2023] [Indexed: 09/17/2023]
Abstract
The ATR pathway plays a crucial role in maintaining genome integrity as the major DNA damage checkpoint. It also attracts attention as a therapeutic target in cancer treatment. The Rad17-RFC2-5 complex loads the Rad9-Hus1-Rad1 (9-1-1) DNA clamp complex onto damaged chromatin to activate the ATR pathway. We previously reported that phosphorylation of a polyanionic C-terminal tail of human Rad17, iVERGE, is essential for the interaction between Rad17 and the 9-1-1 complex. However, the molecular mechanism has remained unclear. Here, we show that iVERGE directly interacts with the Hus1 subunit of the 9-1-1 complex through Rad17-S667 phosphorylation independently of the AAA+ ATPase domains. An exogenous iVERGE peptide interacted with the 9-1-1 complex in vivo. The binding conformation of the iVERGE peptide was analyzed by de novo modeling with docking simulation, simulated annealing-molecular dynamics simulation, and the fragment molecular orbital method. The in silico analyses predicted the association of the iVERGE peptide with the hydrophobic and basic patches on the Hus1 protein, and the corresponding Hus1 mutants were deficient in the interaction with the iVERGE peptide in vivo. The iVERGE peptide occupied the same position as the C-terminus of Saccharomyces cerevisiae RAD24 on MEC3. The interaction energy calculation suggested that the Rad17 KYxxL motif and the iVERGE peptide are the primary and secondary interaction surfaces between the Rad17-RFC2-5 and 9-1-1 complexes. Our data reveal a novel molecular interface, iVERGE, between the Rad17-RFC2-5 and 9-1-1 complexes in vertebrates and implicate that Rad17 utilizes two distinct molecular interfaces to regulate the 9-1-1 complex.
Collapse
Affiliation(s)
- Yasunori Fukumoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
13
|
Nakata H, Fedorov DG. Analytic Gradient for Time-Dependent Density Functional Theory Combined with the Fragment Molecular Orbital Method. J Chem Theory Comput 2023; 19:1276-1285. [PMID: 36753486 DOI: 10.1021/acs.jctc.2c01177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The analytic energy gradient of energy with respect to nuclear coordinates is derived for the fragment molecular orbital (FMO) method combined with time-dependent density functional theory (TDDFT). The response terms arising from the use of a polarizable embedding are derived. The obtained analytic FMO-TDDFT gradient is shown to be accurate in comparison to both numerical FMO-TDDFT and unfragmented TDDFT gradients, at the level of two- and three-body expansions. The gradients are used for geometry optimizations, molecular dynamics, vibrational calculations, and simulations of IR and Raman spectra of excited states. The developed method is used to optimize the geometry of the ground and excited electronic states of the photoactive yellow protein (PDB: 2PHY).
Collapse
Affiliation(s)
- Hiroya Nakata
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
14
|
Bertoni AI, Sánchez CG. Data-driven approach for benchmarking DFTB-approximate excited state methods. Phys Chem Chem Phys 2023; 25:3789-3798. [PMID: 36645084 DOI: 10.1039/d2cp04979a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this work we propose a chemically-informed data-driven approach to benchmark the approximate density-functional tight-binding (DFTB) excited state (ES) methods that are currently available within the DFTB+ suite. By taking advantage of the large volume of low-detail ES-data in the machine learning (ML) dataset, QM8, we were able to extract valuable insights regarding the limitations of the benchmarked methods in terms of the approximations made to the parent formalism, density-functional theory (DFT), while providing recommendations on how to overcome them. For this benchmark, we compared the first singlet-singlet vertical excitation energies (E1) predicted by the DFTB-approximate methods with predictions of less approximate methods from the reference ML-dataset. For the nearly 21800 organic molecules in the GDB-8 chemical space, we were able to identify clear trends in the E1 prediction error distributions, with respect to second-order approximate coupled cluster (CC2), showing a strong dependence on chemical identity.
Collapse
Affiliation(s)
- Andrés I Bertoni
- Instituto Interdisciplinario de Ciencias Básicas (ICB-CONICET), Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza 5502, Argentina.
| | - Cristián G Sánchez
- Instituto Interdisciplinario de Ciencias Básicas (ICB-CONICET), Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza 5502, Argentina.
| |
Collapse
|
15
|
Einsele R, Hoche J, Mitrić R. Long-range corrected fragment molecular orbital density functional tight-binding method for excited states in large molecular systems. J Chem Phys 2023; 158:044121. [PMID: 36725509 DOI: 10.1063/5.0136844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Herein, we present a new method to efficiently calculate electronically excited states in large molecular assemblies, consisting of hundreds of molecules. For this purpose, we combine the long-range corrected tight-binding density functional fragment molecular orbital method (FMO-LC-DFTB) with an excitonic Hamiltonian, which is constructed in the basis of locally excited and charge-transfer configuration state functions calculated for embedded monomers and dimers and accounts explicitly for the electronic coupling between all types of excitons. We first evaluate both the accuracy and efficiency of our fragmentation approach for molecular dimers and aggregates by comparing it with the full LC-TD-DFTB method. The comparison of the calculated spectra of an anthracene cluster shows a very good agreement between our method and the LC-TD-DFTB reference. The effective computational scaling of our method has been explored for anthracene clusters and for perylene bisimide aggregates. We demonstrate the applicability of our method by the calculation of the excited state properties of pentacene crystal models consisting of up to 319 molecules. Furthermore, the participation ratio of the monomer fragments to the excited states is analyzed by the calculation of natural transition orbital participation numbers, which are verified by the hole and particle density for a chosen pentacene cluster. The use of our FMO-LC-TDDFTB method will allow for future studies of excitonic dynamics and charge transport to be performed on complex molecular systems consisting of thousands of atoms.
Collapse
Affiliation(s)
- Richard Einsele
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Joscha Hoche
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| |
Collapse
|
16
|
Kudryavtsev AN, Krasitskaya VV, Efremov MK, Zangeeva SV, Rogova AV, Tomilin FN, Frank LA. Ca 2+-Triggered Coelenterazine-Binding Protein Renilla: Expected and Unexpected Features. Int J Mol Sci 2023; 24:ijms24032144. [PMID: 36768474 PMCID: PMC9917264 DOI: 10.3390/ijms24032144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Ca2+-triggered coelenterazine-binding protein (CBP) is a natural form of the luciferase substrate involved in the Renilla bioluminescence reaction. It is a stable complex of coelenterazine and apoprotein that, unlike coelenterazine, is soluble and stable in an aquatic environment and yields a significantly higher bioluminescent signal. This makes CBP a convenient substrate for luciferase-based in vitro assay. In search of a similar substrate form for the luciferase NanoLuc, a furimazine-apoCBP complex was prepared and verified against furimazine, coelenterazine, and CBP. Furimazine-apoCBP is relatively stable in solution and in a frozen or lyophilized state, but as distinct from CBP, its bioluminescence reaction with NanoLuc is independent of Ca2+. NanoLuc turned out to utilize all the four substrates under consideration. The pairs of CBP-NanoLuc and coelenterazine-NanoLuc generate bioluminescence with close efficiency. As for furimazine-apoCBP-NanoLuc pair, the efficiency with which it generates bioluminescence is almost twice lower than that of the furimazine-NanoLuc. The integral signal of the CBP-NanoLuc pair is only 22% lower than that of furimazine-NanoLuc. Thus, along with furimazine as the most effective NanoLuc substrate, CBP can also be recommended as a substrate for in vitro analytical application in view of its water solubility, stability, and Ca2+-triggering "character".
