1
|
Smith AC, Plazola M, Hudson PS, Tapavicza E. Membrane Stabilization of Helical Previtamin D Conformers as Possible Enhancement of Vitamin D Photoproduction. J Phys Chem B 2024; 128:8956-8965. [PMID: 39240094 PMCID: PMC11421079 DOI: 10.1021/acs.jpcb.4c03835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Photoinduced vitamin D formation occurs 10-15-fold faster in phospholipid bilayers (PLB) than in isotropic solution. It has been hypothesized that amphipatic interactions of the PLB with the rotationally flexible previtamin D (Pre) stabilize its helical conformers, enhancing thermal intramolecular [1,7]-hydrogen transfer, forming vitamin D. To test this hypothesis, we carried out molecular dynamics (MD) simulations of Pre in a PLB composed of dipalmitoylphosphatidylcholine (DPPC). We designed a classical force field capable of accurately describing the equilibrium composition of Pre conformers. Using adaptive biasing force MD simulations, we determined the free energy of Pre conformers in isotropic environments (hexane and gas-phase) and in the anisotropic environment of a DPPC PLB. We find a total increase of 25.5% of the population of both helical conformers (+20.5% g+Zg+ and +5% g-Zg-) in DPPC compared to hexane. In view of ab initio simulations, showing that hydrogen transfer occurs in both helical conformers, our study strongly suggests the validity of the initial hypothesis. Regarding the amphipatic interactions of Pre with the PLB, we find that, similar to cholesterol (Chol) and 7-dehydrocholesterol (7-DHC), Pre entertains hydrogen bonds mainly to the carbonyl groups of DPPC and, to a lesser extent, with phosphate oxygen atoms and rarely to water molecules at the interface. We further report order parameters of the Pre/DPPC system, which are slightly smaller than those for Chol/DPPC and 7-DHC/DPPC, but larger than for pure DPPC. This indicates a loss in membrane viscosity upon photochemical ring-opening of 7-DHC to form Pre.
Collapse
Affiliation(s)
- Adam C Smith
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Matthew Plazola
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Phillip S Hudson
- Laboratory of Computational Biology, National Institutes of Health, National Heart, Lung and Blood Institute, 12 South Drive, Rm 3053, Bethesda, Maryland 20892-5690, United States
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
2
|
Jadoun D, Kowalewski M. Coherent x-ray spontaneous emission spectroscopy of conical intersections. J Chem Phys 2024; 160:094102. [PMID: 38426516 DOI: 10.1063/5.0180976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Conical intersections are known to play a vital role in many photochemical processes. The breakdown of the Born-Oppenheimer approximation in the vicinity of a conical intersection causes exciting phenomena, such as the ultrafast radiationless decay of excited states. The passage of a molecule through a conical intersection creates a coherent superposition of electronic states via nonadiabatic couplings. Detecting this coherent superposition may serve as a direct probe of the conical intersection. In this paper, we theoretically demonstrate the use of coherent spontaneous emission in samples with long-range order for probing the occurrence of a conical intersection in a molecule. Our simulations show that the spectrum contains clear signatures of the created coherent superposition of electronic states. We investigate the bandwidth requirements for the x-ray probes, which influence the observation of coherent superposition generated by the conical intersection.
Collapse
Affiliation(s)
- Deependra Jadoun
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Dupuy L, Rikus A, Maitra NT. Exact-Factorization-Based Surface Hopping without Velocity Adjustment. J Phys Chem Lett 2024:2643-2649. [PMID: 38422391 DOI: 10.1021/acs.jpclett.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
While surface hopping has emerged as a powerful method for simulating non-adiabatic dynamics in large molecules, the ad hoc nature of the necessary velocity adjustments and decoherence corrections in the algorithm somewhat reduces its reliability. Here we propose a new scheme that eliminates these aspects by combining the nuclear equation from the quantum-trajectory surface-hopping approach with the electronic equation derived from the exact-factorization approach. The resulting method, denoted QTSH-XF, yields a surface-hopping method on firmer ground than previous and is shown to successfully capture dynamics in Tully models and in a linear vibronic coupling model of the photoexcited uracil cation.
Collapse
Affiliation(s)
- Lucien Dupuy
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Anton Rikus
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
- University of Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, 48149 Münster, Germany
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Jadoun D, Zhang Z, Kowalewski M. Raman Spectroscopy of Conical Intersections Using Entangled Photons. J Phys Chem Lett 2024; 15:2023-2030. [PMID: 38349969 PMCID: PMC10895689 DOI: 10.1021/acs.jpclett.3c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Ultrafast Raman spectroscopy with attosecond pulses in the extreme ultraviolet and X-ray regime has been proposed theoretically for tracking the non-adiabatic dynamics of molecules in great detail. The large bandwidth of these pulses, which span several electronvolts within a couple of femtoseconds, provides a unique tool for tracking non-adiabatic phenomena. However, spectroscopy with classical light is limited by the time-bandwidth product of the probe laser pulse. In this work, we theoretically investigate an ultrafast Raman spectroscopy scheme that utilizes pairs of entangled photons. Our model simulations demonstrate that the dynamics in the vicinity of a conical intersection can be resolved with unprecedented resolution in the time and frequency domain.
