1
|
Zhang X, Zong J, Meng D. General Condition for Polymer Cononsolvency in Binary Mixed Solvents. Macromolecules 2024; 57:8632-8642. [PMID: 39281841 PMCID: PMC11394006 DOI: 10.1021/acs.macromol.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024]
Abstract
Starting from a generic model based on the thermodynamics of mixing and abstracted from the chemistry and microscopic details of solution components, three consistent and complementary computational approaches are deployed to investigate the general condition for polymer cononsolvency in binary mixed solvents at the zeroth order. The study reveals χPS - χPC + χSC as the underlying universal parameter that regulates cononsolvency, where χαβ is the immiscibility parameter between the α- and β-component. Two disparate cononsolvency regimes are identified for χPS - χPC + χSC < 0 and χPS - χPC + χSC > 2, respectively, based on the behavior of the second osmotic virial coefficient at varying solvent mixture composition x C. The predicted condition is verified using self-consistent field calculations by directly examining the polymer conformational transition as a function of x C. It is further shown that in the regime χPS - χPC + χSC < 0, the reentrant polymer conformation transition is driven by maximizing the solvent-cosolvent contact, but in the regime χPS - χPC + χSC > 2, it is driven by promoting polymer and cosolvent contact. In-between the two regimes when neither effect is dominant, a monotonic response of polymer conformation to x C is observed. Effects of the mean-field approximation on the predicted condition are evaluated by comparing the mean-field calculations with computer simulations. It shows that the fluctuation effects lead to a higher threshold value of χPS - χPC + χSC in the second regime, where local enrichment of cosolvent in polymer proximity plays a critical role.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Chemical and Biomolecular Engineering, John Hopkins University, Baltimore, Maryland 21218, United States
| | - Jing Zong
- Department of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dong Meng
- Biomaterials Division, Department of Molecular Pathobiology, New York University, New York, New York 10010, United States
| |
Collapse
|
2
|
Nagasaka M, Kumaki F, Yao Y, Adachi JI, Mochizuki K. Mechanism of poly( N-isopropylacrylamide) cononsolvency in aqueous methanol solutions explored via oxygen K-edge X-ray absorption spectroscopy. Phys Chem Chem Phys 2024; 26:13634-13638. [PMID: 38685819 DOI: 10.1039/d4cp00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The cononsolvency mechanism of poly(N-isopropylacrylamide) (PNIPAM), dissolving in pure methanol (MeOH) and water (H2O) but being insoluble in MeOH-H2O mixtures, was investigated by O K-edge X-ray absorption spectroscopy (XAS). The cononsolvency emerges from the aggregation of PNIPAM with MeOH clusters, leading to the collapse of the hydrophobic hydration of PNIPAM.
Collapse
Affiliation(s)
- Masanari Nagasaka
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan.
- Molecular Science Program, Graduate Institute for Advanced Studies, SOKENDAI, Myodaiji, Okazaki 444-8585, Japan
| | - Fumitoshi Kumaki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Yifeng Yao
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Jun-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Materials Structure Science Program, Graduate Institute for Advanced Studies, SOKENDAI, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kenji Mochizuki
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| |
Collapse
|
3
|
Papadakis CM, Niebuur BJ, Schulte A. Thermoresponsive Polymers under Pressure with a Focus on Poly( N-isopropylacrylamide) (PNIPAM). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1-20. [PMID: 38149782 DOI: 10.1021/acs.langmuir.3c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pressure is a key variable in the phase behavior of responsive polymers, both for applications and from a fundamental point of view. In this feature article, we review recent developments, particularly applications of neutron techniques such as small-angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS), across the temperature-pressure phase diagram. These are complemented by kinetic SANS experiments following pressure jumps. In the prototype system poly(N-isopropylacrylamide) (PNIPAM), QENS revealed the pressure-dependent characteristics of hydration water around the lower critical solution temperature transition. The size, water content, and inner structure of the mesoglobules formed in the two-phase region depend strongly on pressure, as shown by SANS. Beside these changes at the phase transition, the mesoglobule formation at low pressure is determined by kinetic factors, namely the formation of a polymer-rich, rigid shell, which hampers further growth by coalescence. At high pressure, in contrast, the growth proceeds by diffusion-limited coalescence without any kinetic hindrance. The disintegration of the mesoglobules evolves either via chain release from their surface or via swelling, depending on the osmotic pressure of the water. Moreover, we report on the profound influence of pressure on the cononsolvency effect. In the temperature-pressure frame, the one-phase region is hugely expanded upon the addition of the cosolvent methanol. SANS experiments unveil the enthalpic and entropic contributions to the effective Flory-Huggins interaction parameter between the segments and the solvent mixture. QENS experiments demonstrate an increase in polymer associated water with pressure, whereas methanol is released. Correspondingly, the solvent phase becomes enriched in methanol, providing a mechanism for the breakdown of cononsolvency at a high pressure. Finally, we outline future opportunities for high-pressure studies of thermoresponsive polymers, with a focus on neutron methods.
Collapse
Affiliation(s)
- Christine M Papadakis
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Bart-Jan Niebuur
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| |
Collapse
|
4
|
Zhang P, Wang Z, Wang ZG. Conformation Transition of a Homopolymer Chain in Binary Mixed Solvents. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zheng Wang
- School of Physics, Nankai University, Tianjin 300071, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Pérez-Ramírez HA, Moncho-Jordá A, Odriozola G. Phenol release from pNIPAM hydrogels: scaling molecular dynamics simulations with dynamical density functional theory. SOFT MATTER 2022; 18:8271-8284. [PMID: 36278506 DOI: 10.1039/d2sm01083f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We employed molecular dynamic simulations (MD) and the Bennett's acceptance ratio method to compute the free energy of transfer, ΔGtrans, of phenol, methane, and 5-fluorouracil (5-FU), between bulk water and water-pNIPAM mixtures of different polymer volume fractions, ϕp. For this purpose, we first calculate the solvation free energies in both media to obtain ΔGtrans. Phenol and 5-FU (a medication used to treat cancer) attach to the pNIPAM surface so that they show negative values of ΔGtrans irrespective of temperature (above or below the lower critical solution temperature of pNIPAM, Tc). Conversely, methane switches the ΔGtrans sign when considering temperatures below (positive) and above (negative) Tc. In all cases, and contrasting with some theoretical predictions, ΔGtrans maintains a linear behavior with the pNIPAM concentration up to large polymer densities. We have also employed MD to compute the diffusion coefficient, D, of phenol in water-pNIPAM mixtures as a function of ϕp in the diluted limit. Both ΔGtrans and D as a function of ϕp are required inputs to obtain the release halftime of hollow pNIPAM microgels through Dynamic Density Functional Theory (DDFT). Our scaling strategy captures the experimental value of 2200 s for 50 μm radius microgels with no cavity, for ϕp ≃ 0.83 at 315 K.