Collapse
Affiliation(s)
- Alexander N. Kudryavtsev
- Institute of Biophysics, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Vasilisa V. Krasitskaya
- Institute of Biophysics, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Maxim K. Efremov
- School of Fundamental Biology and Biotechnology, School of Non-Ferrous Metals and Material Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Sayana V. Zangeeva
- School of Fundamental Biology and Biotechnology, School of Non-Ferrous Metals and Material Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Anastasia V. Rogova
- School of Fundamental Biology and Biotechnology, School of Non-Ferrous Metals and Material Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Center SB”, 660036 Krasnoyarsk, Russia
| | - Felix N. Tomilin
- School of Fundamental Biology and Biotechnology, School of Non-Ferrous Metals and Material Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Center SB”, 660036 Krasnoyarsk, Russia
| | - Ludmila A. Frank
- Institute of Biophysics, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, School of Non-Ferrous Metals and Material Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Correspondence:
| |
Collapse
|
17
|
Fedorov DG. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method. J Chem Phys 2022; 157:231001. [PMID: 36550057 DOI: 10.1063/5.0131256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fast parameterized methods such as density-functional tight-binding (DFTB) facilitate realistic calculations of large molecular systems, which can be accelerated by the fragment molecular orbital (FMO) method. Fragmentation facilitates interaction analyses between functional parts of molecular systems. In addition to DFTB, other parameterized methods combined with FMO are also described. Applications of FMO methods to biochemical and inorganic systems are reviewed.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
18
|
The Importance of Charge Transfer and Solvent Screening in the Interactions of Backbones and Functional Groups in Amino Acid Residues and Nucleotides. Int J Mol Sci 2022; 23:ijms232113514. [PMID: 36362296 PMCID: PMC9654426 DOI: 10.3390/ijms232113514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Quantum mechanical (QM) calculations at the level of density-functional tight-binding are applied to a protein–DNA complex (PDB: 2o8b) consisting of 3763 atoms, averaging 100 snapshots from molecular dynamics simulations. A detailed comparison of QM and force field (Amber) results is presented. It is shown that, when solvent screening is taken into account, the contributions of the backbones are small, and the binding of nucleotides in the double helix is governed by the base–base interactions. On the other hand, the backbones can make a substantial contribution to the binding of amino acid residues to nucleotides and other residues. The effect of charge transfer on the interactions is also analyzed, revealing that the actual charge of nucleotides and amino acid residues can differ by as much as 6 and 8% from the formal integer charge, respectively. The effect of interactions on topological models (protein -residue networks) is elucidated.
Collapse
|
19
|
Fedorov DG. Polarization energies in the fragment molecular orbital method. J Comput Chem 2022; 43:1094-1103. [PMID: 35446441 DOI: 10.1002/jcc.26869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/23/2022]
Abstract
Using isolated and polarized states of fragments, a method for computing the polarization energies in density functional theory (DFT) and density-functional tight-binding (DFTB) is developed in the framework of the fragment molecular orbital method. For DFTB, the method is extended into the use of periodic boundary conditions (PBC), for which a new component, a periodic self-polarization energy, is derived. The couplings of the polarization to other components in the pair interaction energy analysis (PIEDA) are derived for DFT and DFTB, and compared to Hartree-Fock and second-order Møller-Plesset perturbation theory (MP2). The effect of the self-consistent (DFT) and perturbative (MP2) treatment of the electron correlation on the polarization is discussed. The difference in the polarization in the bulk (PBC) and micro (cluster) solvation is elucidated.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
20
|
Lim H, Hong H, Hwang S, Kim SJ, Seo SY, No KT. Identification of Novel Natural Product Inhibitors against Matrix Metalloproteinase 9 Using Quantum Mechanical Fragment Molecular Orbital-Based Virtual Screening Methods. Int J Mol Sci 2022; 23:4438. [PMID: 35457257 PMCID: PMC9030947 DOI: 10.3390/ijms23084438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases involved in multiple cellular processes. Among the MMP isoforms, MMP-9 regulates cancer invasion, rheumatoid arthritis, and osteoarthritis by degrading extracellular matrix proteins present in the tumor microenvironment and cartilage and promoting angiogenesis. Here, we identified two potent natural product inhibitors of the non-catalytic hemopexin domain of MMP-9 using a novel quantum mechanical fragment molecular orbital (FMO)-based virtual screening workflow. The workflow integrates qualitative pharmacophore modeling, quantitative binding affinity prediction, and a raw material search of natural product inhibitors with the BMDMS-NP library. In binding affinity prediction, we made a scoring function with the FMO method and applied the function to two protein targets (acetylcholinesterase and fibroblast growth factor 1 receptor) from DUD-E benchmark sets. In the two targets, the FMO method outperformed the Glide docking score and MM/PBSA methods. By applying this workflow to MMP-9, we proposed two potent natural product inhibitors (laetanine 9 and genkwanin 10) that interact with hotspot residues of the hemopexin domain of MMP-9. Laetanine 9 and genkwanin 10 bind to MMP-9 with a dissociation constant (KD) of 21.6 and 0.614 μM, respectively. Overall, we present laetanine 9 and genkwanin 10 for MMP-9 and demonstrate that the novel FMO-based workflow with a quantum mechanical approach is promising to discover potent natural product inhibitors of MMP-9, satisfying the pharmacophore model and good binding affinity.
Collapse
Affiliation(s)
- Hocheol Lim
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Hansol Hong
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Seonik Hwang
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Song Ja Kim
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Sung Yum Seo
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea
| |
Collapse
|
21
|
Mironov V, Shchugoreva IA, Artyushenko PV, Morozov D, Borbone N, Oliviero G, Zamay TN, Moryachkov RV, Kolovskaya OS, Lukyanenko KA, Song Y, Merkuleva IA, Zabluda VN, Peters G, Koroleva LS, Veprintsev DV, Glazyrin YE, Volosnikova EA, Belenkaya SV, Esina TI, Isaeva AA, Nesmeyanova VS, Shanshin DV, Berlina AN, Komova NS, Svetlichnyi VA, Silnikov VN, Shcherbakov DN, Zamay GS, Zamay SS, Smolyarova T, Tikhonova EP, Chen KH, Jeng U, Condorelli G, de Franciscis V, Groenhof G, Yang C, Moskovsky AA, Fedorov DG, Tomilin FN, Tan W, Alexeev Y, Berezovski MV, Kichkailo AS. Structure- and Interaction-Based Design of Anti-SARS-CoV-2 Aptamers. Chemistry 2022; 28:e202104481. [PMID: 35025110 PMCID: PMC9015568 DOI: 10.1002/chem.202104481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/10/2022]
Abstract
Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptor-binding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variants.
