1
|
Ragusa R, Caselli C. Focus on cardiac troponin complex: From gene expression to cardiomyopathy. Genes Dis 2024; 11:101263. [PMID: 39211905 PMCID: PMC11357864 DOI: 10.1016/j.gendis.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 09/04/2024] Open
Abstract
The cardiac troponin complex (cTn) is a regulatory component of sarcomere. cTn consists of three subunits: cardiac troponin C (cTnC), which confers Ca2+ sensitivity to muscle; cTnI, which inhibits the interaction of cross-bridge of myosin with thin filament during diastole; and cTnT, which has multiple roles in sarcomere, such as promoting the link between the cTnI-cTnC complex and tropomyosin within the thin filament and influencing Ca2+ sensitivity of cTn and force development during contraction. Conditions that interfere with interactions within cTn and/or other thin filament proteins can be key factors in the regulation of cardiac contraction. These conditions include alterations in myofilament Ca2+ sensitivity, direct changes in cTn function, and triggering downstream events that lead to adverse cardiac remodeling and impairment of heart function. This review describes gene expression and post-translational modifications of cTn as well as the conditions that can adversely affect the delicate balance among the components of cTn, thereby promoting contractile dysfunction.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
2
|
Barry ME, Rynkiewicz MJ, Pavadai E, Viana A, Lehman W, Moore JR. Glutamate 139 of tropomyosin is critical for cardiac thin filament blocked-state stabilization. J Mol Cell Cardiol 2024; 188:30-37. [PMID: 38266978 DOI: 10.1016/j.yjmcc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The cardiac thin filament proteins troponin and tropomyosin control actomyosin formation and thus cardiac contractility. Calcium binding to troponin changes tropomyosin position along the thin filament, allowing myosin head binding to actin required for heart muscle contraction. The thin filament regulatory proteins are hot spots for genetic mutations causing heart muscle dysfunction. While much of the thin filament structure has been characterized, critical regions of troponin and tropomyosin involved in triggering conformational changes remain unresolved. A poorly resolved region, helix-4 (H4) of troponin I, is thought to stabilize tropomyosin in a position on actin that blocks actomyosin interactions at low calcium concentrations during muscle relaxation. We have proposed that contact between glutamate 139 on tropomyosin and positively charged residues on H4 leads to blocking-state stabilization. In this study, we attempted to disrupt these interactions by replacing E139 with lysine (E139K) to define the importance of this residue in thin filament regulation. Comparison of mutant and wild-type tropomyosin was carried out using in-vitro motility assays, actin co-sedimentation, and molecular dynamics simulations to determine perturbations in troponin-tropomyosin function caused by the tropomyosin mutation. Motility assays revealed that mutant thin filaments moved at higher velocity at low calcium with increased calcium sensitivity demonstrating that tropomyosin residue 139 is vital for proper tropomyosin-mediated inhibition during relaxation. Similarly, molecular dynamic simulations revealed a mutation-induced decrease in interaction energy between tropomyosin-E139K and troponin I (R170 and K174). These results suggest that salt-bridge stabilization of tropomyosin position by troponin IH4 is essential to prevent actomyosin interactions during cardiac muscle relaxation.
Collapse
Affiliation(s)
- Meaghan E Barry
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America
| | - Michael J Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Elumalai Pavadai
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Alex Viana
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America.