Collapse
Affiliation(s)
- H A Pérez-Ramírez
- Área de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, 02200 Ciudad de México, Mexico.
| | - A Moncho-Jordá
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - G Odriozola
- Área de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, 02200 Ciudad de México, Mexico.
| |
Collapse
|
6
|
Liu B, Yan X, Zhao Z, Wang J, Feng J. Distinctly different solvation behaviors of poly( N, N-diethylacrylamide) gels in water/acetone and water/DMSO mixtures. Phys Chem Chem Phys 2022; 24:23893-23902. [PMID: 36165400 DOI: 10.1039/d2cp02144g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvation behaviors and intermolecular interactions of a poly(N,N-diethylacrylamide) (PDEA) gel network in water/DMSO and water/acetone mixtures have been investigated by variable-temperature high-resolution 1H MAS NMR. Unlike decreasing volume phase transition temperature (VPTT) of the typical thermosensitive poly(N-isopropylacrylamide) (PNIPAM) gel induced by both acetone and DMSO in a water-rich region, distinct phase transition behaviors are revealed for the PDEA gel. That is, acetone is found to increase the VPTT of PDEA directly in the water-rich region while DMSO is also found to increase the VPTT of PDEA at a very low concentration but then decrease the VPTT as the concentration further increases. The above distinctly different VPTT shifts of PDEA are attributed to the different polymer-cosolvent interactions in water/acetone and water/DMSO systems. DMSO molecules with a strong water affinity are preferentially excluded by the PDEA gel network, and can promote the volume phase transition by favoring the collapse of the PDEA gel network, while acetone molecules preferentially adsorbed on the polymer interact with PDEA via non-specific van der Waals interaction, which favors the swollen state of the PDEA gel.
Collapse
Affiliation(s)
- Biaolan Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xiaoshuang Yan
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihui Zhao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Wang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiwen Feng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
7
|
Synthesis, characterization and application of dual thermo- and solvent-responsive double-hydrophilic diblock copolymers of N-acryloylmorpholine and N-isopropylacrylamide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Wang P, Geiger C, Kreuzer LP, Widmann T, Reitenbach J, Liang S, Cubitt R, Henschel C, Laschewsky A, Papadakis CM, Müller-Buschbaum P. Poly(sulfobetaine)-Based Diblock Copolymer Thin Films in Water/Acetone Atmosphere: Modulation of Water Hydration and Co-nonsolvency-Triggered Film Contraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6934-6948. [PMID: 35609178 DOI: 10.1021/acs.langmuir.2c00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied via spectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(N-isopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50-100 nm thickness are first swollen in saturated water vapor (H2O or D2O), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (H2O or D2O/acetone-d6 = 9:1 v/v). The affinity of the DBC film toward H2O is stronger than for D2O, as inferred from the higher film thickness in the swollen state and the higher absorbed water content, thus revealing a pronounced isotope sensitivity. During the co-solvent-induced switching by mixed water/acetone vapor, a two-step film contraction is observed, which is attributed to the delayed expulsion of water molecules and uptake of acetone molecules. The swelling kinetics are compared for both mixed vapors (H2O/acetone-d6 and D2O/acetone-d6) and with those of the related homopolymer films. Moreover, the concomitant variations of the local environment around the hydrophilic groups located in the PSBP and PNIPMAM blocks are followed. The first contraction step turns out to be dominated by the behavior of the PSBP block, whereas the second one is dominated by the PNIPMAM block. The unusual swelling and contraction behavior of the latter block is attributed to its co-nonsolvency behavior. Furthermore, we observe cooperative hydration effects in the DBC films, that is, both polymer blocks influence each other's solvation behavior.
Collapse
Affiliation(s)
- Peixi Wang
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Christina Geiger
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Lucas P Kreuzer
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Tobias Widmann
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Julija Reitenbach
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Suzhe Liang
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Robert Cubitt
- Institut-Laue-Langevin, 6 rue Jules Horowitz, Grenoble 38000, France
| | - Cristiane Henschel
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Street 24-25, Potsdam-Golm 14476, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Street 24-25, Potsdam-Golm 14476, Germany
- Fraunhofer Institut für Angewandte Polymerforschung, Geiselberg Street 69, Potsdam-Golm 14476, Germany
| | - Christine M Papadakis
- Fachgebiet Physik weicher Materie, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenberg Street 1, Garching 85748, Germany
| |
Collapse
|
9
|
Bharadwaj S, Niebuur BJ, Nothdurft K, Richtering W, van der Vegt NFA, Papadakis CM. Cononsolvency of thermoresponsive polymers: where we are now and where we are going. SOFT MATTER 2022; 18:2884-2909. [PMID: 35311857 DOI: 10.1039/d2sm00146b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cononsolvency is an intriguing phenomenon where a polymer collapses in a mixture of good solvents. This cosolvent-induced modulation of the polymer solubility has been observed in solutions of several polymers and biomacromolecules, and finds application in areas such as hydrogel actuators, drug delivery, compound detection and catalysis. In the past decade, there has been a renewed interest in understanding the molecular mechanisms which drive cononsolvency with a predominant emphasis on its connection to the preferential adsorption of the cosolvent. Significant efforts have also been made to understand cononsolvency in complex systems such as micelles, block copolymers and thin films. In this review, we will discuss some of the recent developments from the experimental, simulation and theoretical fronts, and provide an outlook on the problems and challenges which are yet to be addressed.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Bart-Jan Niebuur
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| | - Katja Nothdurft
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Nico F A van der Vegt
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Christine M Papadakis
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
10
|
Pica A, Graziano G. A Rationalization of the Effect That TMAO, Glycine, and Betaine Exert on the Collapse of Elastin-like Polypeptides. Life (Basel) 2022; 12:life12020140. [PMID: 35207427 PMCID: PMC8876568 DOI: 10.3390/life12020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
Elastin-like polypeptides (ELPs) are soluble in water at low temperature, but, on increasing the temperature, they undergo a reversible and cooperative, coil-to-globule collapse transition. It has been shown that the addition to water of either trimethylamine N-oxide (TMAO), glycine, or betaine causes a significant decrease of T(collapse) in the case of a specific ELP. Traditional rationalizations of these phenomena do not work in the present case. We show that an alternative approach, grounded in the magnitude of the solvent-excluded volume effect and its temperature dependence (strictly linked to the translational entropy of solvent and co-solute molecules), is able to rationalize the occurrence of ELP collapse in water on raising the temperature, as well as the T(collapse) lowering caused by the addition to water of either TMAO, glycine, or betaine.