Collapse
|
22
|
Lim H, Jeon HN, Lim S, Jang Y, Kim T, Cho H, Pan JG, No KT. Evaluation of protein descriptors in computer-aided rational protein engineering tasks and its application in property prediction in SARS-CoV-2 spike glycoprotein. Comput Struct Biotechnol J 2022; 20:788-798. [PMID: 35222841 PMCID: PMC8841378 DOI: 10.1016/j.csbj.2022.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of protein engineering in the research and development of biopharmaceuticals and biomaterials has increased. Machine learning in computer-aided protein engineering can markedly reduce the experimental effort in identifying optimal sequences that satisfy the desired properties from a large number of possible protein sequences. To develop general protein descriptors for computer-aided protein engineering tasks, we devised new protein descriptors, one sequence-based descriptor (PCgrades), and three structure-based descriptors (PCspairs, 3D-SPIEs_5.4 Å, and 3D-SPIEs_8Å). While the PCgrades and PCspairs include general and statistical information in physicochemical properties in single and pairwise amino acids respectively, the 3D-SPIEs include specific and quantum–mechanical information with parameterized quantum mechanical calculations (FMO2-DFTB3/D/PCM). To evaluate the protein descriptors, we made prediction models with the new descriptors and previously developed descriptors for diverse protein datasets including protein expression and binding affinity change in SARS-CoV-2 spike glycoprotein. As a result, the newly devised descriptors showed a good performance in diverse datasets, in which the PCspairs showed the best performance (R2=0.783 for protein expression and R2=0.711 for binding affinity). As a result, the newly devised descriptors showed a good performance in diverse datasets, in which the PCspairs showed the best performance. Similar approaches with those descriptors would be promising and useful if the prediction models are trained with sufficient quantitative experimental data from high-throughput assays for industrial enzymes or protein drugs.
Collapse
|
23
|
Ozerskaya AV, Zamay TN, Kolovskaya OS, Tokarev NA, Belugin KV, Chanchikova NG, Badmaev ON, Zamay GS, Shchugoreva IA, Moryachkov RV, Zabluda VN, Khorzhevskii VA, Shepelevich N, Gappoev SV, Karlova EA, Saveleva AS, Volzhentsev AA, Blagodatova AN, Lukyanenko KA, Veprintsev DV, Smolyarova TE, Tomilin FN, Zamay SS, Silnikov VN, Berezovski MV, Kichkailo AS. 11C-radiolabeled aptamer for imaging of tumors and metastases using positron emission tomography- computed tomography. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1159-1172. [PMID: 34853715 PMCID: PMC8601970 DOI: 10.1016/j.omtn.2021.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/30/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
Identification of primary tumors and metastasis sites is an essential step in cancer diagnostics and the following treatment. Positron emission tomography-computed tomography (PET/CT) is one of the most reliable methods for scanning the whole organism for malignancies. In this work, we synthesized an 11C-labeled oligonucleotide primer and hybridized it to an anti-cancer DNA aptamer. The 11C-aptamer was applied for in vivo imaging of Ehrlich ascites carcinoma and its metastases in mice using PET/CT. The imaging experiments with the 11C-aptamer determined very small primary and secondary tumors of 3 mm2 and less. We also compared 11C imaging with the standard radiotracer, 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG), and found better selectivity of the 11C-aptamer to metastatic lesions in the metabolically active organs than 18F-FDG. 11C radionuclide with an ultra-short (20.38 min) half-life is considered safest for PET/CT imaging and does not cause false-positive results in heart imaging. Its combination with aptamers gives us high-specificity and high-contrast imaging of cancer cells and can be applied for PET/CT-guided drug delivery in cancer therapies.
Collapse
Affiliation(s)
- Anastasia V. Ozerskaya
- Federal Siberian Research Clinical Centre Under the Federal Medical Biological Agency, Krasnoyarsk, Russia
| | - Tatiana N. Zamay
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Federal Research Center Krasnoyarsk Science- Center SB RAS, Krasnoyarsk, Russia
| | - Olga S. Kolovskaya
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Federal Research Center Krasnoyarsk Science- Center SB RAS, Krasnoyarsk, Russia
| | - Nikolay A. Tokarev
- Federal Siberian Research Clinical Centre Under the Federal Medical Biological Agency, Krasnoyarsk, Russia
| | - Kirill V. Belugin
- Federal Siberian Research Clinical Centre Under the Federal Medical Biological Agency, Krasnoyarsk, Russia
| | - Natalia G. Chanchikova
- Federal Siberian Research Clinical Centre Under the Federal Medical Biological Agency, Krasnoyarsk, Russia
| | - Oleg N. Badmaev
- Federal Siberian Research Clinical Centre Under the Federal Medical Biological Agency, Krasnoyarsk, Russia
| | - Galina S. Zamay
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Federal Research Center Krasnoyarsk Science- Center SB RAS, Krasnoyarsk, Russia
| | | | - Roman V. Moryachkov
- Federal Research Center Krasnoyarsk Science- Center SB RAS, Krasnoyarsk, Russia
- Kirensky Institute of Physics, Krasnoyarsk, Russia
| | | | - Vladimir A. Khorzhevskii
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Krasnoyarsk Regional Pathology-Anatomic Bureau, Krasnoyarsk, Russia
| | - Nikolay Shepelevich
- Federal Siberian Research Clinical Centre Under the Federal Medical Biological Agency, Krasnoyarsk, Russia
| | - Stanislav V. Gappoev
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Krasnoyarsk Regional Pathology-Anatomic Bureau, Krasnoyarsk, Russia
| | - Elena A. Karlova
- Federal Siberian Research Clinical Centre Under the Federal Medical Biological Agency, Krasnoyarsk, Russia
| | - Anastasia S. Saveleva
- Federal Siberian Research Clinical Centre Under the Federal Medical Biological Agency, Krasnoyarsk, Russia
| | - Alexander A. Volzhentsev
- Federal Siberian Research Clinical Centre Under the Federal Medical Biological Agency, Krasnoyarsk, Russia
| | - Anna N. Blagodatova
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Kirill A. Lukyanenko
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Federal Research Center Krasnoyarsk Science- Center SB RAS, Krasnoyarsk, Russia
| | | | - Tatyana E. Smolyarova
- Federal Research Center Krasnoyarsk Science- Center SB RAS, Krasnoyarsk, Russia
- Kirensky Institute of Physics, Krasnoyarsk, Russia
| | | | - Sergey S. Zamay
- Federal Research Center Krasnoyarsk Science- Center SB RAS, Krasnoyarsk, Russia
| | - Vladimir N. Silnikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Anna S. Kichkailo
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Federal Research Center Krasnoyarsk Science- Center SB RAS, Krasnoyarsk, Russia
| |
Collapse
|
24
|
Hameedi MA, Prates ET, Garvin MR, Mathews I, Kirtley Amos B, Demerdash O, Bechthold M, Iyer M, Rahighi S, Kneller DW, Kovalevsky A, Irle S, Vuong V, Mitchell JC, Labbe A, Galanie S, Wakatsuki S, Jacobson D. Structural and functional characterization of NEMO cleavage by SARS-CoV-2 3CLpro.. [PMID: 34816264 PMCID: PMC8609902 DOI: 10.1101/2021.11.11.468228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like (3CLpro) protease can cleave human immune signaling proteins, like NF-κB Essential Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.14 Å resolution crystal structure of 3CLpro C145S bound to NEMO226–235 reveals subsites that tolerate a range of viral and host substrates through main chain hydrogen bonds while also enforcing specificity using side chain hydrogen bonds and hydrophobic contacts. Machine learning- and physics-based computational methods predict that variation in key binding residues of 3CLpro-NEMO helps explain the high fitness of SARS-CoV-2 in humans. We posit that cleavage of NEMO is an important piece of information to be accounted for in the pathology of COVID-19.
