1
|
Jang D, Park M, Maeng J, Ha J, Choi S, Kim N, Seo MH, Kim WB. Structural Modification Effect of Se-doped Porous Carbon for Hydrogen Evolution Coupled Selective Electrooxidation of Ethylene Glycol to Value-added Glycolic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404540. [PMID: 39246204 DOI: 10.1002/smll.202404540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/24/2024] [Indexed: 09/10/2024]
Abstract
The ethylene glycol oxidation reaction (EGOR) has attracted attention because ethylene glycol (EG), which exhibits large-scale production and a low market price, can be reformed into valuable glycolic acid (GCA) with the cogeneration of high-purity hydrogen gas during the reaction. In this study, a noble catalyst material of Pt nanoparticles supported on Se-doped porous carbon (Pt/SePC) is prepared and investigated for the selective electrochemical oxidation of EG to GCA. Pt/SePC achieved a maximum EG conversion of 94.6% and GCA selectivity of 84.4% and maintained this high performance with negligible degradation during durability tests. Furthermore, the EGOR required lower overpotential rather than the oxygen evolution reaction, thus the EGOR coupled with the hydrogen evolution reaction can reduce the cell overpotential to 0.60 V, which is much lower than that of water electrolysis (1.58 V). The effect of Se doping is investigated through experimental analyses and density functional theory (DFT) calculations, and they shows that Se modified the binding energy of Pt nanoparticles and the adsorption energy of reactants by lattice deformation and charge density modification. This study provides scientific insights and strategies for electrocatalyst design for the selective oxidation of polyols to value-added chemicals via the cogeneration of hydrogen gas.
Collapse
Affiliation(s)
- Daehee Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Minseon Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Junbeom Maeng
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jungseub Ha
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sehun Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Nayeon Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Min Ho Seo
- Department of Nanotechnology Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48547, Republic of Korea
| | - Won Bae Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Graduate Institute of Ferrous & Eco Materials Technology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
2
|
J HM, Velachi V, Maiti PK. Gold nanoparticles aggregation on graphene using Reactive force field: A molecular dynamic study. J Chem Phys 2023; 159:154702. [PMID: 37843058 DOI: 10.1063/5.0173905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
We examine the aggregation behavior of AuNPs of different sizes on graphene as function of temperature using molecular dynamic simulations with Reax Force Field. In addition, the consequences of such aggregation on the morphology of AuNPs and the charge transfer behavior of AuNP-Graphene hybrid structure are analyzed. The aggregation of AuNPs on graphene is confirmed from the center of mass distance calculation. The simulation results indicate that the size of AuNPs and temperature significantly affect the aggregation behavior of AuNPs on graphene. The strain calculation showed that shape of AuNPs changes due to the aggregation and the smaller size AuNPs on graphene exhibit more shape changes than larger AuNPs at all the temperatures studies in this work. The charge transfer calculation reveals that, the magnitude of charge transfer is higher for larger AuNPs-graphene composite when compared with smaller AuNPs-graphene composite. The charge transfer trend and the trends seen in the number of Au atoms directly in touch with graphene are identical. Hence, our results conclude that, quantity of Au atoms directly in contact with graphene during aggregation is primarily facilitates charge transfer between AuNPs and graphene. Our results on the size dependent strain and charge transfer characteristics of AuNPs will aid in the development of AuNPs-graphene composites for sensor applications.
Collapse
Affiliation(s)
- Hingies Monisha J
- PG & Research Department of Physics, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620002, Tamilnadu, India
| | - Vasumathi Velachi
- PG & Research Department of Physics, Holy Cross College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620002, Tamilnadu, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Zhang KX, Liu ZP. Electrochemical hydrogen evolution on Pt-based catalysts from a theoretical perspective. J Chem Phys 2023; 158:141002. [PMID: 37061480 DOI: 10.1063/5.0142540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Hydrogen evolution reaction (HER) by splitting water is a key technology toward a clean energy society, where Pt-based catalysts were long known to have the highest activity under acidic electrochemical conditions but suffer from high cost and poor stability. Here, we overview the current status of Pt-catalyzed HER from a theoretical perspective, focusing on the methodology development of electrochemistry simulation, catalytic mechanism, and catalyst stability. Recent developments in theoretical methods for studying electrochemistry are introduced, elaborating on how they describe solid-liquid interface reactions under electrochemical potentials. The HER mechanism, the reaction kinetics, and the reaction sites on Pt are then summarized, which provides an atomic-level picture of Pt catalyst surface dynamics under reaction conditions. Finally, state-of-the-art experimental solutions to improve catalyst stability are also introduced, which illustrates the significance of fundamental understandings in the new catalyst design.