Collapse
Affiliation(s)
- Andrea Pica
- ALPX, 71 Avenue des Martyrs, 38000 Grenoble, France;
| | - Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via Francesco de Sanctis snc, 82100 Benevento, Italy
- Correspondence:
| |
Collapse
|
11
|
Bharadwaj S, B SJ, van der Vegt NFA. Direct Calculation of Entropic Components in Cohesive Interaction Free Energies. J Phys Chem B 2021; 125:11026-11035. [PMID: 34570491 DOI: 10.1021/acs.jpcb.1c05748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cohesive interaction free energies entail an entropic component related to fluctuations of the energy associated with the attractive portion of the solute-solvent potential. The corresponding "fluctuation entropy" is fundamental in the solvation thermodynamics of macromolecular solutes and is linked to interfacial solvent density fluctuations and hydrophobic effects. Since the direct calculation of fluctuation entropy in molecular simulations is hampered by the poor sampling of high-energy tails in the solute-solvent energy distribution, indirect, and often approximate, routes for the calculation of fluctuation entropy are usually required, involving the modeling of geometrically frozen repulsive solute cavities in thermodynamic integration approaches. Herein, we propose a method to directly compute the fluctuation entropy by employing indirect umbrella sampling (INDUS). To validate the method, we consider model systems consisting of subnanometer oil droplets in water for which the fluctuation entropy can be computed exactly using indirect methods. The fluctuation entropy calculated with the newly proposed direct method agrees with the indirect reference calculations. We also observe that the solvation free energy and the contribution of the fluctuation entropy to it are of comparable magnitudes, particularly for larger oil droplets (∼1 nm). The proposed method can readily be employed for flexible macromolecular solutes and systems with extended hydrophobic surfaces or in the vicinity of a dewetting transition.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Shadrack Jabes B
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
12
|
Feasible Fabrication of Hollow Micro-vesicles by Non-amphiphilic Macromolecules Based on Interfacial Cononsolvency. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Ko CH, Henschel C, Meledam GP, Schroer MA, Guo R, Gaetani L, Müller-Buschbaum P, Laschewsky A, Papadakis CM. Co-Nonsolvency Effect in Solutions of Poly(methyl methacrylate)- b-poly( N-isopropylacrylamide) Diblock Copolymers in Water/Methanol Mixtures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chia-Hsin Ko
- Physik-Department, Fachgebiet Physik Weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Cristiane Henschel
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Golm, Germany
| | - Geethu P. Meledam
- Physik-Department, Fachgebiet Physik Weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Martin A. Schroer
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Renjun Guo
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Luka Gaetani
- Physik-Department, Fachgebiet Physik Weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Golm, Germany
- Fraunhofer-Institut für Angewandte Polymerforschung, Geiselbergstraße 69, 14476 Potsdam, Golm, Germany
| | - Christine M. Papadakis
- Physik-Department, Fachgebiet Physik Weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
14
|
Niebuur BJ, Lohstroh W, Ko CH, Appavou MS, Schulte A, Papadakis CM. Pressure Dependence of Water Dynamics in Concentrated Aqueous Poly( N-isopropylacrylamide) Solutions with a Methanol Cosolvent. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bart-Jan Niebuur
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Chia-Hsin Ko
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Christine M. Papadakis
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
15
|
Bharadwaj S, Nayar D, Dalgicdir C, van der Vegt NFA. An interplay of excluded-volume and polymer-(co)solvent attractive interactions regulates polymer collapse in mixed solvents. J Chem Phys 2021; 154:134903. [PMID: 33832270 DOI: 10.1063/5.0046746] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cosolvent effects on the coil-globule transitions in aqueous polymer solutions are not well understood, especially in the case of amphiphilic cosolvents that preferentially adsorb on the polymer and lead to both polymer swelling and collapse. Although a predominant focus in the literature has been placed on the role of polymer-cosolvent attractive interactions, our recent work has shown that excluded-volume interactions (repulsive interactions) can drive both preferential adsorption of the cosolvent and polymer collapse via a surfactant-like mechanism. Here, we further study the role of polymer-(co)solvent attractive interactions in two kinds of polymer solutions, namely, good solvent (water)-good cosolvent (alcohol) (GSGC) and poor solvent-good cosolvent (PSGC) solutions, both of which exhibit preferential adsorption of the cosolvent and a non-monotonic change in the polymer radius of gyration with the addition of the cosolvent. Interestingly, at low concentrations, the polymer-(co)solvent energetic interactions oppose polymer collapse in the GSGC solutions and contrarily support polymer collapse in the PSGC solutions, indicating the importance of the underlying polymer chemistry. Even though the alcohol molecules are preferentially adsorbed on the polymer, the trends of the energetic interactions at low cosolvent concentrations are dominated by the polymer-water energetic interactions in both the cases. Therefore, polymer-(co)solvent energetic interactions can either reinforce or compensate the surfactant-like mechanism, and it is this interplay that drives coil-to-globule transitions in polymer solutions. These results have implications for rationalizing the cononsolvency transitions in real systems such as polyacrylamides in aqueous alcohol solutions where the understanding of microscopic driving forces is still debatable.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Divya Nayar
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Cahit Dalgicdir
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
16
|
Khodambashi R, Alsaid Y, Rico R, Marvi H, Peet MM, Fisher RE, Berman S, He X, Aukes DM. Heterogeneous Hydrogel Structures with Spatiotemporal Reconfigurability using Addressable and Tunable Voxels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005906. [PMID: 33491825 DOI: 10.1002/adma.202005906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Stimuli-responsive hydrogels can sense environmental cues and change their volume accordingly without the need for additional sensors or actuators. This enables a significant reduction in the size and complexity of resulting devices. However, since the responsive volume change of hydrogels is typically uniform, their robotic applications requiring localized and time-varying deformations have been challenging to realize. Here, using addressable and tunable hydrogel building blocks-referred to as soft voxel actuators (SVAs)-heterogeneous hydrogel structures with programmable spatiotemporal deformations are presented. SVAs are produced using a mixed-solvent photopolymerization method, utilizing a fast reaction speed and the cononsolvency property of poly(N-isopropylacrylamide) (PNIPAAm) to produce highly interconnected hydrogel pore structures, resulting in tunable swelling ratio, swelling rate, and Young's modulus in a simple, one-step casting process that is compatible with mass production of SVA units. By designing the location and swelling properties of each voxel and by activating embedded Joule heaters in the voxels, spatiotemporal deformations are achieved, which enables heterogeneous hydrogel structures to manipulate objects, avoid obstacles, generate traveling waves, and morph to different shapes. Together, these innovations pave the way toward tunable, untethered, and high-degree-of-freedom hydrogel robots that can adapt and respond to changing conditions in unstructured environments.