Collapse
|
25
|
Fukuzawa K, Tanaka S. Fragment molecular orbital calculations for biomolecules. Curr Opin Struct Biol 2021; 72:127-134. [PMID: 34656048 DOI: 10.1016/j.sbi.2021.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/03/2022]
Abstract
Exploring biomolecule behavior, such as proteins and nucleic acids, using quantum mechanical theory can identify many life science phenomena from first principles. Fragment molecular orbital (FMO) calculations of whole single particles of biomolecules can determine the electronic state of the interior and surface of molecules and explore molecular recognition mechanisms based on intermolecular and intramolecular interactions. In this review, we summarized the current state of FMO calculations in drug discovery, virology, and structural biology, as well as recent developments from data science.
Collapse
Affiliation(s)
- Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan; Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| | - Shigenori Tanaka
- Graduate School of System Informatics, Department of Computational Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
26
|
Nakamura T, Yokaichiya T, Fedorov DG. Quantum-Mechanical Structure Optimization of Protein Crystals and Analysis of Interactions in Periodic Systems. J Phys Chem Lett 2021; 12:8757-8762. [PMID: 34478310 DOI: 10.1021/acs.jpclett.1c02510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A fast quantum-mechanical approach, density-functional tight-binding combined with the fragment molecular orbital method and periodic boundary conditions, is used to optimize atomic coordinates and cell parameters for a set of protein crystals: 1ETL, 5OQZ, 3Q8J, 1CBN, and 2VB1. Good agreement between experimental and calculated structures is obtained for both atomic coordinates and cell parameters. Sterical clashes present in the experimental structures are corrected by simulations. The partition analysis is extended to treat periodic boundary conditions and applied to analyze protein-solvent interactions in crystals.
Collapse
Affiliation(s)
- Taiji Nakamura
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Tomoko Yokaichiya
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
27
|
Morozov D, Mironov V, Moryachkov RV, Shchugoreva IA, Artyushenko PV, Zamay GS, Kolovskaya OS, Zamay TN, Krat AV, Molodenskiy DS, Zabluda VN, Veprintsev DV, Sokolov AE, Zukov RA, Berezovski MV, Tomilin FN, Fedorov DG, Alexeev Y, Kichkailo AS. The role of SAXS and molecular simulations in 3D structure elucidation of a DNA aptamer against lung cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:316-327. [PMID: 34458013 PMCID: PMC8379633 DOI: 10.1016/j.omtn.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are short, single-stranded DNA or RNA oligonucleotide molecules that function as synthetic analogs of antibodies and bind to a target molecule with high specificity. Aptamer affinity entirely depends on its tertiary structure and charge distribution. Therefore, length and structure optimization are essential for increasing aptamer specificity and affinity. Here, we present a general optimization procedure for finding the most populated atomistic structures of DNA aptamers. Based on the existed aptamer LC-18 for lung adenocarcinoma, a new truncated LC-18 (LC-18t) aptamer LC-18t was developed. A three-dimensional (3D) shape of LC-18t was reported based on small-angle X-ray scattering (SAXS) experiments and molecular modeling by fragment molecular orbital or molecular dynamic methods. Molecular simulations revealed an ensemble of possible aptamer conformations in solution that were in close agreement with measured SAXS data. The aptamer LC-18t had stronger binding to cancerous cells in lung tumor tissues and shared the binding site with the original larger aptamer. The suggested approach reveals 3D shapes of aptamers and helps in designing better affinity probes.
Collapse
Affiliation(s)
- Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Vladimir Mironov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Roman V. Moryachkov
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Irina A. Shchugoreva
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
- Department of Chemistry, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
| | - Polina V. Artyushenko
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
- Department of Chemistry, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
| | - Galina S. Zamay
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Olga S. Kolovskaya
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Tatiana N. Zamay
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Alexey V. Krat
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Dmitry S. Molodenskiy
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Vladimir N. Zabluda
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Dmitry V. Veprintsev
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Alexey E. Sokolov
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Ruslan A. Zukov
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Felix N. Tomilin
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
- Department of Chemistry, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
| | - Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Yuri Alexeev
- Computational Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Anna S. Kichkailo
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| |
Collapse
|
28
|
Kim J, Lim H, Moon S, Cho SY, Kim M, Park JH, Park HW, No KT. Hot Spot Analysis of YAP-TEAD Protein-Protein Interaction Using the Fragment Molecular Orbital Method and Its Application for Inhibitor Discovery. Cancers (Basel) 2021; 13:4246. [PMID: 34439400 PMCID: PMC8391968 DOI: 10.3390/cancers13164246] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 02/02/2023] Open
Abstract
The Hippo pathway is an important signaling pathway modulating growth control and cancer cell proliferation. Dysregulation of the Hippo pathway is a common feature of several types of cancer cells. The modulation of the interaction between yes-associated protein (YAP) and transcriptional enhancer associated domain (TEAD) in the Hippo pathway is considered an attractive target for cancer therapeutic development, although the inhibition of PPI is a challenging task. In order to investigate the hot spots of the YAP and TEAD1 interacting complex, an ab initio Fragment Molecular Orbital (FMO) method was introduced. With the hot spots, pharmacophores for the inhibitor design were constructed, then virtual screening was performed to an in-house library. Next, we performed molecular docking simulations and FMO calculations for screening results to study the binding modes and affinities between PPI inhibitors and TEAD1. As a result of the virtual screening, three compounds were selected as virtual hit compounds. In order to confirm their biological activities, cellular (luciferase activity, proximity ligation assay and wound healing assay in A375 cells, qRT-PCR in HEK 293T cells) and biophysical assays (surface plasmon resonance assays) were performed. Based on the findings of the study, we propose a novel PPI inhibitor BY03 and demonstrate a profitable strategy to analyze YAP-TEAD PPI and discover novel PPI inhibitors.
