1
|
Parmentier L, D'Haese S, Duquesne J, Bray F, Van der Meeren L, Skirtach AG, Rolando C, Dmitriev RI, Van Vlierberghe S. 2D fibrillar osteoid niche mimicry through inclusion of visco-elastic and topographical cues in gelatin-based networks. Int J Biol Macromol 2024; 254:127619. [PMID: 37898251 DOI: 10.1016/j.ijbiomac.2023.127619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Given the clinical need for osteoregenerative materials incorporating controlled biomimetic and biophysical cues, a novel highly-substituted norbornene-modified gelatin was developed enabling thiol-ene crosslinking exploiting thiolated gelatin as cell-interactive crosslinker. Comparing the number of physical crosslinks, the degree of hydrolytic degradation upon modification, the network density and the chemical crosslinking type, the osteogenic effect of visco-elastic and topographical properties was evaluated. This novel network outperformed conventional gelatin-based networks in terms of osteogenesis induction, as evidenced in 2D dental pulp stem cell seeding assays, resulting from the presentation of both a local (substrate elasticity, 25-40 kPa) and a bulk (compressive modulus, 25-45 kPa) osteogenic substrate modulus in combination with adequate fibrillar cell adhesion spacing to optimally transfer traction forces from the fibrillar ECM (as evidenced by mesh size determination with the rubber elasticity theory) and resulting in a 1.7-fold increase in calcium production (compared to the gold standard gelatin methacryloyl (GelMA)).
Collapse
Affiliation(s)
- Laurens Parmentier
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Sophie D'Haese
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Jessie Duquesne
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Fabrice Bray
- Miniaturisation pour la synthèse, l'analyse et la protéomique (MSAP), CNRS, Université de Lille, F-59000 Lille, France
| | - Louis Van der Meeren
- Nano-biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent university, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Andre G Skirtach
- Nano-biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent university, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Christian Rolando
- Miniaturisation pour la synthèse, l'analyse et la protéomique (MSAP), CNRS, Université de Lille, F-59000 Lille, France
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medical and Health Sciences, Ghent university, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Singh G, Dasanayake GS, Chism CM, Vashisth P, Kaur A, Misra SK, Sharp JS, Tanner EEL. Good's Buffer Based Highly Biocompatible Ionic Liquid Modified PLGA Nanoparticles for the Selective Uptake in Cancer Cells. MATERIALS CHEMISTRY FRONTIERS 2023; 7:6213-6228. [PMID: 38204762 PMCID: PMC10776129 DOI: 10.1039/d3qm00787a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Achieving safe and efficacious drug delivery is still an outstanding challenge. Herein we have synthesized 20 biocompatible Good's buffer-based ionic liquids (GBILs) with a range of attractive properties for drug delivery applications. The synthesized GBILs were used to coat the surface of poly(lactic-co-glycolic acid) (PLGA) by nanoprecipitation-sonication and characterized by dynamic light scattering (DLS) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The GBIL-modified PLGA NPs were then tested for their interaction with bio-interfaces such as serum proteins (using SDS-PAGE and LCMS) and red blood cells (RBCs) isolated from human and BALB/c mouse blood. In this report, we show that surface modification of PLGA with certain GBILs led to modulation of preferential cellular uptake towards human triple-negative breast cancer cells (MDA-MB-231) compared to human normal healthy breast cells (MCF-10A). For example, cholinium N,N-bis(2-hydroxyethyl)-2-aminoethane sulfonate (CBES) coated PLGA NPs were found to be selective for MDA-MB-231 cells (60.7 ± 0.7 %) as compared to MCF-10A cells (27.3 ± 0.7 %). In this way, GBIL-coatings have increased PLGA NP uptake in the cancer cells by 2-fold while decreasing the uptake towards normal healthy breast cells. Therefore, GBIL-modified nanoparticles could be a versatile platform for targeted drug delivery and gene therapy applications, as their surface properties can be tailored to interact with specific cell receptors and enhance cellular uptake. This formulation technique has shown promising results for targeting specific cells, which could be explored further for other cell types to achieve site-specific and efficient delivery of therapeutic agents.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Gaya S. Dasanayake
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Claylee M. Chism
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Priyavrat Vashisth
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Amandeep Kaur
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Sandeep Kumar Misra
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677
| | - Joshua S. Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677
| | - Eden E. L. Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| |
Collapse
|
3
|
Kashapov R, Kashapova N, Razuvayeva Y, Ziganshina A, Salnikov V, Zakharova L. Green-step assembly of the supramolecular amphiphile constructed by sodium carboxymethyl cellulose and calixarene for facile loading of hydrophobic food bioactive compounds. Food Chem 2023; 424:136293. [PMID: 37236075 DOI: 10.1016/j.foodchem.2023.136293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/23/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023]
Abstract
The use of biologically active compounds is often limited due to their poor aqueous solubility, which generally reduces their bioavailability and useful efficacy. In this regard, a wide search is currently underway for colloidal systems capable of encapsulating these compounds. In the creation of colloidal systems, long-chain molecules of surfactants and polymers are mainly used, which in an individual state do not always aggregate into homogeneous and stable nanoparticles. In the present work, cavity-bearing calixarene was used for the first time to order polymeric molecules of sodium carboxymethyl cellulose. A set of physicochemical methods demonstrated the spontaneous formation of spherical nanoparticles by non-covalent self-assembly contributed by macrocycle and polymer, and formed nanoparticles were able to encapsulate hydrophobic quercetin and oleic acid. The preparation of nanoparticles by supramolecular self-assembly without use of organic solvents, temperature and ultrasound effects can be an effective strategy for creating water-soluble forms of lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str, 420088 Kazan, Russia.