Collapse
Affiliation(s)
- Ke-Xiang Zhang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Rigo VA, Baletto F. Pt 38 as a promising ethanol catalyst: a first principles study. Phys Chem Chem Phys 2023; 25:4649-4655. [PMID: 36722856 DOI: 10.1039/d2cp04323h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This first-principles study predicts Pt38 nanoparticles as a catalyst for ethanol reactions. Starting from the adsorption properties, we shed light on the effectiveness of Pt-based nanoclusters as ethanol catalysts. First, the ethanol adsorption on Pt38 shows that the most stable site positions the molecule with the oxygen anchored on top of an edge, whereas CH3 is oriented towards the facet and the molecule remains in trans-symmetry. The ethanol-oxygen adsorbed on top of a facet Pt-atom offers the least stable configuration and the longer Pt-O distance (2.318 Å), while the shorter Pt-O distance (2.237 Å) is found when ethanol is on top of an edge site and the molecule is vertically oriented with Gauche symmetry. A shorter Pt-O distance correlates with higher radial breathing of the nanoparticle after ethanol adsorption. Atomic charge redistribution is calculated on all the considered systems and cases. In any event, we show that the Pt-anchor receives a charge, whilst oxygen-ethanol donates electrons. Orbital analysis shows that Pt-anchors and ethanol-oxygen atoms primarily exchange p-charge. Energy barriers associated with the ethanol bond cleavage show that the C-C bond break is slightly more favourable on Pt38 than on an extended Pt(111). In addition, we find that the cleavage of the hydroxyl O-H ethanol bond shows a higher energy barrier while the removal of an H-atom from the CH3 group is easier. These three facts indicate that the Pt38 nanoparticle enhances ethanol catalysis and hence is a good candidate for ethanol-based fuel cells.
Collapse
Affiliation(s)
- Vagner Alexandre Rigo
- Department of Natural Sciences, Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, 86300-000, Brazil.
| | - Francesca Baletto
- Physics Department, University of Milan, Via Celoria 16, 20133, Italy.,Physics Department, King's College London, Strand WC2R 2LS, UK
| |
Collapse
|
5
|
Ficca VCA, Santoro C, Placidi E, Arciprete F, Serov A, Atanassov P, Mecheri B. Exchange Current Density as an Effective Descriptor of Poisoning of Active Sites in Platinum Group Metal-free Electrocatalysts for Oxygen Reduction Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Valerio C. A. Ficca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185Roma, Italy
| | - Carlo Santoro
- Electrocatalysis and Bioelectrocatalysis Laboratory (EBLab), Department of Material Science, University of Milan Bicocca, U5 Via Cozzi 55, 20125Milan, Italy
| | - Ernesto Placidi
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185Roma, Italy
| | - Fabrizio Arciprete
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Rome, Italy
| | - Alexey Serov
- Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Plamen Atanassov
- Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, Irvine, California92697, United States
| | - Barbara Mecheri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Rome, Italy
| |
Collapse
|
6
|
Exploring the Potential Energy Surface of Pt 6 Sub-Nano Clusters Deposited over Graphene. Int J Mol Sci 2023; 24:ijms24010870. [PMID: 36614312 PMCID: PMC9820941 DOI: 10.3390/ijms24010870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Catalytic systems based on sub-nanoclusters deposited over different supports are promising for very relevant chemical transformations such as many electrocatalytic processes as the ORR. These systems have been demonstrated to be very fluxional, as they are able to change shape and interconvert between each other either alone or in the presence of adsorbates. In addition, an accurate representation of their catalytic activity requires the consideration of ensemble effects and not a single structure alone. In this sense, a reliable theoretical methodology should assure an accurate and extensive exploration of the potential energy surface to include all the relevant structures and with correct relative energies. In this context, we applied DFT in conjunction with global optimization techniques to obtain and analyze the characteristics of the many local minima of Pt6 sub-nanoclusters over a carbon-based support (graphene)-a system with electrocatalytic relevance. We also analyzed the magnetism and the charge transfer between the clusters and the support and paid special attention to the dependence of dispersion effects on the ensemble characteristics. We found that the ensembles computed with and without dispersion corrections are qualitatively similar, especially for the lowest-in-energy clusters, which we attribute to a (mainly) covalent binding to the surface. However, there are some significant variations in the relative stability of some clusters, which would significantly affect their population in the ensemble composition.