Collapse
Affiliation(s)
- Roozbeh Khodambashi
- The Polytechnic School, Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Yousif Alsaid
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rossana Rico
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hamid Marvi
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Matthew M Peet
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Rebecca E Fisher
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Spring Berman
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel M Aukes
- The Polytechnic School, Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| |
Collapse
|
17
|
Nothdurft K, Müller DH, Mürtz SD, Meyer AA, Guerzoni LPB, Jans A, Kühne AJC, De Laporte L, Brands T, Bardow A, Richtering W. Is the Microgel Collapse a Two-Step Process? Exploiting Cononsolvency to Probe the Collapse Dynamics of Poly- N-isopropylacrylamide (pNIPAM). J Phys Chem B 2021; 125:1503-1512. [PMID: 33503378 DOI: 10.1021/acs.jpcb.0c10430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many applications of responsive microgels rely on the fast adaptation of the polymer network. However, the underlying dynamics of the de-/swelling process of the gels have not been fully understood. In the present work, we focus on the collapse kinetics of poly-N-isopropylacrylamide (pNIPAM) microgels due to cononsolvency. Cononsolvency means that either of the pure solvents, e.g., pure water or pure methanol, act as a so-called good solvent, leading to a swollen state of the polymer network. However, in mixtures of water and methanol, the previously swollen network undergoes a drastic volume loss. To further elucidate the cononsolvency transition, pNIPAM microgels with diameters between 20 and 110 μm were synthesized by microfluidics. To follow the dynamics, pure water was suddenly exchanged with an unfavorable mixture of 20 mol% methanol (solvent-jump) within a microfluidic channel. The dynamic response of the microgels was investigated by optical and fluorescence microscopy and Raman microspectroscopy. The experimental data provide unique and detailed insight into the size-dependent kinetics of the volume phase transition due to cononsolvency. The change in the microgel's diameter over time points to a two-step process of the microgel collapse with a biexponential behavior. Furthermore, the dependence between the two time constants from this biexponential behavior and the microgel's diameter in the collapsed state deviates from the square-power law proposed by Tanaka and Fillmore [ J. Chem. Phys. 1979, 70, 1214-1218]. The deviation is discussed considering the adhesion-induced deformation of the gels and the physical processes underlying the collapse.
Collapse
Affiliation(s)
- Katja Nothdurft
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - David H Müller
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany
| | - Sonja D Mürtz
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Anna A Meyer
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Luis P B Guerzoni
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Alexander Jans
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Alexander J C Kühne
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany
| | - Thorsten Brands
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany
| | - André Bardow
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany.,Department of Mechanical and Process Engineering, ETH Zürich, Tannenstr. 3, 8092 Zürich, Switzerland
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| |
Collapse
|
18
|
Grinberg VY, Burova TV, Grinberg NV, Moskalets AP, Dubovik AS, Plashchina IG, Khokhlov AR. Energetics and Mechanisms of poly(N-isopropylacrylamide) Phase Transitions in Water–Methanol Solutions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Valerij Y. Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Street. 4, Moscow 119991, Russia
| | - Tatiana V. Burova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
| | - Natalia V. Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
| | - Alexander P. Moskalets
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
| | - Alexander S. Dubovik
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Street. 4, Moscow 119991, Russia
| | - Irina G. Plashchina
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Street. 4, Moscow 119991, Russia
| | - Alexei R. Khokhlov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
- M.V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| |
Collapse
|
19
|
Cui W, Cai Y, Zheng Y, Ran R. Mechanical enhancement of hydrophobically associating hydrogels by solvent-regulated phase separation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
A cosolvent surfactant mechanism affects polymer collapse in miscible good solvents. Commun Chem 2020; 3:165. [PMID: 36703319 PMCID: PMC9814688 DOI: 10.1038/s42004-020-00405-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/14/2020] [Indexed: 01/29/2023] Open
Abstract
The coil-globule transition of aqueous polymers is of profound significance in understanding the structure and function of responsive soft matter. In particular, the remarkable effect of amphiphilic cosolvents (e.g., alcohols) that leads to both swelling and collapse of stimuli-responsive polymers has been hotly debated in the literature, often with contradictory mechanisms proposed. Using molecular dynamics simulations, we herein demonstrate that alcohols reduce the free energy cost of creating a repulsive polymer-solvent interface via a surfactant-like mechanism which surprisingly drives polymer collapse at low alcohol concentrations. This hitherto neglected role of interfacial solvation thermodynamics is common to all coil-globule transitions, and rationalizes the experimentally observed effects of higher alcohols and polymer molecular weight on the coil-to-globule transition of thermoresponsive polymers. Polymer-(co)solvent attractive interactions reinforce or compensate this mechanism and it is this interplay which drives polymer swelling or collapse.
Collapse
|
21
|
Quoika PK, Podewitz M, Wang Y, Kamenik AS, Loeffler JR, Liedl KR. Thermosensitive Hydration of Four Acrylamide-Based Polymers in Coil and Globule Conformations. J Phys Chem B 2020; 124:9745-9756. [PMID: 33054215 PMCID: PMC7604866 DOI: 10.1021/acs.jpcb.0c07232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
To
characterize the thermosensitive coil–globule transition in
atomistic detail, the conformational dynamics of linear polymer chains
of acrylamide-based polymers have been investigated at multiple temperatures.
Therefore, molecular dynamic simulations of 30mers of polyacrylamide
(AAm), poly-N-methylacrylamide (NMAAm), poly-N-ethylacrylamide (NEAAm), and poly-N-isopropylacrylamide
(NIPAAm) have been performed at temperatures ranging from 250 to 360
K for 2 μs. While two of the polymers are known to exhibit thermosensitivity
(NEAAm, NIPAAm), no thermosensitivity is observed for AAm and NMAAm
in aqueous solution. Our computer simulations consistently reproduce
these properties. To understand the thermosensitivity of the respective
polymers, the conformational ensembles at different temperatures have
been separated according to the coil–globule transition. The
coil and globule conformational ensembles were exhaustively analyzed
in terms of hydrogen bonding with the solvent, the change of the solvent
accessible surface, and enthalpic contributions. Surprisingly, independent
of different thermosensitive properties of the four polymers, the
surface affinity to water of coil conformations is higher than for
globule conformations. Therefore, polymer–solvent interactions
stabilize coil conformations at all temperatures. Nevertheless, the
enthalpic contributions alone cannot explain the differences in thermosensitivity.
This clearly implies that entropy is the distinctive factor for thermosensitivity.
With increasing side chain length, the lifetime of the hydrogen bonds
between the polymer surface and water is extended. Thus, we surmise
that a longer side chain induces a larger entropic penalty due to
immobilization of water molecules.
