1
|
Cueto-Díaz EJ, Gálvez-Martínez S, Colin-García M, Mateo-Martí E. A New Approach in Prebiotic Chemistry Studies: Proline Sorption Triggered by Mineral Surfaces Analysed Using XPS. Life (Basel) 2023; 13:life13040908. [PMID: 37109437 PMCID: PMC10141706 DOI: 10.3390/life13040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
The role of minerals in the origin of life and prebiotic evolution remains unknown and controversial. Mineral surfaces have the potential to facilitate prebiotic polymerization due to their ability to adsorb and concentrate biomolecules that subsequently can catalyse reactions; however, the precise nature of the interaction between the mineral host and the guest biomolecule still needs to be understood. In this context, we spectroscopically characterized, using infrared, X-ray photoemission spectroscopy (XPS) and X-ray diffraction (XRD) techniques, the interaction between L-proline and montmorillonite, olivine, iron disulphide, and haematite (minerals of prebiotic interest), by evaluating their interaction from a liquid medium. This work provides insight into the chemical processes occurring between proline, the only cyclic amino acid, and this selection of minerals, each of them bearing a particular chemical and crystal structures. Proline was successfully adsorbed on montmorillonite, haematite, olivine, and iron disulphide in anionic and zwitterionic chemical forms, being the predominant form directly related to the mineral structure and composition. Silicates (montmorillonite) dominate adsorption, whereas iron oxides (haematite) show the lowest molecular affinity. This approach will help to understand structure-affinity relationship between the mineral surfaces and proline, one of the nine amino acids generated in the Miller-Urey experiment.
Collapse
|
2
|
Dagar S, Sarkar S, Rajamani S. Porphyrin in prebiotic catalysis: Ascertaining a route for the emergence of early metalloporphyrins. Chembiochem 2022; 23:e202200013. [PMID: 35233914 DOI: 10.1002/cbic.202200013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/15/2022] [Indexed: 11/09/2022]
Abstract
Metal ions are known to catalyze certain prebiotic reactions. However, the transition from metal ions to extant metalloenzymes remains unclear. Porphyrins are found ubiquitously in the catalytic core of many ancient metalloenzymes. In this study, we evaluated the influence of porphyrin-based organic scaffold, on the catalysis, emergence and putative molecular evolution of prebiotic metalloporphyrins. We studied the effect of porphyrins on the transition metal ion-mediated oxidation of hydroquinone (HQ). We report a change in the catalytic activity of the metal ions in the presence of porphyrin. This was observed to be facilitated by the coordination between metal ions and porphyrins or by the formation of non-coordinated complexes. The metal-porphyrin complexes also oxidized NADH, underscoring its versatility at oxidizing more than one substrate. Our study highlights the selective advantage that some of the metal ions would have had in the presence of porphyrin, underscoring their role in shaping the evolution of protometalloenzymes.
Collapse
Affiliation(s)
- Shikha Dagar
- IISER Pune: Indian Institute of Science Education Research Pune, Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Pune, INDIA
| | - Susovan Sarkar
- IISER Pune: Indian Institute of Science Education Research Pune, Biology, Iiser Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Pune, INDIA
| | - Sudha Rajamani
- IISER Pune: Indian Institute of Science Education Research Pune, Biology, Dr. Homi Bhaba Rd, Pashan, Near NCL, 411008, Pune, INDIA
| |
Collapse
|
3
|
Pérez-Fernández C, Ruiz-Bermejo M, Gálvez-Martínez S, Mateo-Martí E. An XPS study of HCN-derived films on pyrite surfaces: a prebiotic chemistry standpoint towards the development of protective coatings. RSC Adv 2021; 11:20109-20117. [PMID: 35479901 PMCID: PMC9033743 DOI: 10.1039/d1ra02658e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Traditionally, the effect of mineral surfaces on increasing molecular complexity has been considered a major issue in studies about the origin of life. In contrast, herein, the effects of organic films derived from cyanide over an important prebiotic mineral, pyrite, are considered. An XPS spectroscopy study was carried out to understand the surface chemistry of the HCN-derived polymer/pyrite system. As a result, the simulation of a plausible prebiotic alkaline hydrothermal environment led to the identification of an NH4CN-based film with protective corrosion properties that immediately prevented the oxidation of the highly reactive pyrite surface. In addition, the effect of coating with antioxidant properties was preserved over a relatively long time, and the polymeric film was very stable under ambient conditions. These results increase the great potential of HCN polymers for development as a cheap and easily produced new class of multifunctional polymeric materials that also show promising and attractive insights into prebiotic chemistry.