Collapse
Affiliation(s)
- Jongwan Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
| | - Hocheol Lim
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Korea;
| | - Sungho Moon
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea; (S.M.); (S.Y.C.); (M.K.)
| | - Seon Yeon Cho
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea; (S.M.); (S.Y.C.); (M.K.)
| | - Minhye Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea; (S.M.); (S.Y.C.); (M.K.)
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (J.H.P.); (H.W.P.)
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (J.H.P.); (H.W.P.)
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea; (S.M.); (S.Y.C.); (M.K.)
- Institute of Convergence Science and Technology, Yonsei University, Incheon 21983, Korea
| |
Collapse
|
29
|
Abstract
Vibrational energies are partitioned into the contributions of molecular parts called segments, for instance, residues in proteins. The fragment molecular orbital method is used to facilitate vibrational calculations of large systems at the DFTB and HF-3c levels. The vibrational analysis is combined with the partitioning of the electronic energy, yielding free-energy contributions of segments to the binding energy, pinpointing hot spots for drug discovery and other studies. The analysis is illustrated on two protein-ligand complexes in solution.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
30
|
Tomilin FN, Rogova AV, Burakova LP, Tchaikovskaya ON, Avramov PV, Fedorov DG, Vysotski ES. Unusual shift in the visible absorption spectrum of an active ctenophore photoprotein elucidated by time-dependent density functional theory. Photochem Photobiol Sci 2021; 20:10.1007/s43630-021-00039-5. [PMID: 33834429 DOI: 10.1007/s43630-021-00039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
Active hydromedusan and ctenophore Ca2+-regulated photoproteins form complexes consisting of apoprotein and strongly non-covalently bound 2-hydroperoxycoelenterazine (an oxygenated intermediate of coelenterazine). Whereas the absorption maximum of hydromedusan photoproteins is at 460-470 nm, ctenophore photoproteins absorb at 437 nm. Finding out a physical reason for this blue shift is the main objective of this work, and, to achieve it, the whole structure of the protein-substrate complex was optimized using a linear scaling quantum-mechanical method. Electronic excitations pertinent to the spectra of the 2-hydroperoxy adduct of coelenterazine were simulated with time-dependent density functional theory. The dihedral angle of 60° of the 6-(p-hydroxy)-phenyl group relative to the imidazopyrazinone core of 2-hydroperoxycoelenterazine molecule was found to be the key factor determining the absorption of ctenophore photoproteins at 437 nm. The residues relevant to binding of the substrate and its adopting the particular rotation were also identified.
Collapse
Affiliation(s)
- Felix N Tomilin
- Kirensky Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/38, Krasnoyarsk, 660036, Russia
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
- National Research Tomsk State University, Lenin Avenue 36, Tomsk, 634050, Russia
| | - Anastasia V Rogova
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
| | - Ludmila P Burakova
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk, 660036, Russia
| | - Olga N Tchaikovskaya
- National Research Tomsk State University, Lenin Avenue 36, Tomsk, 634050, Russia
| | - Pavel V Avramov
- Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, South Korea
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan.
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk, 660036, Russia.
| |
Collapse
|
31
|
Nishimoto Y, Fedorov DG. The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions. J Chem Phys 2021; 154:111102. [PMID: 33752370 DOI: 10.1063/5.0039520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The density-functional tight-binding (DFTB) formulation of the fragment molecular orbital method is combined with periodic boundary conditions. Long-range electrostatics and dispersion are evaluated with the Ewald summation technique. The first analytic derivatives of the energy with respect to atomic coordinates and lattice parameters are formulated. The accuracy of the method is established in comparison to numerical gradients and DFTB without fragmentation. The largest elementary cell in this work has 1631 atoms. The method is applied to elucidate the polarization, charge transfer, and interactions in the solution.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwakecho, Sakyoku, Kyoto 606-8502, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
32
|
Abstract
Computational methods for modeling biochemical processes implemented in GAMESS package are reviewed; in particular, quantum mechanics combined with molecular mechanics (QM/MM), semi-empirical, and fragmentation approaches. A detailed summary of capabilities is provided for the QM/MM implementation in QuanPol program and the fragment molecular orbital (FMO) method. Molecular modeling and visualization packages useful for biochemical simulations with GAMESS are described. GAMESS capabilities with corresponding references are tabulated for reader's convenience.
Collapse
|
33
|
Abstract
High-order charge transfer is incorporated into the fragment molecular orbital (FMO) method using a charge transfer state with fractional charges. This state is used for a partition analysis of properties based on segments that may be different from fragments in FMO. The partition analysis is also formulated for calculations without fragmentation. All development in this work is limited to density-functional tight-binding. The analysis is applied to a water cluster, crambin (PDB: 1CBN), and two complexes of Trp-cage (1L2Y) with ligands. The contributions of functional groups in ligands are obtained, providing useful information for drug discovery.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
34
|
Lim H, Baek A, Kim J, Kim MS, Liu J, Nam KY, Yoon J, No KT. Hot spot profiles of SARS-CoV-2 and human ACE2 receptor protein protein interaction obtained by density functional tight binding fragment molecular orbital method. Sci Rep 2020; 10:16862. [PMID: 33033344 PMCID: PMC7544872 DOI: 10.1038/s41598-020-73820-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
The prevalence of a novel β-coronavirus (SARS-CoV-2) was declared as a public health emergency of international concern on 30 January 2020 and a global pandemic on 11 March 2020 by WHO. The spike glycoprotein of SARS-CoV-2 is regarded as a key target for the development of vaccines and therapeutic antibodies. In order to develop anti-viral therapeutics for SARS-CoV-2, it is crucial to find amino acid pairs that strongly attract each other at the interface of the spike glycoprotein and the human angiotensin-converting enzyme 2 (hACE2) complex. In order to find hot spot residues, the strongly attracting amino acid pairs at the protein–protein interaction (PPI) interface, we introduce a reliable inter-residue interaction energy calculation method, FMO-DFTB3/D/PCM/3D-SPIEs. In addition to the SARS-CoV-2 spike glycoprotein/hACE2 complex, the hot spot residues of SARS-CoV-1 spike glycoprotein/hACE2 complex, SARS-CoV-1 spike glycoprotein/antibody complex, and HCoV-NL63 spike glycoprotein/hACE2 complex were obtained using the same FMO method. Following this, a 3D-SPIEs-based interaction map was constructed with hot spot residues for the hACE2/SARS-CoV-1 spike glycoprotein, hACE2/HCoV-NL63 spike glycoprotein, and hACE2/SARS-CoV-2 spike glycoprotein complexes. Finally, the three 3D-SPIEs-based interaction maps were combined and analyzed to find the consensus hot spots among the three complexes. As a result of the analysis, two hot spots were identified between hACE2 and the three spike proteins. In particular, E37, K353, G354, and D355 of the hACE2 receptor strongly interact with the spike proteins of coronaviruses. The 3D-SPIEs-based map would provide valuable information to develop anti-viral therapeutics that inhibit PPIs between the spike protein of SARS-CoV-2 and hACE2.