| |
Collapse
|
3
|
Yang Z, Marston SB, Gould IR. Modulation of Structure and Dynamics of Cardiac Troponin by Phosphorylation and Mutations Revealed by Molecular Dynamics Simulations. J Phys Chem B 2023; 127:8736-8748. [PMID: 37791815 PMCID: PMC10591477 DOI: 10.1021/acs.jpcb.3c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/08/2023] [Indexed: 10/05/2023]
Abstract
Adrenaline acts on β1 receptors in the heart muscle to enhance contractility, increase the heart rate, and increase the rate of relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. Phosphorylation of serines 22 and 23 in the N-terminal peptide of cardiac troponin I is responsible for lusitropy. Mutations associated with cardiomyopathy suppress the phosphorylation-dependent change. Key parts of troponin responsible for this modulatory system are disordered and cannot be resolved by conventional structural approaches. We performed all-atom molecular dynamics simulations (5 × 1.5 μs runs) of the troponin core (419 amino acids) in the presence of Ca2+ in the bisphosphorylated and unphosphorylated states for both wild-type troponin and the troponin C (cTnC) G159D mutant. PKA phosphorylation affects troponin dynamics. There is significant rigidification of the structure involving rearrangement of the cTnI(1-33)-cTnC interaction and changes in the distribution of the cTnC helix A/B angle, troponin I (cTnI) switch peptide (149-164) docking, and the angle between the regulatory head and ITC arm domains. The familial dilated cardiomyopathy cTnC G159D mutation whose Ca2+ sensitivity is not modulated by cTnI phosphorylation exhibits a structure inherently more rigid than the wild type, with phosphorylation reversing the direction of all metrics relative to the wild type.
Collapse
Affiliation(s)
- Zeyu Yang
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| | - Steven B. Marston
- National
Heart & Lung Institute, Imperial College
London, London W12 0NN, U.K.
| | - Ian R. Gould
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| |
Collapse
|
4
|
Marston S. Recent studies of the molecular mechanism of lusitropy due to phosphorylation of cardiac troponin I by protein kinase A. J Muscle Res Cell Motil 2023; 44:201-208. [PMID: 36131171 PMCID: PMC10541847 DOI: 10.1007/s10974-022-09630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Ca2+ acts on troponin and tropomyosin to switch the thin filament on and off, however in cardiac muscle a more graded form of regulation is essential to tailor cardiac output to the body's needs. This is achieved by the action of adrenaline on β1 receptors of heart muscle cells leading to enhanced contractility, faster heart rate and faster relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. PKA phosphorylates serines 22 and 23 in the N-terminal peptide of cardiac troponin I. As a consequence the rate of Ca2+release from troponin is increased. This is the key determinant of lusitropy. The molecular mechanism of this process has remained unknown long after the mechanism of the troponin Ca2+ switch itself was defined. Investigation of this subtle process at the atomic level poses a challenge, since the change in Ca2+-sensitivity is only about twofold and key parts of the troponin modulation and regulation system are disordered and cannot be fully resolved by conventional structural approaches. We will review recent studies using molecular dynamics simulations together with functional, cryo-em and NMR techniques that have started to give us a precise picture of how phosphorylation of troponin I modulates the dynamics of troponin to produce the lusitropic effect.
Collapse
|
5
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
6
|
Hantz ER, Lindert S. Computational Exploration and Characterization of Potential Calcium Sensitizing Mutations in Cardiac Troponin C. J Chem Inf Model 2022; 62:6201-6208. [PMID: 36383927 PMCID: PMC10497304 DOI: 10.1021/acs.jcim.2c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calcium-dependent heart muscle contraction is regulated by the cardiac troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium binding subunit (cNTnC). cNTnC contains one calcium binding site (site II), and altered calcium binding in this site has been studied for decades. It has been previously shown that cNTnC mutants, which increase calcium sensitization may have therapeutic benefits, such as restoring cardiac muscle contractility and functionality post-myocardial infarction events. Here, we computationally characterized eight mutations for their potential effects on calcium binding affinity in site II of cNTnC. We utilized two distinct methods to estimate calcium binding: adaptive steered molecular dynamics (ASMD) and thermodynamic integration (TI). We observed a sensitizing trend for all mutations based on the employed ASMD methodology. The TI results showed excellent agreement with experimentally known calcium binding affinities in wild-type cNTnC. Based on the TI results, five mutants were predicted to increase calcium sensitivity in site II. This study presents an interesting comparison of the two computational methods, which have both been shown to be valuable tools in characterizing the impacts of calcium sensitivity in mutant cNTnC systems.