Collapse
Affiliation(s)
- Cristina Pérez-Fernández
- Centro de Astrobiología (INTA-CSIC), Dpto. Evolución Molecular Ctra. Torrejón-Ajalvir, km 4, Torrejón de Ardoz 28850 Madrid Spain
| | - Marta Ruiz-Bermejo
- Centro de Astrobiología (INTA-CSIC), Dpto. Evolución Molecular Ctra. Torrejón-Ajalvir, km 4, Torrejón de Ardoz 28850 Madrid Spain
| | - Santos Gálvez-Martínez
- Centro de Astrobiología (INTA-CSIC), Dpto. Evolución Molecular Ctra. Torrejón-Ajalvir, km 4, Torrejón de Ardoz 28850 Madrid Spain
| | - Eva Mateo-Martí
- Centro de Astrobiología (INTA-CSIC), Dpto. Evolución Molecular Ctra. Torrejón-Ajalvir, km 4, Torrejón de Ardoz 28850 Madrid Spain
| |
Collapse
|
4
|
Wansleben M, Vinson J, Wählisch A, Bzheumikhova K, Hönicke P, Beckhoff B, Kayser Y. Speciation of iron sulfide compounds by means of X-ray Emission Spectroscopy using a compact full-cylinder von Hamos spectrometer. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2020; 35:10.1039/d0ja00244e. [PMID: 34092880 PMCID: PMC8176736 DOI: 10.1039/d0ja00244e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present experimental and theoretical X-ray emission spectroscopy (XES) data of the Fe Kβ line for Iron(II)sulfide (FeS) and Iron(II)disulfide (FeS2). In comparison to X-ray absorption spectroscopy (XAS), XES offers different discrimination capabilities for chemical speciation, depending on the valence states of the compounds probed and, more importantly in view of a a broader, laboratory-based use, a larger flexibility with respect to the excitation source used. The experimental Fe Kβ XES data was measured using polychromatic X-ray radiation and a compact full-cylinder von Hamos spectrometer while the calculations were realized using the OCEAN code. The von Hamos spectrometer used is characterized by an energy window of up to 700 eV and a spectral resolving power of E/ΔE = 800. The large energy window at a single position of the spectrometer components is made profit of to circumvent the instrumental sensitivity of wavelength-dispersive spectrometers to sample positioning. This results in a robust energy scale which is used to compare experimental data with ab initio valence-to-core calculations, which are carried out using the ocean package. To validate the reliability of the ocean package for the two sample systems, near edge X-ray absorption fine structure measurements of the Fe K absorption edge are compared to theory using the same input parameters as in the case of the X-ray emission calculations. Based on the example of iron sulfide compounds, the combination of XES experiments and ocean calculations allows unravelling the electronic structure of different transition metal sulfides and qualifying XES investigations for the speciation of different compounds.
Collapse
Affiliation(s)
- Malte Wansleben
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - John Vinson
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - André Wählisch
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Karina Bzheumikhova
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Philipp Hönicke
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Burkhard Beckhoff
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Yves Kayser
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| |
Collapse
|
5
|
Galvez-Martinez S, Escamilla-Roa E, Zorzano MP, Mateo-Marti E. Defects on a pyrite(100) surface produce chemical evolution of glycine under inert conditions: experimental and theoretical approaches. Phys Chem Chem Phys 2019; 21:24535-24542. [PMID: 31663552 DOI: 10.1039/c9cp03577j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The presence of non-stoichiometric sites on the pyrite(100) surface makes it a suitable substrate for driving the chemical evolution of the amino acid glycine over time, even under inert conditions. Spectroscopic molecular fingerprints prove a transition process from a zwitterionic species to an anionic species over time on the monosulfide enriched surface. By combining experimental and theoretical approaches, we propose a surface mechanism where the interaction between the amino acid species and the surface will be driven by the quenching of the surface states at Fe sites and favoured by sulfur vacancies. This study demonstrates the potential capability of pyrite to act as a surface catalyst.