Collapse
|
7
|
Dawson W, Degomme A, Stella M, Nakajima T, Ratcliff LE, Genovese L. Density functional theory calculations of large systems: Interplay between fragments, observables, and computational complexity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Martina Stella
- Department of Materials Imperial College London London UK
| | | | | | - Luigi Genovese
- Université Grenoble Alpes, INAC‐MEM, L_Sim Grenoble France
| |
Collapse
|
8
|
Ohnuma A, Takahashi K, Tsunoyama H, Inoue T, Zhao P, Velloth A, Ehara M, Ichikuni N, Tabuchi M, Nakajima A. Enhanced oxygen reduction activity of size-selected platinum subnanocluster catalysts: Ptn (n = 3–9). Catal Sci Technol 2022. [DOI: 10.1039/d1cy00573a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ptn subnanoclusters (n = 3–9) on a carbon substrate exhibit 1.6–2.2 times higher activity than the standard Pt/C catalysts. EXAFS experiments and DFT calculations show plausible structures and energetics for reaction intermediates in the processes.
Collapse
Affiliation(s)
- Akira Ohnuma
- New Field Pioneering Division, Toyota Boshoku Corporation, 1-1 Toyoda-cho, Kariya, Aichi 448-8651, Japan
| | - Koki Takahashi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hironori Tsunoyama
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Tomoya Inoue
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Pei Zhao
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Archana Velloth
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Masahiro Ehara
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Nobuyuki Ichikuni
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masao Tabuchi
- Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Atsushi Nakajima
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
9
|
Abstract
The unprecedented ability of computations to probe atomic-level details of catalytic systems holds immense promise for the fundamentals-based bottom-up design of novel heterogeneous catalysts, which are at the heart of the chemical and energy sectors of industry. Here, we critically analyze recent advances in computational heterogeneous catalysis. First, we will survey the progress in electronic structure methods and atomistic catalyst models employed, which have enabled the catalysis community to build increasingly intricate, realistic, and accurate models of the active sites of supported transition-metal catalysts. We then review developments in microkinetic modeling, specifically mean-field microkinetic models and kinetic Monte Carlo simulations, which bridge the gap between nanoscale computational insights and macroscale experimental kinetics data with increasing fidelity. We finally review the advancements in theoretical methods for accelerating catalyst design and discovery. Throughout the review, we provide ample examples of applications, discuss remaining challenges, and provide our outlook for the near future.
Collapse
Affiliation(s)
- Benjamin W J Chen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lang Xu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Bramley G, Nguyen MT, Glezakou VA, Rousseau R, Skylaris CK. Reconciling Work Functions and Adsorption Enthalpies for Implicit Solvent Models: A Pt (111)/Water Interface Case Study. J Chem Theory Comput 2020; 16:2703-2715. [DOI: 10.1021/acs.jctc.0c00034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Gabriel Bramley
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Manh-Thuong Nguyen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Roger Rousseau
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | |
Collapse
|
11
|
The effect of SnO2(110) supports on the geometrical and electronic properties of platinum nanoparticles. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1478-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
While Pt-nanoparticles supported on SnO2 exhibit improved durability, a substantial detriment is observed on the Pt-nanoparticles’ activity toward the oxygen reduction reaction. A density functional theory method is used to calculate isolated, SnO2- and graphene-supported Pt-nanoparticles. Work function difference between the Pt-nanoparticles and SnO2 leads to electron donation from the nanoparticles to the support, making the outer-shell atoms of the supported nanoparticles more positively charged compared to unsupported nanoparticles. From an electrostatic point of view, nucleophilic species tend to interact more stably with less negatively charged Pt atoms blocking the active sites for the reaction to occur, which can explain the low activity of Pt-nanoparticles supported on SnO2. Introducing oxygen vacancies and Nb dopants on SnO2 decreases the support work function, which not only reduces the charge transferred from the Pt-nanoparticles to the support but also reverses the direction of the electrons flow making the surface Pt atoms more negatively charged. A similar effect is observed when using graphene, which has a lower work function than Pt. Thus, the blocking of the active sites by nucleophilic species decreases, hence increasing the activity. These results provide a clue to improve the activity by modifying the support work function and by selecting a support material with an appropriate work function to control the charge of the nanoparticle’s surface atoms.