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| |
Collapse
|
7
|
Cool AM, Lindert S. Umbrella Sampling Simulations Measure Switch Peptide Binding and Hydrophobic Patch Opening Free Energies in Cardiac Troponin. J Chem Inf Model 2022; 62:5666-5674. [PMID: 36283742 PMCID: PMC9712266 DOI: 10.1021/acs.jcim.2c00508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cardiac troponin (cTn) complex is an important regulatory protein in heart contraction. Upon binding of Ca2+, cTn undergoes a conformational shift that allows the troponin I switch peptide (cTnISP) to be released from the actin filament and bind to the troponin C hydrophobic patch (cTnCHP). Mutations and modifications to this complex can change its sensitivity to Ca2+ and alter the energetics of the transition from the Ca2+-unbound, cTnISP-unbound form to the Ca2+-bound, cTnISP-bound form. We utilized targeted molecular dynamics (TMD) to obtain a trajectory of this transition pathway, followed by umbrella sampling to estimate the free energy associated with the cTnISP-cTnCHP binding and the cTnCHP opening events for wild-type (WT) cTn. We were able to reproduce experimental values for the cTnISP-cTnCHP binding event and obtain cTnCHP opening free energies in agreement with previous computational measurements of smaller cTnC systems. This excellent agreement for WT cTn demonstrated the strength of computational methods in studying the dynamics and energetics of the cTn complex. We then introduced mutations to the cTn complex that cause cardiomyopathy or alter its Ca2+ sensitivity and observed a general decrease in the free energy of opening the cTnCHP. For these same mutations, we observed no general trend in the effect on the cTnISP-cTnCHP binding event. Our method sets the stage for future computational studies on this system that predict the consequences of yet uncharacterized mutations on cTn dynamics and energetics.
Collapse
Affiliation(s)
- Austin M. Cool
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
8
|
Pavadai E, Rynkiewicz MJ, Yang Z, Gould IR, Marston SB, Lehman W. Modulation of cardiac thin filament structure by phosphorylated troponin-I analyzed by protein-protein docking and molecular dynamics simulation. Arch Biochem Biophys 2022; 725:109282. [PMID: 35577070 PMCID: PMC10680062 DOI: 10.1016/j.abb.2022.109282] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022]
Abstract
Tropomyosin, controlled by troponin-linked Ca2+-binding, regulates muscle contraction by a macromolecular scale steric-mechanism that governs myosin-crossbridge-actin interactions. At low-Ca2+, C-terminal domains of troponin-I (TnI) trap tropomyosin in a position on thin filaments that interferes with myosin-binding, thus causing muscle relaxation. Steric inhibition is reversed at high-Ca2+ when TnI releases from F-actin-tropomyosin as Ca2+ and the TnI switch-peptide bind to the N-lobe of troponin-C (TnC). The opposite end of cardiac TnI contains a phosphorylation-sensitive ∼30 residue-long N-terminal peptide that is absent in skeletal muscle, and likely modifies these interactions in hearts. Here, PKA-dependent phosphorylation of serine 23 and 24 modulates Ca2+ and possibly switch-peptide binding to TnC, causing faster relaxation during the cardiac-cycle (lusitropy). The cardiac-specific N-terminal TnI domain is not captured in crystal structures of troponin or in cryo-EM reconstructions of thin filaments; thus, its global impact on thin filament structure and function is uncertain. Here, we used protein-protein docking and molecular dynamics simulation-based protocols to build a troponin model that was guided by and hence consistent with the recent seminal Yamada structure of Ca2+-activated thin filaments. We find that when present on thin filaments, phosphorylated Ser23/24 along with adjacent polar TnI residues interact closely with both tropomyosin and the N-lobe of TnC during our simulations. These interactions would likely bias tropomyosin to an off-state positioning on actin. In situ, such enhanced relaxation kinetics would promote cardiac lusitropy.