Collapse
Affiliation(s)
- Santos Galvez-Martinez
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | | | | | | |
Collapse
|
6
|
Mateo-Marti E, Galvez-Martinez S, Gil-Lozano C, Zorzano MP. Pyrite-induced uv-photocatalytic abiotic nitrogen fixation: implications for early atmospheres and Life. Sci Rep 2019; 9:15311. [PMID: 31653928 PMCID: PMC6814809 DOI: 10.1038/s41598-019-51784-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/08/2019] [Indexed: 11/09/2022] Open
Abstract
The molecular form of nitrogen, N2, is universally available but is biochemically inaccessible for life due to the strength of its triple bond. Prior to the emergence of life, there must have been an abiotic process that could fix nitrogen in a biochemically usable form. The UV photo-catalytic effects of minerals such as pyrite on nitrogen fixation have to date been overlooked. Here we show experimentally, using X-ray photoemission and infrared spectroscopies that, under a standard earth atmosphere containing nitrogen and water vapour at Earth or Martian pressures, nitrogen is fixed to pyrite as ammonium iron sulfate after merely two hours of exposure to 2,3 W/m 2 of ultraviolet irradiance in the 200-400 nm range. Our experiments show that this process exists also in the absence of UV, although about 50 times slower. The experiments also show that carbonates species are fixed on pyrite surface.
Collapse
Affiliation(s)
- E Mateo-Marti
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain.
| | - S Galvez-Martinez
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
| | - C Gil-Lozano
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
| | - María-Paz Zorzano
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain.,Department of Computer Science, Electrical and Space Engineering, Luleå Universit of Technology, 97187, Luleå, Sweden
| |
Collapse
|
7
|
Vincent L, Berg M, Krismer M, Saghafi SS, Cosby J, Sankari T, Vetsigian K, Ii HJC, Baum DA. Chemical Ecosystem Selection on Mineral Surfaces Reveals Long-Term Dynamics Consistent with the Spontaneous Emergence of Mutual Catalysis. Life (Basel) 2019; 9:life9040080. [PMID: 31652727 PMCID: PMC6911371 DOI: 10.3390/life9040080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022] Open
Abstract
How did chemicals first become organized into systems capable of self-propagation and adaptive evolution? One possibility is that the first evolvers were chemical ecosystems localized on mineral surfaces and composed of sets of molecular species that could catalyze each other’s formation. We used a bottom-up experimental framework, chemical ecosystem selection (CES), to evaluate this perspective and search for surface-associated and mutually catalytic chemical systems based on the changes in chemistry that they are expected to induce. Here, we report the results of preliminary CES experiments conducted using a synthetic “prebiotic soup” and pyrite grains, which yielded dynamical patterns that are suggestive of the emergence of mutual catalysis. While more research is needed to better understand the specific patterns observed here and determine whether they are reflective of self-propagation, these results illustrate the potential power of CES to test competing hypotheses for the emergence of protobiological chemical systems.
Collapse
Affiliation(s)
- Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Michael Berg
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Mitchell Krismer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Samuel S Saghafi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Jacob Cosby
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Talia Sankari
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Kalin Vetsigian
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - H James Cleaves Ii
- Geophysical Laboratory, The Carnegie Institution for Science, Washington, DC 20015, USA.
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- Blue Marble Space Institute for Science, Seattle, WA 97154, USA.
- Institute for Advanced Study, Princeton, NJ 08540, USA.
| | - David A Baum
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Mateo-Marti E, Prieto-Ballesteros O, Muñoz Caro G, González-Díaz C, Muñoz-Iglesias V, Gálvez-Martínez S. Characterizing Interstellar Medium, Planetary Surface and Deep Environments by Spectroscopic Techniques Using Unique Simulation Chambers at Centro de Astrobiologia (CAB). Life (Basel) 2019; 9:life9030072. [PMID: 31510002 PMCID: PMC6789534 DOI: 10.3390/life9030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
At present, the study of diverse habitable environments of astrobiological interest has become a major challenge. Due to the obvious technical and economical limitations on in situ exploration, laboratory simulations are one of the most feasible research options to make advances both in several astrobiologically interesting environments and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum and high pressure technology to the design of versatile simulation chambers devoted to the simulation of the interstellar medium, planetary atmospheres conditions and high-pressure environments. These simulation facilities are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Furthermore, the implementation of several spectroscopies, such as infrared, Raman, ultraviolet, etc., to study solids, and mass spectrometry to monitor the gas phase, in our simulation chambers, provide specific tools for the in situ physico-chemical characterization of analogues of astrobiological interest. Simulation chamber facilities are a promising and potential tool for planetary exploration of habitable environments. A review of many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these unique experimental systems.