Collapse
Affiliation(s)
- Hocheol Lim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.,The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, Republic of Korea.,Bioinformatics and Molecular Design Research Center (BMDRC), Incheon, Republic of Korea
| | - Ayoung Baek
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon, Republic of Korea
| | - Jongwan Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.,Bioinformatics and Molecular Design Research Center (BMDRC), Incheon, Republic of Korea
| | - Min Sung Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.,Bioinformatics and Molecular Design Research Center (BMDRC), Incheon, Republic of Korea
| | - Jiaxin Liu
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ky-Youb Nam
- Pharos I&BT Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - JeongHyeok Yoon
- Pharos I&BT Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Kyoung Tai No
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea. .,The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, Republic of Korea. .,Bioinformatics and Molecular Design Research Center (BMDRC), Incheon, Republic of Korea.
| |
Collapse
|
35
|
Kitoh-Nishioka H, Shigeta Y, Ando K. Tunneling matrix element and tunneling pathways of protein electron transfer calculated with a fragment molecular orbital method. J Chem Phys 2020; 153:104104. [PMID: 32933280 DOI: 10.1063/5.0018423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Practical ways to calculate the tunneling matrix elements and analyze the tunneling pathways for protein electron-transfer (ET) reactions with a fragment molecular orbital (FMO) method are presented. The straightforward use of minimal basis sets only for the atoms involved in the covalent bond detachment in FMO can properly describe the ETs through the protein main-chains with the cost-effective two-body corrections (FMO2) without losing the quality of double-zeta basis sets. The current FMO codes have been interfaced with density functional theory, polarizable continuum model, and model core potentials, with which the FMO-based protein ET calculations can consider the effects of electron correlation, solvation, and transition-metal redox centers. The reasonable performance of the FMO-based ET calculations is demonstrated for three different sets of protein-ET model molecules: (1) hole transfer between two tryptophans covalently bridged by a polyalanine linker in the ideal α-helix and β-strand conformations, (2) ET between two plastoquinones covalently bridged by a polyalanine linker in the ideal α-helix and β-strand conformations, and (3) hole transfer between ruthenium (Ru) and copper (Cu) complexes covalently bridged by a stretch of a polyglycine linker as a model for Ru-modified derivatives of azurin.
Collapse
Affiliation(s)
- Hirotaka Kitoh-Nishioka
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Koji Ando
- Department of Information and Sciences, Tokyo Woman's Christian University, 2-6-1 Zenpukuji, Suginami-ku, Tokyo 167-8585, Japan
| |
Collapse
|
36
|
Fedorov DG. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. J Phys Chem A 2020; 124:4956-4971. [DOI: 10.1021/acs.jpca.0c03085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
37
|
Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Martí C, Simon A, Rapacioli M. Density-functional tight-binding: basic concepts and applications to molecules and clusters. ADVANCES IN PHYSICS: X 2020; 5:1710252. [PMID: 33154977 PMCID: PMC7116320 DOI: 10.1080/23746149.2019.1710252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023] Open
Abstract
The scope of this article is to present an overview of the Density Functional based Tight Binding (DFTB) method and its applications. The paper introduces the basics of DFTB and its standard formulation up to second order. It also addresses methodological developments such as third order expansion, inclusion of non-covalent interactions, schemes to solve the self-interaction error, implementation of long-range short-range separation, treatment of excited states via the time-dependent DFTB scheme, inclusion of DFTB in hybrid high-level/low level schemes (DFT/DFTB or DFTB/MM), fragment decomposition of large systems, large scale potential energy landscape exploration with molecular dynamics in ground or excited states, non-adiabatic dynamics. A number of applications are reviewed, focusing on -(i)- the variety of systems that have been studied such as small molecules, large molecules and biomolecules, bare orfunctionalized clusters, supported or embedded systems, and -(ii)- properties and processes, such as vibrational spectroscopy, collisions, fragmentation, thermodynamics or non-adiabatic dynamics. Finally outlines and perspectives are given.
Collapse
Affiliation(s)
- Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Nathalie Tarrat
- CEMES, Université de Toulouse (UPS), CNRS, UPR8011, Toulouse, Toulouse, France
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Leo Dontot
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Evgeny Posenitskiy
- Laboratoire Collisions Agrégats et Réactivité LCAR/IRSAMC, UMR5589, Université de Toulouse (UPS) and CNRS, Toulouse, France
| | - Carles Martí
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
- Laboratoire de Chimie, UMR5182, Ecole Normale Supérieure de Lyon, Université de Lyon and CNRS, Lyon, France
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| |
Collapse
|
38
|
Geometry Optimization, Transition State Search, and Reaction Path Mapping Accomplished with the Fragment Molecular Orbital Method. Methods Mol Biol 2020. [PMID: 32016888 DOI: 10.1007/978-1-0716-0282-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recent development of the fragment molecular orbital (FMO) method related to energy gradients, geometry optimization, transition state search, and chemical reaction mapping is summarized. The frozen domain formulation of FMO is introduced in detail, and the structure of related GAMESS input files for FMO is described.