Collapse
Affiliation(s)
- Elumalai Pavadai
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Michael J Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Zeyu Yang
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, Shepard's Bush, London, W12 0BZ, UK
| | - Ian R Gould
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, Shepard's Bush, London, W12 0BZ, UK
| | - Steven B Marston
- National Heart & Lung Institute, Imperial College London, Dovehouse Street, W12 0NN, UK
| | - William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
9
|
Hantz ER, Lindert S. Adaptative Steered Molecular Dynamics Study of Mutagenesis Effects on Calcium Affinity in the Regulatory Domain of Cardiac Troponin C. J Chem Inf Model 2021; 61:3052-3057. [PMID: 34080877 DOI: 10.1021/acs.jcim.1c00419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calcium-dependent cardiac muscle contraction is regulated by the protein complex troponin (cTn) and specifically by the regulatory N-terminal domain (N-cTnC) which contains one active Ca2+ binding site (site II). It has been previously shown that cardiac muscle contractility and functionality is affected by mutations in N-cTnC which alter calcium binding affinity. Here, we describe the application of adaptive steered molecular dynamics to characterize the influence of N-cTnC mutations on site II calcium binding affinity. We observed the correct trends for all of the studied calcium sensitizing and desensitizing mutants, in conjunction with loop II perturbations. Additionally, the potential of mean force accuracy was shown to increase substantially with increasingly slower speeds and using fewer trajectories. This study presents a novel approach to computationally estimate the Ca2+ binding affinity of N-cTnC structures and is a valuable potential tool to support the design and characterization of novel mutations with potential therapeutic benefits.
Collapse
Affiliation(s)
- Eric R Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Marques MA, Landim-Vieira M, Moraes AH, Sun B, Johnston JR, Dieseldorff Jones KM, Cino EA, Parvatiyar MS, Valera IC, Silva JL, Galkin VE, Chase PB, Kekenes-Huskey PM, de Oliveira GAP, Pinto JR. Anomalous structural dynamics of minimally frustrated residues in cardiac troponin C triggers hypertrophic cardiomyopathy. Chem Sci 2021; 12:7308-7323. [PMID: 34163821 PMCID: PMC8171346 DOI: 10.1039/d1sc01886h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac TnC (cTnC) is highly conserved among mammals, and genetic variants can result in disease by perturbing Ca2+-regulation of myocardial contraction. Here, we report the molecular basis of a human mutation in cTnC's αD-helix (TNNC1-p.C84Y) that impacts conformational dynamics of the D/E central-linker and sampling of discrete states in the N-domain, favoring the "primed" state associated with Ca2+ binding. We demonstrate cTnC's αD-helix normally functions as a central hub that controls minimally frustrated interactions, maintaining evolutionarily conserved rigidity of the N-domain. αD-helix perturbation remotely alters conformational dynamics of the N-domain, compromising its structural rigidity. Transgenic mice carrying this cTnC mutation exhibit altered dynamics of sarcomere function and hypertrophic cardiomyopathy. Together, our data suggest that disruption of evolutionary conserved molecular frustration networks by a myofilament protein mutation may ultimately compromise contractile performance and trigger hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Adolfo H Moraes
- Department of Chemistry, Federal University of Minas Gerais Belo Horizonte MG Brazil
| | - Bin Sun
- Department of Cell and Molecular Physiology, Loyola University Chicago Maywood IL USA
| | - Jamie R Johnston
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Karissa M Dieseldorff Jones
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Elio A Cino
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Belo Horizonte MG Brazil
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University Tallahassee FL USA
| | - Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University Tallahassee FL USA
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School Norfolk VA USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University Tallahassee FL USA
| | | | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| |
Collapse
|
11
|