Collapse
Affiliation(s)
- Patrick K Quoika
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| | - Yin Wang
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| | - Anna S Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| | - Johannes R Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| |
Collapse
|
22
|
Raftopoulos KN, Kyriakos K, Nuber M, Niebuur BJ, Holderer O, Ohl M, Ivanova O, Pasini S, Papadakis CM. Co-nonsolvency in concentrated aqueous solutions of PNIPAM: effect of methanol on the collective and the chain dynamics. SOFT MATTER 2020; 16:8462-8472. [PMID: 32856669 DOI: 10.1039/d0sm01007c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The polymer dynamics in concentrated solutions of poly(N-isopropyl acrylamide) (PNIPAM) in D2O/CD3OD mixtures is investigated in the one-phase region. Two polymer concentrations (9 and 25 wt%) and CD3OD contents in the solvent mixture of 0, 10 and 15 vol% are chosen. Temperature-resolved dynamic light scattering (DLS) reveals the collective dynamics. Two modes are observed, namely the fast relaxation of polymer segments within the blobs and the slow collective relaxation of the blobs. As the cloud point is approached, the correlation length related to the fast mode increases with CD3OD content. It features critical scaling behavior, which is consistent with mean-field behavior for the 9 wt% PNIPAM solution in pure D2O and with 3D Ising behavior for all other solutions. While the slow mode is not very strong in the 9 wt% PNIPAM solution in pure D2O, it is significantly more prominent as CD3OD is added and at all CD3OD contents in the 25 wt% solution, which may be attributed to enhanced interaction between the polymers. Neutron spin-echo spectroscopy (NSE) reveals a decay in the intermediate structure factor which indicates a diffusive process. For the polymer concentration of 9 wt%, the diffusion coefficients from NSE are similar to the ones from the fast relaxation observed in DLS. In contrast, they are significantly lower for the solutions having a polymer concentration of 25 wt%, which is attributed to the influence of the dominant large-scale dynamic heterogeneities. To summarize, addition of cosolvent leads to enhanced large-scale heterogeneities, which are reflected in the dynamic behavior at small length scales.
Collapse
Affiliation(s)
- Konstantinos N Raftopoulos
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Konstantinos Kyriakos
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Matthias Nuber
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Bart-Jan Niebuur
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Olaf Holderer
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Michael Ohl
- Jülich Centre for Neutron Science JCNS-1, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Oxana Ivanova
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Stefano Pasini
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Christine M Papadakis
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| |
Collapse
|
23
|
Nayar D. Small crowder interactions can drive hydrophobic polymer collapse as well as unfolding. Phys Chem Chem Phys 2020; 22:18091-18101. [PMID: 32760995 DOI: 10.1039/d0cp02402c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomolecules evolve and function in the intracellular crowded environment that is densely packed with macromolecules. Yet, a microscopic understanding of the effects of such an environment on the conformational preferences of biomolecules remains elusive. While prior investigations have attributed crowding effects mainly to the excluded volume (size) effects of the crowders, very little is known about the effects exerted due to their chemical interactions. In this study, crowding effects of tri-alanine peptides on the collapse equilibria of generic hydrophobic polymer are investigated using molecular dynamics simulations. The role of weak, non-specific, attractive polymer-crowder interactions in modulating the polymer collapse equilibria is examined. The results highlight that crowding effects can lead to polymer compaction as well as unfolding depending on the strength of polymer-crowder interaction energy. Strongly interacting crowders weaken hydrophobic collapse (or unfold the polymer) at high volume fractions and induce polymer collapse only under dilute conditions. Weakly interacting crowders induce polymer collapse at all crowder concentrations. Interestingly, the thermodynamic driving forces for polymer collapse are remarkably different in the two cases. Strongly and weakly interacting crowders induce collapse by preferential adsorption and preferential depletion respectively. The findings provide new insights into the possible effects of interplay of intermolecular interactions in a crowded environment. The results have implications in understanding the impact of crowding in altering free energy landscapes of proteins.
Collapse
Affiliation(s)
- Divya Nayar
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
24
|
Niebuur BJ, Ko CH, Zhang X, Claude KL, Chiappisi L, Schulte A, Papadakis CM. Pressure Dependence of the Cononsolvency Effect in Aqueous Poly(N-isopropylacrylamide) Solutions: A SANS Study. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bart-Jan Niebuur
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Chia-Hsin Ko
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xiaohan Zhang
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Kora-Lee Claude
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Leonardo Chiappisi
- Large Scale Structures Group, Institut Laue-Langevin, 71, Avenue des Martyrs, CS 20 156, 38042 Grenoble, France
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Christine M. Papadakis
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
25
|
Polák J, Ondo D, Heyda J. Thermodynamics of N-Isopropylacrylamide in Water: Insight from Experiments, Simulations, and Kirkwood-Buff Analysis Teamwork. J Phys Chem B 2020; 124:2495-2504. [PMID: 32118440 DOI: 10.1021/acs.jpcb.0c00413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The behavior of thermoresponsive polymer poly(N-isopropylacrylamide) (PNiPAM), an essential building block in the design of smart soft materials, in aqueous solutions has attracted much interest, which contrasts with our knowledge of N-isopropylacrylamide (NiPAM) monomer. Strikingly, the physicochemical properties of aqueous NiPAM are similarly rich, and their understanding is far from being complete. This stems from the lack of accurate thermodynamic data and quantitative model for atomistic simulations. In this joint study, we have probed the thermodynamic behavior of aqueous NiPAM by experimental methods, molecular dynamics (MD) simulations, and Kirkwood-Buff (KB) analysis at ambient conditions. From the partial molar volumes and simultaneously correlated osmotic coefficients, with excess partial molar enthalpies of NiPAM in water, the concentration and temperature dependence of KB integrals was determined. For the purpose of this work, we have developed and employed a novel NiPAM force field, which not only reproduces KB integrals (Gij) and adequately captures macroscopic thermodynamic quantities but also provides more accurate structural insight than the original force fields. We revealed in the vicinity of NiPAM the competing effect of amide hydration with interaction between nonpolar regions. This microscopic picture is reflected in the experimentally observed NiPAM-NiPAM association, which is present from highly dilute conditions up to the solubility limit and is evidenced by G22. From intermediate concentrations, it is accompanied by the existence of apparent dense-water regions, as indicated by positive G11 values. The here-employed KB-based framework provided a mutually consistent thermodynamic and microscopic insight into the NiPAM solution and may be further extended for ion-specific effects. Moreover, our findings contribute to the understanding of thermodynamic grounds behind PNiPAM collapse transition.
Collapse
Affiliation(s)
- Jakub Polák
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Daniel Ondo
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
26
|
Molecular description of the coil-to-globule transition of Poly(N-isopropylacrylamide) in water/ethanol mixture at low alcohol concentration. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111928] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Pica A, Graziano G. Effect of sodium thiocyanate and sodium perchlorate on poly(N-isopropylacrylamide) collapse. Phys Chem Chem Phys 2019; 22:189-195. [PMID: 31799525 DOI: 10.1039/c9cp05706d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The T(collapse) of poly(N-isopropylacrylamide), PNIPAM, shows a nonlinear dependence on the concentration of NaSCN or NaClO4; in the case of NaClO4, for example, at very low concentrations of the salt, T(collapse) increases with the concentration, while it has an opposite trend at higher NaClO4 concentrations [J. Am. Chem. Soc., 2005, 127, 14505]. These puzzling experimental data can be rationalized by considering that low charge density and poorly hydrated ions, such as thiocyanate and perchlorate, interact preferentially with the surface of the polymer, and cause an increase of the magnitude of the energetic term that stabilizes swollen conformations at low salt concentrations. However, as both swollen and collapsed PNIPAM conformations are accessible to such ions in view of their large conformational freedom, the difference in the number of ions bound to PNIPAM surface upon collapse changes little on increasing the salt concentration. Thus, the energetic term that favors swollen conformations increases with salt concentration to a lesser extent than the solvent-excluded volume term (linked to the density increase caused by salt addition to water), that favors collapsed conformations, leading to a nonlinear trend of T(collapse).