Collapse
Affiliation(s)
- Eva Mateo-Marti
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Spain.
| | | | - Guillermo Muñoz Caro
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Spain.
| | | | | | - Santos Gálvez-Martínez
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Spain.
| |
Collapse
|
9
|
Loney CN, Perez Bakovic SI, Xu C, Graybill A, Greenlee LF, Renner JN. Interactions of Polyproline II Helix Peptides with Iron(III) Oxide. ChemistrySelect 2019. [DOI: 10.1002/slct.201901817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Charles N. Loney
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University 10900 Euclid Ave. Cleveland, OH 44106
| | - Sergio I. Perez Bakovic
- Ralph E. Martin Department of Chemical EngineeringUniversity of Arkansas 4183 Bell Engineering Center Fayetteville, AR 72701
| | - Cheyan Xu
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University 10900 Euclid Ave. Cleveland, OH 44106
| | - Ashley Graybill
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University 10900 Euclid Ave. Cleveland, OH 44106
| | - Lauren F. Greenlee
- Ralph E. Martin Department of Chemical EngineeringUniversity of Arkansas 4183 Bell Engineering Center Fayetteville, AR 72701
| | - Julie N. Renner
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University 10900 Euclid Ave. Cleveland, OH 44106
| |
Collapse
|
10
|
Ultraviolet Irradiation on a Pyrite Surface Improves Triglycine Adsorption. Life (Basel) 2018; 8:life8040050. [PMID: 30366364 PMCID: PMC6316772 DOI: 10.3390/life8040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022] Open
Abstract
We characterized the adsorption of triglycine molecules on a pyrite surface under several simulated environmental conditions by X-ray photoemission spectroscopy. The triglycine molecular adsorption on a pyrite surface under vacuum conditions (absence of oxygen) shows the presence of two different states for the amine functional group (NH2 and NH3+), therefore two chemical species (anionic and zwitterionic). On the other hand, molecular adsorption from a solution discriminates the NH2 as a unique molecular adsorption form, however, the amount adsorbed in this case is higher than under vacuum conditions. Furthermore, molecular adsorption on the mineral surface is even favored if the pyrite surface has been irradiated before the molecular adsorption occurs. Pyrite surface chemistry is highly sensitive to the chemical changes induced by UV irradiation, as XPS analysis shows the presence of Fe2O3 and Fe2SO4—like environments on the surface. Surface chemical changes induced by UV help to increase the probability of adsorption of molecular species and their subsequent concentration on the pyrite surface.
Collapse
|
11
|
Combined DFT and XPS Investigation of Cysteine Adsorption on the Pyrite (1 0 0) Surface. MINERALS 2018. [DOI: 10.3390/min8090366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The adsorption of cysteine on the pyrite (1 0 0) surface was evaluated by using first-principles-based density functional theory (DFT) and X-ray photoelectron spectroscopy (XPS) measurements. The frontier orbitals analyses indicate that the interaction of cysteine and pyrite mainly occurs between HOMO of cysteine and LUMO of pyrite. The adsorption energy calculation shows that the configuration of the -OH of -COOH adsorbed on the Fe site is the thermodynamically preferred adsorption configuration, and it is the strongest ionic bond according to the Mulliken bond populations. As for Fe site mode, the electrons are found transferred from cysteine to Fe of pyrite (1 0 0) surface, while there is little or no electron transfer for S site mode. Projected density of states (PDOS) is analyzed further in order to clarify the interaction mechanism between cysteine and the pyrite (1 0 0) surface. After that, the presence of cysteine adsorption on the pyrite (1 0 0) surface is indicated by the qualitative results of the XPS spectra. This study provides an alternative way to enhance the knowledge of microbe–mineral interactions and find a route to improve the rate of bioleaching.
Collapse
|
12
|
Afrin R, Ganbaatar N, Aono M, Cleaves Ii HJ, Yano TA, Hara M. Size-Dependent Affinity of Glycine and Its Short Oligomers to Pyrite Surface: A Model for Prebiotic Accumulation of Amino Acid Oligomers on a Mineral Surface. Int J Mol Sci 2018; 19:ijms19020365. [PMID: 29370126 PMCID: PMC5855587 DOI: 10.3390/ijms19020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 11/16/2022] Open
Abstract
The interaction strength of progressively longer oligomers of glycine, (Gly), di-Gly, tri-Gly, and penta-Gly, with a natural pyrite surface was directly measured using the force mode of an atomic force microscope (AFM). In recent years, selective activation of abiotically formed amino acids on mineral surfaces, especially that of pyrite, has been proposed as an important step in many origins of life scenarios. To investigate such notions, we used AFM-based force measurements to probe possible non-covalent interactions between pyrite and amino acids, starting from the simplest amino acid, Gly. Although Gly itself interacted with the pyrite surface only weakly, progressively larger unbinding forces and binding frequencies were obtained using oligomers from di-Gly to penta-Gly. In addition to an expected increase of the configurational entropy and size-dependent van der Waals force, the increasing number of polar peptide bonds, among others, may be responsible for this observation. The effect of chain length was also investigated by performing similar experiments using l-lysine vs. poly-l-lysine (PLL), and l-glutamic acid vs. poly-l-glutamic acid. The results suggest that longer oligomers/polymers of amino acids can be preferentially adsorbed on pyrite surfaces.