Kachooei E, Cordina NM, Potluri PR, Guse JA, McCamey D, Brown LJ. Phosphorylation of Troponin I finely controls the positioning of Troponin for the optimal regulation of cardiac muscle contraction. J Mol Cell Cardiol 2020; 150:44-53. [PMID: 33080242 DOI: 10.1016/j.yjmcc.2020.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 12/01/2022]
Abstract
Troponin is the Ca2+ molecular switch that regulates striated muscle contraction. In the heart, troponin Ca2+ sensitivity is also modulated by the PKA-dependent phosphorylation of a unique 31-residue N-terminal extension region of the Troponin I subunit (NH2-TnI). However, the detailed mechanism for the propagation of the phosphorylation signal through Tn, which results in the enhancement of the myocardial relaxation rate, is difficult to examine within whole Tn. Several models exist for how phosphorylation modulates the troponin response in cardiac cells but these are mostly built from peptide-NMR studies and molecular dynamics simulations. Here we used a paramagnetic spin labeling approach to position and track the movement of the NH2-TnI region within whole Tn. Through paramagnetic relaxation enhancement (PRE)-NMR experiments, we show that the NH2-TnI region interacts with a broad surface area on the N-domain of the Troponin C subunit. This region includes the Ca2+ regulatory Site II and the TnI switch-binding site. Phosphorylation of the NH2-TnI both weakens and shifts this region to an adjacent site on TnC. Interspin EPR distances between NH2-TnI and TnC further reveal a phosphorylation induced re-orientation of the TnC N-domain under saturating Ca2+ conditions. We propose an allosteric model where phosphorylation triggered cooperative changes in both the interaction of the NH2-TnI region with TnC, and the re-orientation of the TnC interdomain orientation, together promote the release of the TnI switch-peptide. Enhancement of the myocardial relaxation rate then occurs. Knowledge of this unique role of phosphorylation in whole Tn is important for understanding pathological processes affecting the heart.
Collapse
Affiliation(s)
- Ehsan Kachooei
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nicole M Cordina
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Phani R Potluri
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Joanna A Guse
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dane McCamey
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| |
Collapse
|
12
|
Johnston JR, Landim-Vieira M, Marques MA, de Oliveira GAP, Gonzalez-Martinez D, Moraes AH, He H, Iqbal A, Wilnai Y, Birk E, Zucker N, Silva JL, Chase PB, Pinto JR. The intrinsically disordered C terminus of troponin T binds to troponin C to modulate myocardial force generation. J Biol Chem 2019; 294:20054-20069. [PMID: 31748410 PMCID: PMC6937556 DOI: 10.1074/jbc.ra119.011177] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Aberrant regulation of myocardial force production represents an early biomechanical defect associated with sarcomeric cardiomyopathies, but the molecular mechanisms remain poorly defined. Here, we evaluated the pathogenicity of a previously unreported sarcomeric gene variant identified in a pediatric patient with sporadic dilated cardiomyopathy, and we determined a molecular mechanism. Trio whole-exome sequencing revealed a de novo missense variant in TNNC1 that encodes a p.I4M substitution in the N-terminal helix of cardiac troponin C (cTnC). Reconstitution of this human cTnC variant into permeabilized porcine cardiac muscle preparations significantly decreases the magnitude and rate of isometric force generation at physiological Ca2+-activation levels. Computational modeling suggests that this inhibitory effect can be explained by a decrease in the rates of cross-bridge attachment and detachment. For the first time, we show that cardiac troponin T (cTnT), in part through its intrinsically disordered C terminus, directly binds to WT cTnC, and we find that this cardiomyopathic variant displays tighter binding to cTnT. Steady-state fluorescence and NMR spectroscopy studies suggest that this variant propagates perturbations in cTnC structural dynamics to distal regions of the molecule. We propose that the intrinsically disordered C terminus of cTnT directly interacts with the regulatory N-domain of cTnC to allosterically modulate Ca2+ activation of force, perhaps by controlling the troponin I switching mechanism of striated muscle contraction. Alterations in cTnC-cTnT binding may compromise contractile performance and trigger pathological remodeling of the myocardium.