Collapse
Affiliation(s)
- Andrea Pica
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, Grenoble, France
| | | |
Collapse
|
28
|
Pooch F, Teltevskij V, Karjalainen E, Tenhu H, Winnik FM. Poly(2-propyl-2-oxazoline)s in Aqueous Methanol: To Dissolve or not to Dissolve. Macromolecules 2019; 52:6361-6368. [PMID: 31543552 PMCID: PMC6748674 DOI: 10.1021/acs.macromol.9b01234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/01/2019] [Indexed: 11/30/2022]
Abstract
![]()
At
room temperature, poly(N-isopropylacrylamide)
(PNIPAM) is soluble in water and methanol, but it is not soluble in
certain water/methanol mixtures. This phenomenon, known as cononsolvency,
has been explored in great detail experimentally and theoretically
in an attempt to understand the complex interactions occurring in
the ternary PNIPAM/water/co-nonsolvent system. Yet little is known
about the effects of the polymer structure on cononsolvency. To address
this point, we investigated the temperature-dependent solution properties
in water, methanol, and mixtures of the two solvents of poly(2-cyclopropyl-2-oxazoline)
(PcyPOx) and two structural isomers of PNIPAM (Mn ∼ 11 kg/mol): poly(2-isopropyl-2-oxazoline) (PiPOx)
and poly(2-n-propyl-2-oxazoline) (PnPOx). The phase
diagram of the ternary water/methanol/poly(2-propyl-2-oxazolines)
(PPOx) systems, constructed based on cloud point (TCP) measurements, revealed that PnPOx exhibits cononsolvency
in water/methanol mixtures. In contrast, methanol acts as a cosolvent
for PiPOx and PcyPOx in water. The enthalpy, ΔH, and temperature, Tmax, of the coil-to-globule
transition of the three polymers in various water/methanol mixtures
were measured by high-sensitivity differential scanning calorimetry. Tmax follows the same trends as TCP, confirming the cononsolvency of PnPOx and the cosolvency
of PiPOx and PcyPOx. ΔH decreases linearly
as a function of the methanol content for all PPOx systems. Ancillary
high-resolution 1H NMR spectroscopy studies of PPOx solutions
in D2O and methanol-d4, coupled
with DOSY and NOESY experiments revealed that the n-propyl group of PnPOx rotates freely in D2O, whereas
the rotation of the isopropyl and cyclopropyl groups of PiPOx and
PcyPOx, respectively, is limited due to steric restriction. This factor
appears to play an important role in the case of the PPOxs/water/methanol
ternary system.
Collapse
Affiliation(s)
- Fabian Pooch
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Valerij Teltevskij
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Erno Karjalainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Françoise M Winnik
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland.,International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
29
|
Pica A, Graziano G. Why does urea have a different effect on the collapse temperature of PDEAM and PNIPAM? J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Affiliation(s)
- Swaminath Bharadwaj
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
31
|
Lang X, Xu EX, Wei Y, Walters LN, Hore MJ. Isomeric and structural effects in polymer cononsolvent systems. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Zuo T, Ma C, Jiao G, Han Z, Xiao S, Liang H, Hong L, Bowron D, Soper A, Han CC, Cheng H. Water/Cosolvent Attraction Induced Phase Separation: A Molecular Picture of Cononsolvency. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Taisen Zuo
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
| | - Changli Ma
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
| | - Guisheng Jiao
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
| | - Zehua Han
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liang Hong
- School of Physics and Astronomy &Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel Bowron
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Alan Soper
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Charles C. Han
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, China
| | - He Cheng
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
| |
Collapse
|
33
|
Nothdurft K, Müller DH, Brands T, Bardow A, Richtering W. Enrichment of methanol inside pNIPAM gels in the cononsolvency-induced collapse. Phys Chem Chem Phys 2019; 21:22811-22818. [DOI: 10.1039/c9cp04383g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
From Raman, we determined an enrichment of methanol inside the polymer in the cononsolvency-induced collapse and donor-type hydrogen-bonding of methanol with pNIPAM.
Collapse
Affiliation(s)
- Katja Nothdurft
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - David H. Müller
- Institute of Technical Thermodynamics
- RWTH Aachen University
- 52062 Aachen
- Germany
| | - Thorsten Brands
- Institute of Technical Thermodynamics
- RWTH Aachen University
- 52062 Aachen
- Germany
| | - André Bardow
- Institute of Technical Thermodynamics
- RWTH Aachen University
- 52062 Aachen
- Germany
| | - Walter Richtering
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| |
Collapse
|
34
|
Pérez-Ramírez HA, Haro-Pérez C, Vázquez-Contreras E, Klapp J, Bautista-Carbajal G, Odriozola G. P-NIPAM in water–acetone mixtures: experiments and simulations. Phys Chem Chem Phys 2019; 21:5106-5116. [DOI: 10.1039/c8cp07549b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The lower critical solution temperature (LCST) of poly-N-isopropylacrylamide (p-NIPAM) diminishes when a small volume of acetone is added to the aqueous polymer solution, and then increases for further additions, producing a minimum at a certain acetone concentration.