| | - Nadezda Kashapova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str, 420088 Kazan, Russia
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str, 420088 Kazan, Russia
| | - Albina Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str, 420088 Kazan, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str, 420111 Kazan, Russia; Kazan (Volga Region) Federal University, 18 Kremlyovskaya Str, 420008 Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str, 420088 Kazan, Russia
| |
Collapse
|
4
|
Himani, Pratap Singh Raman A, Babu Singh M, Jain P, Chaudhary P, Bahadur I, Lal K, Kumar V, Singh P. An Update on Synthesis, Properties, Applications and Toxicity of the ILs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Patil KR, Barge SS, Bhosale BD, Dagade DH. Influence of protic ionic liquids on hydration of glycine based peptides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120378. [PMID: 34543989 DOI: 10.1016/j.saa.2021.120378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The structure of water, especially around the solute is thought to play an important role in many biological and chemical processes. Water-peptide and cosolvent-peptide interactions are crucial in determining the structure and function of protein molecules. In this work, we present the H-bonding analysis for model peptides like glycyl-glycine (gly-gly), glycine-ւ-valine (gly-val), glycyl-ւ-leucine (gly-leu) and triglycine (trigly) and triethylammonium based carboxylate protic ionic liquids (PILs) in aqueous solutions as well as for peptides in ∼0.2 mol·L-1 of aqueous PIL solutions in the spectral range of 7800-5500 cm-1 using Fourier transform near-infrared (FT-NIR) spectroscopy at 298.15 K. The hydration numbers for peptides and PILs were obtained using NIR method of simultaneous estimation of hydration spectrum and hydration number of a solute dissolved in water. The H-bond of water molecules around peptides and PILs are found to be stronger and shorter than those in pure liquid water. We observe that the hydration shell around zwitterions is a clathrate-like cluster of water in which ions entrap. Watery network analysis confirms that singly H-bonded species or NHBs changes to partial or distorted ice-like structures of water in the hydration shell of PILs. The overall water H-bonding in the hydration sphere of PILs increases in the order TEAF < TEAA < TEAG < TEAPy ≈ TEAP < TEAB. The influence of PILs on hydration behavior of peptides is explored in terms of H-bonding, cooperativity, hydrophobicity, water structural changes, ionic interactions etc.
Collapse
Affiliation(s)
- Kunal R Patil
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Seema S Barge
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | | | - Dilip H Dagade
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India.
| |
Collapse
|
6
|
Siddiquee MA, Patel R, Saraswat J, Khatoon BS, ud din Parray M, Wani FA, Khan MR, Busquets R. Interfacial and antibacterial properties of imidazolium based ionic liquids having different counterions with ciprofloxacin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Singh G, Kaur M, Kaur H, Kang TS. Synthesis and complexation of a new caffeine based surface active ionic liquid with lysozyme in aqueous medium: Physicochemical, computational and antimicrobial studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Yang DD, Paterna NJ, Senetra AS, Casey KR, Trieu PD, Caputo GA, Vaden TD, Carone BR. Synergistic interactions of ionic liquids and antimicrobials improve drug efficacy. iScience 2021; 24:101853. [PMID: 33364575 PMCID: PMC7753145 DOI: 10.1016/j.isci.2020.101853] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 01/16/2023] Open
Abstract
Combinations of ionic liquids (ILs) with antimicrobial compounds have been shown to produce synergistic activities in model liposomes. In this study, imidazolium chloride-based ILs with alkyl tail length variations are combined with commercially available, small-molecule antimicrobials to examine the potential for combinatorial and synergistic antimicrobial effects on P. aeruginosa, E. coli, S. aureus, and S. cerevisiae. The effects of these treatments in a human cell culture model indicate the cytotoxic limits of ILs paired with antimicrobials. The analysis of these ILs demonstrates that the length of the alkyl chain on the IL molecule is proportional to both antimicrobial activity and cytotoxicity. Moreover, the ILs which exhibit synergy with small-molecule antibiotics appear to be acting in a membrane permeabilizing manner. Collectively, results from these experiments demonstrate an increase in antimicrobial efficacy with specific IL + antimicrobial combinations on microbial cultures while maintaining low cytotoxicity in a mammalian cell culture model.