Collapse
Affiliation(s)
- Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Mayra A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - David Gonzalez-Martinez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Anwar Iqbal
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yael Wilnai
- Department of Pediatrics, Dana-Dwek ChildrenγÇÖs Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel 6423906
| | - Einat Birk
- Department of Cardiology, Schneider ChildrenγÇÖs Medical Center, Tel Aviv University, Petah Tikva, Israel 4920235
| | - Nili Zucker
- Department of Cardiology, Schneider ChildrenγÇÖs Medical Center, Tel Aviv University, Petah Tikva, Israel 4920235
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Jose Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
13
|
Bowman JD, Lindert S. Computational Studies of Cardiac and Skeletal Troponin. Front Mol Biosci 2019; 6:68. [PMID: 31448287 PMCID: PMC6696891 DOI: 10.3389/fmolb.2019.00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Troponin is a key regulatory protein in muscle contraction, consisting of three subunits troponin C (TnC), troponin I (TnI), and troponin T (TnT). Calcium association to TnC initiates contraction by causing a series of dynamic and conformational changes that allow the switch peptide of TnI to bind and subsequently cross bridges to form between the thin and thick filament of the sarcomere. Owing to its pivotal role in contraction regulation, troponin has been the focus of numerous computational studies over the last decade. These studies elegantly supplemented a large volume of experimental work and focused on the structure, dynamics and function of the whole troponin complex, individual subunits, and even on segments of the thin filament. Molecular dynamics, Brownian dynamics, and free energy simulations have been used to elucidate the conformational dynamics and underlying free energy landscape of troponin, calcium, and switch peptide binding, as well as the effect of disease mutations, small molecules and post-translational modifications such as phosphorylation. Frequently, simulations have been used to confirm or explain experimental observations. Computer-aided drug discovery tools have been employed to identify novel potential calcium sensitizing agents binding to the TnC-TnI interface. Finally, Markov modeling has contributed to simulating contraction within the sarcomere on the mesoscale. Here we are reviewing and classifying the existing computational work on troponin and its subunits, outline current gaps in simulations elucidating troponin's role in contraction and suggest potential future developments in the field.
Collapse
Affiliation(s)
- Jacob D Bowman
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Marston S. Small molecule studies: the fourth wave of muscle research. J Muscle Res Cell Motil 2019; 40:69-76. [PMID: 31228047 PMCID: PMC6726831 DOI: 10.1007/s10974-019-09526-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
The study of muscle and contractility is an unusual scientific endeavour since it has from the start been focussed on one problem-What makes muscle work?-and yet has needed a vast range of different approaches and techniques to study it. Its uniqueness lies in the fundamental fascination of a large scale molecular machine that converts chemical energy into mechanical energy at ambient temperature and with high efficiency that is also controlled by an exquisitely intricate yet utterly reliable regulatory system and is an essential component of animal life. The investigation of muscle is as innovative as any other field of research. As soon as one approach appears to be played out another comes along. It is instructive to consider this as a series of waves of novel and heightened activity starting in the 1950s. The thesis of this article is that we are approaching the fourth wave with the recent rise of interest in small molecules as research tools and possible therapies for muscle diseases.
Collapse
Affiliation(s)
- Steven Marston
- Cardiovascular Division, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
15
|
Marston S, Zamora JE. Troponin structure and function: a view of recent progress. J Muscle Res Cell Motil 2019; 41:71-89. [PMID: 31030382 PMCID: PMC7109197 DOI: 10.1007/s10974-019-09513-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
The molecular mechanism by which Ca2+ binding and phosphorylation regulate muscle contraction through Troponin is not yet fully understood. Revealing the differences between the relaxed and active structure of cTn, as well as the conformational changes that follow phosphorylation has remained a challenge for structural biologists over the years. Here we review the current understanding of how Ca2+, phosphorylation and disease-causing mutations affect the structure and dynamics of troponin to regulate the thin filament based on electron microscopy, X-ray diffraction, NMR and molecular dynamics methodologies.