Graphic abstract
Collapse
|
12
|
Tsunoyama H, Ohnuma A, Takahashi K, Velloth A, Ehara M, Ichikuni N, Tabuchi M, Nakajima A. Enhanced oxygen reduction activity of platinum subnanocluster catalysts through charge redistribution. Chem Commun (Camb) 2019; 55:12603-12606. [PMID: 31556435 DOI: 10.1039/c9cc06327g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Single-size platinum Pt6 subnanoclusters exhibit superior mass-specific and surface-specific activities for the oxygen reduction reaction. The enhanced activity is attributed to polarized electron distributions based on rigorous structure characterization by X-ray absorption fine structure spectroscopy and density functional theory.
Collapse
Affiliation(s)
- Hironori Tsunoyama
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gerber IC, Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 2019; 120:1250-1349. [DOI: 10.1021/acs.chemrev.9b00209] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iann C. Gerber
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Philippe Serp
- LCC-CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, 31400 Toulouse, France
| |
Collapse
|
14
|
Ellaby T, Briquet L, Sarwar M, Thompsett D, Skylaris CK. Modification of O and CO binding on Pt nanoparticles due to electronic and structural effects of titania supports. J Chem Phys 2019; 151:114702. [DOI: 10.1063/1.5120571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tom Ellaby
- Department of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Ludovic Briquet
- Johnson Matthey Technology Centre,
Blounts Court, Sonning Common, Reading RG4 9NH, United Kingdom
| | - Misbah Sarwar
- Johnson Matthey Technology Centre,
Blounts Court, Sonning Common, Reading RG4 9NH, United Kingdom
| | - David Thompsett
- Johnson Matthey Technology Centre,
Blounts Court, Sonning Common, Reading RG4 9NH, United Kingdom
| | | |
Collapse
|
15
|
Poidevin C, Paciok P, Heggen M, Auer AA. High resolution transmission electron microscopy and electronic structure theory investigation of platinum nanoparticles on carbon black. J Chem Phys 2019; 150:041705. [DOI: 10.1063/1.5047666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Corentin Poidevin
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Paul Paciok
- Ernst Ruska-Centre for Microscopy and Spectroscopy With Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy With Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexander A. Auer
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Chen Z, Liu C, Zhao X, Yan H, Li J, Lyu P, Du Y, Xi S, Chi K, Chi X, Xu H, Li X, Fu W, Leng K, Pennycook SJ, Wang S, Loh KP. Promoted Glycerol Oxidation Reaction in an Interface-Confined Hierarchically Structured Catalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804763. [PMID: 30412314 DOI: 10.1002/adma.201804763] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Confined catalysis in a 2D system is of particular interest owing to the facet control of the catalysts and the anisotropic kinetics of reactants, which suppress side reactions and improve selectivity. Here, a 2D-confined system consisting of intercalated Pt nanosheets within few-layered graphene is demonstrated. The strong metal-substrate interaction between the Pt nanosheets and the graphene leads to the quasi-2D growth of Pt with a unique (100)/(111)/(100) faceted structure, thus providing excellent catalytic activity and selectivity toward one-carbon (C1) products for the glycerol oxidation reaction. A hierarchically porous graphene architecture, grown on carbon cloth, is used to fabricate the confined catalyst bed in order to enhance the mass-diffusion limitation in interface-confined reactions. Owing to its unique 3D porous structure, this graphene-confined Pt catalyst exhibits an extraordinary mass activity of 2910 mA mgPt -1 together with a formate selectivity of 79% at 60 °C. This paves the way toward rational designs of heterogeneous catalysts for energy-related applications.
Collapse
Affiliation(s)
- Zhongxin Chen
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore, 117456, Singapore
| | - Cuibo Liu
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaoxu Zhao
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore, 117456, Singapore
| | - Huan Yan
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jing Li
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Pin Lyu
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Kai Chi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiao Chi
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Haisen Xu
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xing Li
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore, 117456, Singapore
| | - Wei Fu
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Kai Leng
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Stephen J Pennycook
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Shuai Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kian Ping Loh
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
17
|
Ellaby T, Aarons J, Varambhia A, Jones L, Nellist P, Ozkaya D, Sarwar M, Thompsett D, Skylaris CK. Ideal versus real: simulated annealing of experimentally derived and geometric platinum nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:155301. [PMID: 29480809 DOI: 10.1088/1361-648x/aab251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Platinum nanoparticles find significant use as catalysts in industrial applications such as fuel cells. Research into their design has focussed heavily on nanoparticle size and shape as they greatly influence activity. Using high throughput, high precision electron microscopy, the structures of commercially available Pt catalysts have been determined, and we have used classical and quantum atomistic simulations to examine and compare them with geometric cuboctahedral and truncated octahedral structures. A simulated annealing procedure was used both to explore the potential energy surface at different temperatures, and also to assess the effect on catalytic activity that annealing would have on nanoparticles with different geometries and sizes. The differences in response to annealing between the real and geometric nanoparticles are discussed in terms of thermal stability, coordination number and the proportion of optimal binding sites on the surface of the nanoparticles. We find that annealing both experimental and geometric nanoparticles results in structures that appear similar in shape and predicted activity, using oxygen adsorption as a measure. Annealing is predicted to increase the catalytic activity in all cases except the truncated octahedra, where it has the opposite effect. As our simulations have been performed with a classical force field, we also assess its suitability to describe the potential energy of such nanoparticles by comparing with large scale density functional theory calculations.