Collapse
Affiliation(s)
- Daniel D. Yang
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Nicholas J. Paterna
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Alexandria S. Senetra
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Kaitlyn R. Casey
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Phillip D. Trieu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Gregory A. Caputo
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Timothy D. Vaden
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Benjamin R. Carone
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| |
Collapse
|
9
|
Cao H, Hu Y, Xu W, Wang Y, Guo X. Recent progress in the assembly behavior of imidazolium-based ionic liquid surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Singh G, Kaur M, Singh D, Kesavan AK, Kang TS. Antimicrobial Colloidal Complexes of Lysozyme with Bio-Based Surface Active Ionic Liquids in Aqueous Medium. J Phys Chem B 2020; 124:3791-3800. [DOI: 10.1021/acs.jpcb.0c00339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gagandeep Singh
- Department of Chemistry, UGC-Centre for Advance Studies − II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manvir Kaur
- Department of Chemistry, UGC-Centre for Advance Studies − II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Drishtant Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Anup Kumar Kesavan
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Tejwant Singh Kang
- Department of Chemistry, UGC-Centre for Advance Studies − II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
11
|
Singh G, Kaur M, Aswal VK, Kang TS. Aqueous colloidal systems of bovine serum albumin and functionalized surface active ionic liquids for material transport. RSC Adv 2020; 10:7073-7082. [PMID: 35493898 PMCID: PMC9049728 DOI: 10.1039/c9ra05549e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Physicochemical and computational investigation of complexation between BSA and SAILs with application in material transport.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Chemistry
- UGC-Centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| | - Manvir Kaur
- Department of Chemistry
- UGC-Centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| | - Vinod Kumar Aswal
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Tejwant Singh Kang
- Department of Chemistry
- UGC-Centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| |
Collapse
|
12
|
Acharyya A, DiGiuseppi D, Stinger BL, Schweitzer-Stenner R, Vaden TD. Structural Destabilization of Azurin by Imidazolium Chloride Ionic Liquids in Aqueous Solution. J Phys Chem B 2019; 123:6933-6945. [DOI: 10.1021/acs.jpcb.9b04113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arusha Acharyya
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - David DiGiuseppi
- Department of Chemistry, Drexel University, 32 S. 32nd Street, Philadelphia, Pennsylvania 19104, United States
| | - Brittany L. Stinger
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University, 32 S. 32nd Street, Philadelphia, Pennsylvania 19104, United States
| | - Timothy D. Vaden
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| |
Collapse
|
13
|
Correlating Lipid Membrane Permeabilities of Imidazolium Ionic Liquids with their Cytotoxicities on Yeast, Bacterial, and Mammalian Cells. Biomolecules 2019; 9:biom9060251. [PMID: 31242711 PMCID: PMC6627299 DOI: 10.3390/biom9060251] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Alkyl-imidazolium chloride ionic liquids (ILs) have been broadly studied for biochemical and biomedical technologies. They can permeabilize lipid bilayer membranes and have cytotoxic effects, which makes them targets for drug delivery biomaterials. We assessed the lipid-membrane permeabilities of ILs with increasing alkyl chain lengths from ethyl to octyl groups on large unilamellar vesicles using a trapped-fluorophore fluorescence lifetime-based leakage experiment. Only the most hydrophobic IL, with the octyl chain, permeabilizes vesicles, and the concentration required for permeabilization corresponds to its critical micelle concentration. To correlate the model vesicle studies with biological cells, we quantified the IL permeabilities and cytotoxicities on different cell lines including bacterial, yeast, and ovine blood cells. The IL permeabilities on vesicles strongly correlate with permeabilities and minimum inhibitory concentrations on biological cells. Despite exhibiting a broad range of lipid compositions, the ILs appear to have similar effects on the vesicles and cell membranes.