Collapse
Affiliation(s)
- Rehana Afrin
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Narangerel Ganbaatar
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
| | - Masashi Aono
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan.
| | - H James Cleaves Ii
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Taka-Aki Yano
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
| | - Masahiko Hara
- Chemical Evolution Lab Unit, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
| |
Collapse
|
13
|
Taran O. Electron Transfer between Electrically Conductive Minerals and Quinones. Front Chem 2017; 5:49. [PMID: 28752088 PMCID: PMC5508016 DOI: 10.3389/fchem.2017.00049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/21/2017] [Indexed: 01/04/2023] Open
Abstract
Long-distance electron transfer in marine environments couples physically separated redox half-reactions, impacting biogeochemical cycles of iron, sulfur and carbon. Bacterial bio-electrochemical systems that facilitate electron transfer via conductive filaments or across man-made electrodes are well-known, but the impact of abiotic currents across naturally occurring conductive and semiconductive minerals is poorly understood. In this paper I use cyclic voltammetry to explore electron transfer between electrodes made of common iron minerals (magnetite, hematite, pyrite, pyrrhotite, mackinawite, and greigite), and hydroquinones—a class of organic molecules found in carbon-rich sediments. Of all tested minerals, only pyrite and magnetite showed an increase in electric current in the presence of organic molecules, with pyrite showing excellent electrocatalytic performance. Pyrite electrodes performed better than commercially available glassy carbon electrodes and showed higher peak currents, lower overpotential values and a smaller separation between oxidation and reduction peaks for each tested quinone. Hydroquinone oxidation on pyrite surfaces was reversible, diffusion controlled, and stable over a large number of potential cycles. Given the ubiquity of both pyrite and quinones, abiotic electron transfer between minerals and organic molecules is likely widespread in Nature and may contribute to several different phenomena, including anaerobic respiration of a wide variety of microorganisms in temporally anoxic zones or in the proximity of hydrothermal vent chimneys, as well as quinone cycling and the propagation of anoxic zones in organic rich waters. Finally, interactions between pyrite and quinones make use of electrochemical gradients that have been suggested as an important source of energy for the origins of life on Earth. Ubiquinones and iron sulfide clusters are common redox cofactors found in electron transport chains across all domains of life and interactions between quinones and pyrite might have been an early analog of these ubiquitous systems.
Collapse
Affiliation(s)
- Olga Taran
- Department of Chemistry, Emory UniversityAtlanta, GA, United States
| |
Collapse
|
14
|
Gil-Lozano C, Davila AF, Losa-Adams E, Fairén AG, Gago-Duport L. Quantifying Fenton reaction pathways driven by self-generated H 2O 2 on pyrite surfaces. Sci Rep 2017; 7:43703. [PMID: 28262831 PMCID: PMC5337962 DOI: 10.1038/srep43703] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32-, SO42-) and ferrous iron (Fe2+) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H2O2) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H2O2 formation in aqueous suspensions of FeS2 microparticles by monitoring, in real time, the H2O2 and dissolved O2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS2 dissolution and the degradation of H2O2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H2O2, showing that FeS2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments.
Collapse
Affiliation(s)
- C. Gil-Lozano
- Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Madrid, Spain
| | - A. F. Davila
- Carl Sagan Center at the SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043, USA
| | - E. Losa-Adams
- Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Madrid, Spain
- Departamento de Geociencias Marinas, Universidad de Vigo, Lagoas Marcosende, 36310-Vigo, Spain
| | - A. G. Fairén
- Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, 14853 NY, USA
| | - L. Gago-Duport
- Departamento de Geociencias Marinas, Universidad de Vigo, Lagoas Marcosende, 36310-Vigo, Spain
| |
Collapse
|