Collapse
Affiliation(s)
- Tom Ellaby
- Department of Chemistry, University of Southampton, Highfield, SO17 1BJ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kong W, Yao K, Duan X, Liu Z, Hu J. Holey Co, N-codoped graphene aerogel with in-plane pores and multiple active sites for efficient oxygen reduction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Womack JC, Anton L, Dziedzic J, Hasnip PJ, Probert MIJ, Skylaris CK. DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution. J Chem Theory Comput 2018; 14:1412-1432. [PMID: 29447447 DOI: 10.1021/acs.jctc.7b01274] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼109 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.
Collapse
Affiliation(s)
- James C Womack
- Department of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom
| | - Lucian Anton
- Cray U.K. Ltd. , Broad Quay House, Prince Street , Bristol BS1 4DJ , United Kingdom
| | - Jacek Dziedzic
- Department of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom.,Faculty of Applied Physics and Mathematics , Gdańsk University of Technology , Gdańsk 80-233 , Poland
| | - Phil J Hasnip
- Department of Physics , University of York , Heslington, York YO10 5DD , United Kingdom
| | - Matt I J Probert
- Department of Physics , University of York , Heslington, York YO10 5DD , United Kingdom
| | - Chris-Kriton Skylaris
- Department of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom
| |
Collapse
|
20
|
Verga LG, Aarons J, Sarwar M, Thompsett D, Russell AE, Skylaris CK. DFT calculation of oxygen adsorption on platinum nanoparticles: coverage and size effects. Faraday Discuss 2018; 208:497-522. [DOI: 10.1039/c7fd00218a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DFT calculations are used to simultaneously explore the effects of nanoparticle size and coverage for O adsorption on Pt nanoparticles.
Collapse
Affiliation(s)
- L. G. Verga
- Department of Chemistry
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - J. Aarons
- Department of Chemistry
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - M. Sarwar
- Johnson Matthey Technology Centre
- Reading
- UK RG4 9NH
| | - D. Thompsett
- Johnson Matthey Technology Centre
- Reading
- UK RG4 9NH
| | - A. E. Russell
- Department of Chemistry
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - C.-K. Skylaris
- Department of Chemistry
- University of Southampton
- Southampton SO17 1BJ
- UK
| |
Collapse
|
21
|
G. Verga L, Russell AE, Skylaris CK. Ethanol, O, and CO adsorption on Pt nanoparticles: effects of nanoparticle size and graphene support. Phys Chem Chem Phys 2018; 20:25918-25930. [DOI: 10.1039/c8cp04798g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations reveal aspects of size and support effects for Pt nanoparticles on graphene interacting with O, CO and ethanol.
Collapse
Affiliation(s)
- L. G. Verga
- Department of Chemistry, University of Southampton
- Highfield
- UK
| | - A. E. Russell
- Department of Chemistry, University of Southampton
- Highfield
- UK
| | - C.-K. Skylaris
- Department of Chemistry, University of Southampton
- Highfield
- UK
| |
Collapse
|
22
|
Sneed BT, Cullen DA, Reeves KS, Dyck OE, Langlois DA, Mukundan R, Borup RL, More KL. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29839-29848. [PMID: 28809471 DOI: 10.1021/acsami.7b09716] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.
Collapse
Affiliation(s)
- Brian T Sneed
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - David A Cullen
- Materials Science and Technology Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Kimberly S Reeves
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Ondrej E Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - David A Langlois
- Materials Physics and Applications Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Rangachary Mukundan
- Materials Physics and Applications Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Rodney L Borup
- Materials Physics and Applications Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Karren L More
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
23
|
Copper-based magnetic catalysts for alkyne oxidative homocoupling reactions. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|