Collapse
|
14
|
Singh G, Singh G, Kancharla S, Kang TS. Complexation Behavior of β-Lactoglobulin with Surface Active Ionic Liquids in Aqueous Solutions: An Experimental and Computational Approach. J Phys Chem B 2019; 123:2169-2181. [DOI: 10.1021/acs.jpcb.8b11610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gagandeep Singh
- Department of Chemistry, UGC-Centre for Advance Studies—II, Guru Nanak Dev University, Amritsar 143005, India
| | - Gurbir Singh
- Department of Chemistry, UGC-Centre for Advance Studies—II, Guru Nanak Dev University, Amritsar 143005, India
| | - Srinivasarao Kancharla
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Tejwant Singh Kang
- Department of Chemistry, UGC-Centre for Advance Studies—II, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
15
|
Sun Y, Xu X, Qin M, Pang N, Wang G, Zhuang L. Dodecyl sulfate-based anionic surface-active ionic liquids: synthesis, surface properties, and interaction with gelatin. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04473-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Kohn EM, Lee JY, Calabro A, Vaden TD, Caputo GA. Heme Dissociation from Myoglobin in the Presence of the Zwitterionic Detergent N, N-Dimethyl- N-Dodecylglycine Betaine: Effects of Ionic Liquids. Biomolecules 2018; 8:biom8040126. [PMID: 30380655 PMCID: PMC6315634 DOI: 10.3390/biom8040126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/24/2023] Open
Abstract
We have investigated myoglobin protein denaturation using the zwitterionic detergent Empigen BB (EBB, N,N-Dimethyl-N-dodecylglycine betaine). A combination of absorbance, fluorescence, and circular dichroism spectroscopic measurements elucidated the protein denaturation and heme dissociation from myoglobin. The results indicated that Empigen BB was not able to fully denature the myoglobin structure, but apparently can induce the dissociation of the heme group from the protein. This provides a way to estimate the heme binding free energy, ΔGdissociation. As ionic liquids (ILs) have been shown to perturb the myoglobin protein, we have investigated the effects of the ILs 1-butyl-3-methylimidazolium chloride (BMICl), 1-ethyl-3-methylimidazolium acetate (EMIAc), and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) in aqueous solution on the ΔGdissociation values. Absorbance experiments show the ILs had minimal effect on ΔGdissociation values when compared to controls. Fluorescence and circular dichroism data confirm the ILs have no effect on heme dissociation, demonstrating that low concentrations ILs do not impact the heme dissociation from the protein and do not significantly denature myoglobin on their own or in combination with EBB. These results provide important data for future studies of the mechanism of IL-mediated protein stabilization/destabilization and biocompatibility studies.
Collapse
Affiliation(s)
- Eric M Kohn
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
- Bantivoglio Honors College, Rowan University, Glassboro, NJ 08028, USA.
| | - Joshua Y Lee
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
- Bantivoglio Honors College, Rowan University, Glassboro, NJ 08028, USA.
| | - Anthony Calabro
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
| | - Timothy D Vaden
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
17
|
Singh G, Singh G, Kang TS. Colloidal systems of surface active ionic liquids and sodium carboxymethyl cellulose: physicochemical investigations and preparation of magnetic nano-composites. Phys Chem Chem Phys 2018; 20:18528-18538. [DOI: 10.1039/c8cp02841a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carboxymethyl cellulose-surface active ionic liquid colloidal formulations for preparation of magnetic nano-composites.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Chemistry
- UGC-Centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| | - Gurbir Singh
- Department of Chemistry
- UGC-Centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| | - Tejwant Singh Kang
- Department of Chemistry
- UGC-Centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| |
Collapse
|
18
|
Hanna SL, Huang JL, Swinton AJ, Caputo GA, Vaden TD. Synergistic effects of polymyxin and ionic liquids on lipid vesicle membrane stability and aggregation. Biophys Chem 2017; 227:1-7. [PMID: 28526567 DOI: 10.1016/j.bpc.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 12/12/2022]
Abstract
Ionic liquids (ILs) have been investigated for potential antibacterial and antibiotic applications due to their ability to destabilize and permeabilize the lipid bilayers in cell membranes. Bacterial assays have shown that combining ILs with antibiotics can provide a synergistic enhancement of their antibacterial activities. We have characterized the mechanism by which the conventional ILs 1-butyl-3-methylimidazolium chloride (BMICl) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) enhance the lipid membrane permeabilization of the well-known antibiotic polymyxin B (PMB). We studied the sizes and membrane permeabilities of multilamellar and unilamellar lipid bilayer vesicles in the presence of ILs alone in aqueous solution, PMB alone, and ILs combined together with PMB. Light scattering-based experiments show that vesicle sizes dramatically increase when ILs are combined with PMB, which suggests that the materials combine to synergistically enhance lipid membrane disruption leading to vesicle aggregation. Lipid bilayer leakage experiments using tris (2,2'-bipyridyl) ruthenium (II) (Ru(bpy)32+) trapped in lipid vesicles, in which the trapped Ru(bpy)32+ fluorescence lifetime increases when it leaks out of the vesicle, show that combining BMIBF4 and PMB together permeabilize the membrane significantly more than with PMB or the IL alone. This demonstrates that ILs can assist in antibiotic permeabilization of lipid bilayers which could explain the increased antibiotic activities in the presence of ILs in solution.
Collapse
Affiliation(s)
- Sylvia L Hanna
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Jenny L Huang
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Alana J Swinton
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States; Department of Biomedical and Translational Sciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Timothy D Vaden
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States.
| |
Collapse
|