Collapse
|
39
|
Kolovskaya OS, Zamay TN, Zamay GS, Babkin VA, Medvedeva EN, Neverova NA, Kirichenko AK, Zamay SS, Lapin IN, Morozov EV, Sokolov AE, Narodov AA, Fedorov DG, Tomilin FN, Zabluda VN, Alekhina Y, Lukyanenko KA, Glazyrin YE, Svetlichnyi VA, Berezovski MV, Kichkailo AS. Aptamer-Conjugated Superparamagnetic Ferroarabinogalactan Nanoparticles for Targeted Magnetodynamic Therapy of Cancer. Cancers (Basel) 2020; 12:cancers12010216. [PMID: 31952299 PMCID: PMC7017168 DOI: 10.3390/cancers12010216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
Nanotechnologies involving physical methods of tumor destruction using functional oligonucleotides are promising for targeted cancer therapy. Our study presents magnetodynamic therapy for selective elimination of tumor cells in vivo using DNA aptamer-functionalized magnetic nanoparticles exposed to a low frequency alternating magnetic field. We developed an enhanced targeting approach of cancer cells with aptamers and arabinogalactan. Aptamers to fibronectin (AS-14) and heat shock cognate 71 kDa protein (AS-42) facilitated the delivery of the nanoparticles to Ehrlich carcinoma cells, and arabinogalactan (AG) promoted internalization through asialoglycoprotein receptors. Specific delivery of the aptamer-modified FeAG nanoparticles to the tumor site was confirmed by magnetic resonance imaging (MRI). After the following treatment with a low frequency alternating magnetic field, AS-FeAG caused cancer cell death in vitro and tumor reduction in vivo. Histological analyses showed mechanical disruption of tumor tissues, total necrosis, cell lysis, and disruption of the extracellular matrix. The enhanced targeted magnetic theranostics with the aptamer conjugated superparamagnetic ferroarabinogalactans opens up a new venue for making biocompatible contrasting agents for MRI imaging and performing non-invasive anti-cancer therapies with a deep penetrated magnetic field.
Collapse
Affiliation(s)
- Olga S Kolovskaya
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", 660036 Krasnoyarsk, Russia
- Laboratory for Biomolecular and Medical Technologies, Faculty of Medicine, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, 660022 Krasnoyarsk, Russia
| | - Tatiana N Zamay
- Laboratory for Biomolecular and Medical Technologies, Faculty of Medicine, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, 660022 Krasnoyarsk, Russia
| | - Galina S Zamay
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", 660036 Krasnoyarsk, Russia
- Laboratory for Biomolecular and Medical Technologies, Faculty of Medicine, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, 660022 Krasnoyarsk, Russia
| | - Vasily A Babkin
- Irkutsk Institute of Chemistry named after A.E. Favorsky, the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Elena N Medvedeva
- Irkutsk Institute of Chemistry named after A.E. Favorsky, the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Nadezhda A Neverova
- Irkutsk Institute of Chemistry named after A.E. Favorsky, the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Andrey K Kirichenko
- Laboratory for Biomolecular and Medical Technologies, Faculty of Medicine, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, 660022 Krasnoyarsk, Russia
| | - Sergey S Zamay
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", 660036 Krasnoyarsk, Russia
- L.V. Kirensky Institute of Physics SB RAS-The Branch of Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 660036 Krasnoyarsk, Russia
| | - Ivan N Lapin
- Laboratory of Advanced Materials and Technology, Tomsk State University, 634050 Tomsk, Russia
| | - Evgeny V Morozov
- L.V. Kirensky Institute of Physics SB RAS-The Branch of Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 660036 Krasnoyarsk, Russia
- Institute of Chemistry and Chemical Technology SB RAS-The Branch of Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 660036 Krasnoyarsk, Russia
| | - Alexey E Sokolov
- L.V. Kirensky Institute of Physics SB RAS-The Branch of Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 660036 Krasnoyarsk, Russia
- School of Engineering Physics and Radio Electronics, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Andrey A Narodov
- Laboratory for Biomolecular and Medical Technologies, Faculty of Medicine, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, 660022 Krasnoyarsk, Russia
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Felix N Tomilin
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", 660036 Krasnoyarsk, Russia
- L.V. Kirensky Institute of Physics SB RAS-The Branch of Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Vladimir N Zabluda
- L.V. Kirensky Institute of Physics SB RAS-The Branch of Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 660036 Krasnoyarsk, Russia
| | - Yulia Alekhina
- Faculty of Physics, Department of Magnetism, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Kirill A Lukyanenko
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", 660036 Krasnoyarsk, Russia
- Laboratory for Biomolecular and Medical Technologies, Faculty of Medicine, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, 660022 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Yury E Glazyrin
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", 660036 Krasnoyarsk, Russia
- Laboratory for Biomolecular and Medical Technologies, Faculty of Medicine, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, 660022 Krasnoyarsk, Russia
| | - Valery A Svetlichnyi
- Laboratory of Advanced Materials and Technology, Tomsk State University, 634050 Tomsk, Russia
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anna S Kichkailo
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", 660036 Krasnoyarsk, Russia
- Laboratory for Biomolecular and Medical Technologies, Faculty of Medicine, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, 660022 Krasnoyarsk, Russia
| |
Collapse
|
40
|
Abstract
Basic concepts in the analysis of binding using the fragment molecular orbital method are discussed at length: polarization, desolvation, and interaction. The components in the pair interaction energy decomposition analysis are introduced, and the analysis is illustrated for a water dimer and a protein-ligand complex.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
41
|
Maruyama Y, Koroku S, Imai M, Takeuchi K, Mitsutake A. Mutation-induced change in chignolin stability from π-turn to α-turn. RSC Adv 2020; 10:22797-22808. [PMID: 35514567 PMCID: PMC9054626 DOI: 10.1039/d0ra01148g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/20/2020] [Indexed: 11/21/2022] Open
Abstract
A mutation from threonine to proline at the eighth residue in chignolin changes π-turn to α-turn.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Architecture Development Team
- FLAGSHIP 2020 Project
- RIKEN Center for Computational Science
- Kobe 650-0047
- Japan
| | - Shunpei Koroku
- Department of Physics
- School of Science and Technology
- Meiji University
- Kawasaki-shi
- Japan
| | - Misaki Imai
- Cellular and Molecular Biotechnology Research Institute
- National Institute of Advanced Industrial Science and Technology
- Koto
- Japan
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute
- National Institute of Advanced Industrial Science and Technology
- Koto
- Japan
| | - Ayori Mitsutake
- Department of Physics
- School of Science and Technology
- Meiji University
- Kawasaki-shi
- Japan
| |
Collapse
|
42
|
Abstract
This chapter describes the current status of development of the fragment molecular orbital (FMO) method for analyzing the electronic state and intermolecular interactions of biomolecular systems in solvent. The orbital energies and the inter-fragment interaction energies (IFIEs) for a specific molecular structure can be obtained directly by performing FMO calculations by exposing water molecules and counterions around biomolecular systems. Then, it is necessary to pay attention to the thickness of the water shell surrounding the biomolecules. The single-point calculation for snapshots from MD trajectory does not incorporate the effects of temperature and configurational fluctuation, but the SCIFIE (statistically corrected IFIE) method is proposed as a many-body correlated method that partially compensates for this deficiency. Furthermore, implicit continuous dielectric models have been developed as effective approaches to incorporating the screening effect of the solvent in thermal equilibrium, and we illustrate their usefulness for theoretical evaluation of IFIEs and ligand-binding free energy on the basis of the FMO-PBSA (Poisson-Boltzmann surface area) method and other computational methods.