Collapse
Affiliation(s)
- H. A. Pérez-Ramírez
- Área de Física de Procesos Irreversibles
- División de Ciencias Básicas e Ingeniería
- Universidad Autónoma Metropolitana-Azcapotzalco
- Av. San Pablo 180
- 02200 Ciudad de México
| | - C. Haro-Pérez
- Área de Física de Procesos Irreversibles
- División de Ciencias Básicas e Ingeniería
- Universidad Autónoma Metropolitana-Azcapotzalco
- Av. San Pablo 180
- 02200 Ciudad de México
| | - E. Vázquez-Contreras
- Departamento de Ciencias Naturales
- CNI
- Universidad Autónoma Metropolitana – Cuajimalpa
- Av. Vasco de Quiroga 4871
- 05348 Ciudad de México
| | - J. Klapp
- Instituto Nacional de Investigaciones Nucleares
- ININ
- Km. 36.5, Carretera México – Toluca
- 52750 Ocoyoacac
- Mexico
| | - G. Bautista-Carbajal
- Academia de Matemáticas
- Universidad Autónoma de la Ciudad de México
- 07160 Ciudad de México
- Mexico
| | - G. Odriozola
- Área de Física de Procesos Irreversibles
- División de Ciencias Básicas e Ingeniería
- Universidad Autónoma Metropolitana-Azcapotzalco
- Av. San Pablo 180
- 02200 Ciudad de México
| |
Collapse
|
35
|
Nian S, Pu L. Racemic Fluorescence Probe for Enantiomeric Excess Determination: Application of Cononsolvency of a Polymer in Sensing. J Org Chem 2018; 84:909-913. [DOI: 10.1021/acs.joc.8b02793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shifeng Nian
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Lin Pu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
36
|
Velychkivska N, Starovoytova L, Březina V, Hanyková L, Hill JP, Labuta J. Improving the Colloidal Stability of Temperature-Sensitive Poly( N-isopropylacrylamide) Solutions Using Low Molecular Weight Hydrophobic Additives. ACS OMEGA 2018; 3:11865-11873. [PMID: 31459272 PMCID: PMC6645090 DOI: 10.1021/acsomega.8b01811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 06/10/2023]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) is an important polymer with stimuli-responsive properties, making it suitable for various uses. Phase behavior of the temperature-sensitive PNIPAM polymer in the presence of four low-molecular weight additives tert-butylamine (t-BuAM), tert-butyl alcohol (t-BuOH), tert-butyl methyl ether (t-BuME), and tert-butyl methyl ketone (t-BuMK) was studied in water (D2O) using high-resolution nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering. Phase separation was thermodynamically modeled as a two-state process which resulted in a simple curve which can be used for fitting of NMR data and obtaining all important thermodynamic parameters using simple formulas presented in this paper. The model is based on a modified van't Hoff equation. Phase separation temperatures T p and thermodynamic parameters (enthalpy and entropy change) connected with the phase separation of PNIPAM were obtained using this method. It was determined that T p is dependent on additives in the following order: T p(t-BuAM) > T p(t-BuOH) > T p(t-BuME) > T p(t-BuMK). Also, either increasing the additive concentration or increasing pK a of the additive leads to depression of T p. Time-resolved 1H NMR spin-spin relaxation experiments (T 2) performed above the phase separation temperature of PNIPAM revealed high colloidal stability of the phase-separated polymer induced by the additives (relative to the neat PNIPAM/D2O system). Small quantities of selected suitable additives can be used to optimize the properties of PNIPAM preparations including their phase separation temperatures, colloidal stabilities, and morphologies, thus improving the prospects for the application.
Collapse
Affiliation(s)
- Nadiia Velychkivska
- Department
of NMR Spectroscopy, Institute of Macromolecular
Chemistry AS CR, v.v.i., Heyrovsky Sq. 2, Prague 6 162 06, Czech Republic
| | - Larisa Starovoytova
- Department
of NMR Spectroscopy, Institute of Macromolecular
Chemistry AS CR, v.v.i., Heyrovsky Sq. 2, Prague 6 162 06, Czech Republic
| | - Václav Březina
- Faculty
of Mathematics and Physics, Department of Macromolecular Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Lenka Hanyková
- Faculty
of Mathematics and Physics, Department of Macromolecular Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Jonathan P. Hill
- National
Institute for Materials Science (NIMS), International Center for Materials
Nanoarchitectonics (WPI-MANA), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jan Labuta
- National
Institute for Materials Science (NIMS), International Center for Materials
Nanoarchitectonics (WPI-MANA), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
37
|
Chen Z, Yu S, Liu D, Shi S, Shen W. Solvation Behaviors of Poly(acrylic acid) in Mixed Solvents of 2-Butoxyethanol + Water. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0809-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Svoboda M, Lísal M, Limpouchová Z, Procházka K. Effect of preferential solvation of polymer chains on vapor-pressure osmometry results: Computer simulation study. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2018. [DOI: 10.1080/1023666x.2018.1423726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Martin Svoboda
- Laboratory of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals of CAS, v. v. i., Prague, Czech Republic
- Department of Physics, Faculty of Science, J. E. Purkinje University, Ústí n. Lab, Czech Republic
| | - Martin Lísal
- Laboratory of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals of CAS, v. v. i., Prague, Czech Republic
- Department of Physics, Faculty of Science, J. E. Purkinje University, Ústí n. Lab, Czech Republic
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Karel Procházka
- Laboratory of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals of CAS, v. v. i., Prague, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
39
|
Bharadwaj S, Sunil Kumar PB, Komura S, Deshpande AP. Kosmotropic effect leads to LCST decrease in thermoresponsive polymer solutions. J Chem Phys 2018; 148:084903. [DOI: 10.1063/1.5012838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Swaminath Bharadwaj
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036,
India
| | - P. B. Sunil Kumar
- Department of Physics, Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Kozhippara, Palakkad
678557, India
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397,
Japan
| | - Abhijit P. Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036,
India
| |
Collapse
|
40
|
Nayar D, van der Vegt NFA. Cosolvent Effects on Polymer Hydration Drive Hydrophobic Collapse. J Phys Chem B 2018; 122:3587-3595. [PMID: 29443520 DOI: 10.1021/acs.jpcb.7b10780] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Water-mediated hydrophobic interactions play an important role in self-assembly processes, aqueous polymer solubility, and protein folding, to name a few. Cosolvents affect these interactions; however, the implications for hydrophobic polymer collapse and protein folding equilibria are not well-understood. This study examines cosolvent effects on the hydrophobic collapse equilibrium of a generic 32-mer hydrophobic polymer in urea, trimethylamine- N-oxide (TMAO), and acetone aqueous solutions using molecular dynamics simulations. Our results unveil a remarkable cosolvent-concentration-dependent behavior. Urea, TMAO, and acetone all shift the equilibrium toward collapsed structures below 2 M cosolvent concentration and, in turn, to unfolded structures at higher cosolvent concentrations, irrespective of the differences in cosolvent chemistry and the nature of cosolvent-water interactions. We find that weakly attractive polymer-water van der Waals interactions oppose polymer collapse in pure water, corroborating related observations reviewed by Ben-Amotz ( Annu. Rev. Phys. Chem. 2016, 67, 617-638). The cosolvents studied in the present work adsorb at the polymer/water interface and expel water molecules into the bulk, thereby effectively removing the dehydration energy penalty that opposes polymer collapse in pure water. At low cosolvent concentrations, this leads to cosolvent-induced stabilization of collapsed polymer structures. Only at sufficiently high cosolvent concentrations, polymer-cosolvent interactions favor polymer unfolding.
Collapse
Affiliation(s)
- Divya Nayar
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Center of Smart Interfaces , Technische Universität Darmstadt , Alarich-Weiss-Strasse 10 , 64287 , Darmstadt , Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Center of Smart Interfaces , Technische Universität Darmstadt , Alarich-Weiss-Strasse 10 , 64287 , Darmstadt , Germany
| |
Collapse
|
41
|
Budkov YA, Kiselev MG. Flory-type theories of polymer chains under different external stimuli. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:043001. [PMID: 29271365 DOI: 10.1088/1361-648x/aa9f56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.