Collapse
Affiliation(s)
- Steven Marston
- NHLI and Chemistry Departments, Imperial College London, W12 0NN, London, UK.
| | - Juan Eiros Zamora
- NHLI and Chemistry Departments, Imperial College London, W12 0NN, London, UK
| |
Collapse
|
16
|
Sheehan A, Messer AE, Papadaki M, Choudhry A, Kren V, Biedermann D, Blagg B, Khandelwal A, Marston SB. Molecular Defects in Cardiac Myofilament Ca 2+-Regulation Due to Cardiomyopathy-Linked Mutations Can Be Reversed by Small Molecules Binding to Troponin. Front Physiol 2018; 9:243. [PMID: 29636697 PMCID: PMC5881522 DOI: 10.3389/fphys.2018.00243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/06/2018] [Indexed: 12/28/2022] Open
Abstract
The inherited cardiomyopathies, hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are relatively common, potentially life-threatening and currently untreatable. Mutations are often in the contractile proteins of cardiac muscle and cause abnormal Ca2+ regulation via troponin. HCM is usually linked to higher myofilament Ca2+-sensitivity whilst in both HCM and DCM mutant tissue there is often an uncoupling of the relationship between troponin I (TnI) phosphorylation by PKA and modulation of myofilament Ca2+-sensitivity, essential for normal responses to adrenaline. The adrenergic response is blunted, and this may predispose the heart to failure under stress. At present there are no compounds or interventions that can prevent or treat sarcomere cardiomyopathies. There is a need for novel therapies that act at a more fundamental level to affect the disease process. We demonstrated that epigallocatechin-3 gallate (EGCG) was found to be capable of restoring the coupled relationship between Ca2+-sensitivity and TnI phosphorylation in mutant thin filaments to normal in vitro, independent of the mutation (15 mutations tested). We have labeled this property "re-coupling." The action of EGCG in vitro to reverse the abnormality caused by myopathic mutations would appear to be an ideal pharmaceutical profile for treatment of inherited HCM and DCM but EGCG is known to be promiscuous in vivo and is thus unsuitable as a therapeutic drug. We therefore investigated whether other structurally related compounds can re-couple myofilaments without these off-target effects. We used the quantitative in vitro motility assay to screen 40 compounds, related to C-terminal Hsp90 inhibitors, and found 23 that can re-couple mutant myofilaments. There is no correlation between re-couplers and Hsp90 inhibitors. The Ca2+-sensitivity shift due to TnI phosphorylation was restored to 2.2 ± 0.01-fold (n = 19) compared to 2.0 ± 0.24-fold (n = 7) in wild-type thin filaments. Many of these compounds were either pure re-couplers or pure desensitizers, indicating these properties are independent; moreover, re-coupling ability could be lost with small changes of compound structure, indicating the possibility of specificity. Small molecules that can re-couple may have therapeutic potential. HIGHLIGHTS - Inherited cardiomyopathies are common diseases that are currently untreatable at a fundamental level and therefore finding a small molecule treatment is highly desirable.- We have identified a molecular level dysfunction common to nearly all mutations: uncoupling of the relationship between troponin I phosphorylation and modulation of myofilament Ca2+-sensitivity, essential for normal responses to adrenaline.- We have identified a new class of drugs that are capable of both reducing Ca2+-sensitivity and/or recouping the relationship between troponin I phosphorylation and Ca2+-sensitivity.- The re-coupling phenomenon can be explained on the basis of a single mechanism that is testable.- Measurements with a wide range of small molecules of varying structures can indicate the critical molecular features required for recoupling and allows the prediction of other potential re-couplers.