Collapse
|
43
|
Maruyama Y, Takano H, Mitsutake A. Analysis of molecular dynamics simulations of 10-residue peptide, chignolin, using statistical mechanics: Relaxation mode analysis and three-dimensional reference interaction site model theory. Biophys Physicobiol 2019; 16:407-429. [PMID: 31984194 PMCID: PMC6975981 DOI: 10.2142/biophysico.16.0_407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 01/03/2023] Open
Abstract
Molecular dynamics simulation is a fruitful tool for investigating the structural stability, dynamics, and functions of biopolymers at an atomic level. In recent years, simulations can be performed on time scales of the order of milliseconds using special purpose systems. Since the most stable structure, as well as meta-stable structures and intermediate structures, is included in trajectories in long simulations, it is necessary to develop analysis methods for extracting them from trajectories of simulations. For these structures, methods for evaluating the stabilities, including the solvent effect, are also needed. We have developed relaxation mode analysis to investigate dynamics and kinetics of simulations based on statistical mechanics. We have also applied the three-dimensional reference interaction site model theory to investigate stabilities with solvent effects. In this paper, we review the results for designing amino-acid substitution of the 10-residue peptide, chignolin, to stabilize the misfolded structure using these developed analysis methods.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Architecture Development Team, FLAGSHIP 2020 Project, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Takano
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
44
|
Abstract
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
45
|
González R, Mroginski MA. Fully Quantum Chemical Treatment of Chromophore–Protein Interactions in Phytochromes. J Phys Chem B 2019; 123:9819-9830. [DOI: 10.1021/acs.jpcb.9b08938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ronald González
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria A. Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
46
|
Kaliakin DS, Fedorov DG, Alexeev Y, Varganov SA. Locating Minimum Energy Crossings of Different Spin States Using the Fragment Molecular Orbital Method. J Chem Theory Comput 2019; 15:6074-6084. [DOI: 10.1021/acs.jctc.9b00641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Danil S. Kaliakin
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Yuri Alexeev
- Computational Science Division and Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Sergey A. Varganov
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
47
|
Fedorov DG. Solvent Screening in Zwitterions Analyzed with the Fragment Molecular Orbital Method. J Chem Theory Comput 2019; 15:5404-5416. [PMID: 31461277 DOI: 10.1021/acs.jctc.9b00715] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Based on induced solvent charges, a new model of solvent screening is developed in the framework of the fragment molecular orbital combined with the polarizable continuum model. The developed model is applied to analyze interactions in a prototypical zwitterionic system, sodium chloride in water, and it is shown that the large underestimation of the interaction in the original solvent screening based on local charges is successfully corrected. The model is also applied to a complex of the Trp-cage (PDB: 1L2Y ) miniprotein with an anionic ligand, and the physical factors determined protein-ligand binding in solution are unraveled.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 2, Umezono 1-1-1 , Tsukuba 305-8568 , Japan
| |
Collapse
|
48
|
Vuong VQ, Nishimoto Y, Fedorov DG, Sumpter BG, Niehaus TA, Irle S. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding. J Chem Theory Comput 2019; 15:3008-3020. [PMID: 30998360 DOI: 10.1021/acs.jctc.9b00108] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The presently available linear scaling approaches to density-functional tight-binding (DFTB) based on the fragment molecular orbital (FMO) method are severely impacted by the problem of artificial charge transfer due to the self-interaction error (SIE), which hampers the simulation of zwitterionic systems such as biopolymers or ionic liquids. Here we report an extension of FMO-DFTB where we included a long-range corrected (LC) functional designed to mitigate the DFTB SIE, called the FMO-LC-DFTB method, resulting in a robust method which succeeds in simulating zwitterionic systems. Both energy and analytic gradient are developed for the gas phase and the polarizable continuum model of solvation. The scaling of FMO-LC-DFTB with system size N is shown to be almost linear, O( N1.13-1.28), and its numerical accuracy is established for a variety of representative systems including neutral and charged polypeptides. It is shown that pair interaction energies between fragments for two mini-proteins are in excellent agreement with results from long-range corrected density functional theory. The new method was employed in long time scale (1 ns) molecular dynamics simulations of the tryptophan cage protein (PDB: 1L2Y ) in the gas phase for four different protonation states and in stochastic global minimum structure searches for 1-ethyl-3-methylimidazolium nitrate ionic liquid clusters containing up to 2300 atoms.
Collapse
Affiliation(s)
- Van Quan Vuong
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Yoshio Nishimoto
- Fukui Institute for Fundamental Chemistry , Kyoto University , Kyoto 606-8501 , Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat) , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568 , Japan
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences and Computational Sciences and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Thomas A Niehaus
- Univ Lyon, Université Claude Bernard Lyon 1 , CNRS, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - Stephan Irle
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee , Knoxville , Tennessee 37996 , United States.,Center for Nanophase Materials Sciences and Computational Sciences and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.,Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
49
|
Lukac I, Abdelhakim H, Ward RA, St-Gallay SA, Madden JC, Leach AG. Predicting protein-ligand binding affinity and correcting crystal structures with quantum mechanical calculations: lactate dehydrogenase A. Chem Sci 2019; 10:2218-2227. [PMID: 30881647 PMCID: PMC6388092 DOI: 10.1039/c8sc04564j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Accurately computing the geometry and energy of host-guest and protein-ligand interactions requires a physically accurate description of the forces in action. Quantum mechanics can provide this accuracy but the calculations can require a prohibitive quantity of computational resources. The size of the calculations can be reduced by including only the atoms of the receptor that are in close proximity to the ligand. We show that when combined with log P values for the ligand (which can be computed easily) this approach can significantly improve the agreement between computed and measured binding energies. When the approach is applied to lactate dehydrogenase A, it can make quantitative predictions about conformational, tautomeric and protonation state preferences as well as stereoselectivity and even identifies potential errors in structures deposited in the Protein Data Bank for this enzyme. By broadening the evidence base for these structures from only the diffraction data, more chemically realistic structures can be proposed.
Collapse
Affiliation(s)
- Iva Lukac
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Hend Abdelhakim
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Richard A Ward
- Chemistry, Oncology, IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Stephen A St-Gallay
- Sygnature Discovery Ltd , Bio City, Pennyfoot St , Nottingham , NG1 1GF , UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| |
Collapse
|
50
|
Nakata H, Fedorov DG. Simulations of infrared and Raman spectra in solution using the fragment molecular orbital method. Phys Chem Chem Phys 2019; 21:13641-13652. [DOI: 10.1039/c9cp00940j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calculation of IR and Raman spectra in solution for large molecular systems made possible with analytic FMO/PCM Hessians.
Collapse
Affiliation(s)
| | - Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat)
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| |
Collapse
|