Collapse
Affiliation(s)
- Yu A Budkov
- Tikhonov Moscow Institute of Electronics and Mathematics, School of Applied Mathematics, National Research University Higher School of Economics, Moscow, Russia. Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | | |
Collapse
|
42
|
Pica A, Graziano G. On the cononsolvency behaviour of hydrophobic clusters in water–methanol solutions. Phys Chem Chem Phys 2018; 20:7230-7235. [DOI: 10.1039/c7cp07943e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The solvent-excluded volume effect cannot rationalize the cononsolvency phenomenon of polymers, such as PNIPAM, in water–methanol solutions.
Collapse
Affiliation(s)
- Andrea Pica
- Dipartimento di Scienze Chimiche
- Università degli Studi di Napoli Federico II Complesso Universitario di Monte Sant’Angelo
- Napoli
- USA
| | - Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie
- Università del Sannio Via Port’Arsa 11
- Benevento 82100
- Italy
| |
Collapse
|
43
|
Graziano G. Comment on “On the positional and orientational order of water and methanol around indole: a study on the microscopic origin of solubility” Phys. Chem. Chem. Phys., 2016, 18, 23006. Phys Chem Chem Phys 2018; 20:2113-2115. [DOI: 10.1039/c7cp03698a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Indole solubility is larger in methanol than in water due to lower magnitude of the cavity creation work.
Collapse
Affiliation(s)
- Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie
- Università del Sannio
- Via Port’Arsa 11
- 82100 Benevento
- Italy
| |
Collapse
|
44
|
Umapathi R, Reddy PM, Rani A, Venkatesu P. Influence of additives on thermoresponsive polymers in aqueous media: a case study of poly(N-isopropylacrylamide). Phys Chem Chem Phys 2018; 20:9717-9744. [DOI: 10.1039/c7cp08172c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermoresponsive polymers (TRPs) in different solvent media have been studied over a long period and are important from both scientific and technical points of view.
Collapse
Affiliation(s)
| | - P. Madhusudhana Reddy
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
- Department of Chemical Engineering
| | - Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | | |
Collapse
|
45
|
Nian S, Pu L. Amphiphilic Polymer‐Based Fluorescent Probe for Enantioselective Recognition of Amino Acids in Immiscible Water and Organic Phases. Chemistry 2017; 23:18066-18073. [DOI: 10.1002/chem.201704473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Shifeng Nian
- Department of Chemistry University of Virginia Charlottesville VA 22904-4319 USA
| | - Lin Pu
- Department of Chemistry University of Virginia Charlottesville VA 22904-4319 USA
| |
Collapse
|
46
|
Budkov YA, Kolesnikov AL. Statistical description of co-nonsolvency suppression at high pressures. SOFT MATTER 2017; 13:8362-8367. [PMID: 29116278 DOI: 10.1039/c7sm01637a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present an application of Flory-type theory of a flexible polymer chain dissolved in a binary mixture of solvents to theoretical description of co-nonsolvency. We show that our theoretical predictions are in good quantitative agreement with the recently published MD simulation results for the conformational behavior of a Lennard-Jones flexible chain in a binary mixture of the Lennard-Jones fluids. We show that our theory is able to describe co-nonsolvency suppression through pressure enhancement to extremely high values recently discovered in experiments and reproduced by full atomistic MD simulations. By analysing the co-solvent concentration in the internal polymer volume at different pressure values, we speculate that this phenomenon is caused by the suppression of the co-solvent preferential solvation of the polymer backbone at the rather high pressure imposed. We show that when the co-solvent-induced coil-globule transition takes place, the entropy and enthalpy contributions to the solvation free energy abruptly decrease, while the solvation free energy remains continuous.
Collapse
Affiliation(s)
- Yu A Budkov
- Tikhonov Moscow Institute of Electronics and Mathematics, School of Applied Mathematics, National Research University Higher School of Economics, Tallinskaya St. 34, 123458 Moscow, Russia.
| | | |
Collapse
|
47
|
Pica A, Graziano G. Comment on "Relating side chain organization of PNIPAm with its conformation in aqueous methanol" by D. Mukherji, M. Wagner, M. D. Watson, S. Winzen, T. E. de Oliveira, C. M. Marques and K. Kremer, Soft Matter, 2016, 12, 7995. SOFT MATTER 2017; 13:7698-7700. [PMID: 29051960 DOI: 10.1039/c7sm01065f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In a recent article, Kremer and co-workers have combined NMR measurements and very long, all-atom MD simulations to strengthen their original claim that PNIPAM cononsolvency in water-methanol solutions is driven by the ability of MeOH molecules to bridge different monomers far away along the polymeric chain. In this comment, the results presented by Kremer and co-workers are reviewed, analyzed, and questioned regarding their ability to provide support to the bridging mechanism. Here, some pieces of evidence are provided to show that: (1) the solvent-excluded volume effect plays always a fundamental role in polymer collapse; (2) PNIPAM cononsolvency is caused by the geometric-energetic frustration experienced by the polymer when it can interact with both water and methanol molecules at the same time.
Collapse
Affiliation(s)
- Andrea Pica
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Napoli, Italy
| | | |
Collapse
|
48
|
Mukherji D, Wagner M, Watson MD, Winzen S, de Oliveira TE, Marques CM, Kremer K. Reply to the 'Comment on "Relating side chain organization of PNIPAm with its conformation in aqueous methanol"' by A. Pica and G. Graziano, Soft Matter, 2017, 13, DOI: 10.1039/C7SM01065F. SOFT MATTER 2017; 13:7701-7703. [PMID: 29057420 DOI: 10.1039/c7sm01880k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have recently proposed preferential binding by a cosolvent as the mechanism for chain collapse under co-non-solvency. Here we summarise our earlier works and provide further evidence that alcohol preferentially binds to PNIPAm, forming cosolvent bridges, and thus drives the transition. We also clarify some of the common misconceptions evoked in this debate with Pica and Graziano (PG), reinforcing the arguments of our earlier reply-comment [Soft Matter, 2017, 13, 2292] and published works.
Collapse
Affiliation(s)
- Debashish Mukherji
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
van der Vegt NFA, Nayar D. The Hydrophobic Effect and the Role of Cosolvents. J Phys Chem B 2017; 121:9986-9998. [DOI: 10.1021/acs.jpcb.7b06453] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nico F. A. van der Vegt
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Divya Nayar
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
50
|
Dalgicdir C, Rodríguez-Ropero F, van der Vegt NFA. Computational Calorimetry of PNIPAM Cononsolvency in Water/Methanol Mixtures. J Phys Chem B 2017; 121:7741-7748. [DOI: 10.1021/acs.jpcb.7b05960] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cahit Dalgicdir
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt, Germany
| | - Francisco Rodríguez-Ropero
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|