Collapse
Affiliation(s)
- Alice Sheehan
- NHLI, Imperial College London, London, United Kingdom
| | | | | | | | - Vladimír Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Brian Blagg
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Anuj Khandelwal
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, United States
| | | |
Collapse
|
17
|
Papadaki M, Marston SB. The Importance of Intrinsically Disordered Segments of Cardiac Troponin in Modulating Function by Phosphorylation and Disease-Causing Mutations. Front Physiol 2016; 7:508. [PMID: 27853436 PMCID: PMC5089987 DOI: 10.3389/fphys.2016.00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022] Open
Abstract
Troponin plays a central role in regulation of muscle contraction. It is the Ca2+ switch of striated muscles including the heart and in the cardiac muscle it is physiologically modulated by PKA-dependent phosphorylation at Ser22 and 23. Many cardiomyopathy-related mutations affect Ca2+ regulation and/or disrupt the relationship between Ca2+ binding and phosphorylation. Unlike the mechanism of heart activation, the modulation of Ca2+-sensitivity by phosphorylation of the cardiac specific N-terminal segment of TnI (1–30) is structurally subtle and has proven hard to investigate. The crystal structure of cardiac troponin describes only the relatively stable core of the molecule and the crucial mobile parts of the molecule are missing including TnI C-terminal region, TnI (1–30), TnI (134–149) (“inhibitory” peptide) and the C-terminal 28 amino acids of TnT that are intrinsically disordered. Recent studies have been performed to answer this matter by building structural models of cardiac troponin in phosphorylated and dephosphorylated states based on peptide NMR studies. Now these have been updated by more recent concepts derived from molecular dynamic simulations treating troponin as a dynamic structure. The emerging model confirms the stable core structure of troponin and the mobile structure of the intrinsically disordered segments. We will discuss how we can describe these segments in terms of dynamic transitions between a small number of states, with the probability distributions being altered by phosphorylation and by HCM or DCM-related mutations that can explain how Ca2+-sensitivity is modulated by phosphorylation and the effects of mutations.
Collapse
Affiliation(s)
- Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University of Chicago Maywood, IL, USA
| | - Steven B Marston
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| |
Collapse
|
18
|
Dvornikov AV, Smolin N, Zhang M, Martin JL, Robia SL, de Tombe PP. Restrictive Cardiomyopathy Troponin I R145W Mutation Does Not Perturb Myofilament Length-dependent Activation in Human Cardiac Sarcomeres. J Biol Chem 2016; 291:21817-21828. [PMID: 27557662 DOI: 10.1074/jbc.m116.746172] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Indexed: 02/05/2023] Open
Abstract
The cardiac troponin I (cTnI) R145W mutation is associated with restrictive cardiomyopathy (RCM). Recent evidence suggests that this mutation induces perturbed myofilament length-dependent activation (LDA) under conditions of maximal protein kinase A (PKA) stimulation. Some cardiac disease-causing mutations, however, have been associated with a blunted response to PKA-mediated phosphorylation; whether this includes LDA is unknown. Endogenous troponin was exchanged in isolated skinned human myocardium for recombinant troponin containing either cTnI R145W, PKA/PKC phosphomimetic charge mutations (S23D/S24D and T143E), or various combinations thereof. Myofilament Ca2+ sensitivity of force, tension cost, LDA, and single myofibril activation/relaxation parameters were measured. Our results show that both R145W and T143E uncouple the impact of S23D/S24D phosphomimetic on myofilament function, including LDA. Molecular dynamics simulations revealed a marked reduction in interactions between helix C of cTnC (residues 56, 59, and 63), and cTnI (residue 145) in the presence of either cTnI RCM mutation or cTnI PKC phosphomimetic. These results suggest that the RCM-associated cTnI R145W mutation induces a permanent structural state that is similar to, but more extensive than, that induced by PKC-mediated phosphorylation of cTnI Thr-143. We suggest that this structural conformational change induces an increase in myofilament Ca2+ sensitivity and, moreover, uncoupling from the impact of phosphorylation of cTnI mediated by PKA at the Ser-23/Ser-24 target sites. The R145W RCM mutation by itself, however, does not impact LDA. These perturbed biophysical and biochemical myofilament properties are likely to significantly contribute to the diastolic cardiac pump dysfunction that is seen in patients suffering from a restrictive cardiomyopathy that is associated with the cTnI R145W mutation.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Nikolai Smolin
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Mengjie Zhang
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Jody L Martin
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Seth L Robia
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Pieter P de Tombe
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|