Collapse
Affiliation(s)
- Deependra Jadoun
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| | - Zhedong Zhang
- Department
of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR
- Shenzhen
Research Institute, City University of Hong
Kong, Shenzhen, Guangdong 518057, China
| | - Markus Kowalewski
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Franzke Y, Holzer C, Andersen JH, Begušić T, Bruder F, Coriani S, Della Sala F, Fabiano E, Fedotov DA, Fürst S, Gillhuber S, Grotjahn R, Kaupp M, Kehry M, Krstić M, Mack F, Majumdar S, Nguyen BD, Parker SM, Pauly F, Pausch A, Perlt E, Phun GS, Rajabi A, Rappoport D, Samal B, Schrader T, Sharma M, Tapavicza E, Treß RS, Voora V, Wodyński A, Yu JM, Zerulla B, Furche F, Hättig C, Sierka M, Tew DP, Weigend F. TURBOMOLE: Today and Tomorrow. J Chem Theory Comput 2023; 19:6859-6890. [PMID: 37382508 PMCID: PMC10601488 DOI: 10.1021/acs.jctc.3c00347] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 06/30/2023]
Abstract
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.
Collapse
Affiliation(s)
- Yannick
J. Franzke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Josefine H. Andersen
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Tomislav Begušić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Florian Bruder
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Sonia Coriani
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Daniil A. Fedotov
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Susanne Fürst
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Sebastian Gillhuber
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Robin Grotjahn
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Max Kehry
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Marjan Krstić
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sourav Majumdar
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Brian D. Nguyen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Shane M. Parker
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106 United States
| | - Fabian Pauly
- Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| | - Ansgar Pausch
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Eva Perlt
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Gabriel S. Phun
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Ahmadreza Rajabi
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Bibek Samal
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Tim Schrader
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Manas Sharma
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Enrico Tapavicza
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, 1250 Bellflower Boulevard, Long
Beach, California 90840-9507, United States
| | - Robert S. Treß
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vamsee Voora
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Jason M. Yu
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Benedikt Zerulla
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen Germany
| | - Filipp Furche
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christof Hättig
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Marek Sierka
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - David P. Tew
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Florian Weigend
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
6
|
Donati S, Palmini G, Aurilia C, Falsetti I, Marini F, Giusti F, Iantomasi T, Brandi ML. Calcifediol: Mechanisms of Action. Nutrients 2023; 15:4409. [PMID: 37892484 PMCID: PMC10610216 DOI: 10.3390/nu15204409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Due to its essential role in calcium and phosphate homeostasis, the secosteroid hormone calcitriol has received growing attention over the last few years. Calcitriol, like other steroid hormones, may function through both genomic and non-genomic mechanisms. In the traditional function, the interaction between the biologically active form of vitamin D and the vitamin D receptor (VDR) affects the transcription of thousands of genes by binding to repeated sequences present in their promoter region, named vitamin D-responsive elements (VDREs). Non-transcriptional effects, on the other hand, occur quickly and are unaffected by inhibitors of transcription and protein synthesis. Recently, calcifediol, the immediate precursor metabolite of calcitriol, has also been shown to bind to the VDR with weaker affinity than calcitriol, thus exerting gene-regulatory properties. Moreover, calcifediol may also trigger rapid non-genomic responses through its interaction with specific membrane vitamin D receptors. Membrane-associated VDR (mVDR) and protein disulfide isomerase family A member 3 (Pdia3) are the best-studied candidates for mediating these rapid responses to vitamin D metabolites. This paper provides an overview of the calcifediol-related mechanisms of action, which may help to better understand the vitamin D endocrine system and to identify new therapeutic targets that could be important for treating diseases closely associated with vitamin D deficiency.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Francesca Marini
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy;
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy;
- Donatello Bone Clinic, Villa Donatello Hospital, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Tapavicza E, Reutershan T, Thompson T. Ab Initio Simulation of the Ultrafast Circular Dichroism Spectrum of Provitamin D Ring-Opening. J Phys Chem Lett 2023; 14:5061-5068. [PMID: 37227143 PMCID: PMC10240533 DOI: 10.1021/acs.jpclett.3c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
We present a method to simulate ultrafast pump-probe time-resolved circular dichroism (TRCD) spectra based on time-dependent density functional theory trajectory surface hopping. The method is applied to simulate the TRCD spectrum along the photoinduced ring-opening of provitamin D. Simulations reveal that the initial decay of the signal is due to excited state relaxation, forming the rotationally flexible previtamin D. We further show that oscillations in the experimental TRCD spectrum arise from isomerizations between previtamin D rotamers with different chirality, which are associated with the helical conformation of the triene unit. We give a detailed description of the formation dynamics of different rotamers, playing a key role in the natural regulation of vitamin D photosynthesis. Going beyond the sole extraction of decay rates, simulations greatly increase the amount of information that can be retrieved from ultrafast TRCD, making it a sensitive tool to unravel details in the subpicosecond dynamics of photoinduced chirality changes.
Collapse
Affiliation(s)
- Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Trevor Reutershan
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Travis Thompson
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| |
Collapse
|
8
|
Alexandridou A, Volmer DA. Sample preparation techniques for extraction of vitamin D metabolites from non-conventional biological sample matrices prior to LC-MS/MS analysis. Anal Bioanal Chem 2022; 414:4613-4632. [PMID: 35501505 PMCID: PMC9174318 DOI: 10.1007/s00216-022-04097-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022]
Abstract
The determination of vitamin D metabolites as status marker or for diagnostic purposes is almost entirely conducted from blood serum or plasma. Other biological matrices, however, have also interested researchers, for two main reasons: (1) alternative matrices may allow non-invasive sampling, permit easier sample transfer and require less demanding storage conditions; and (2) the levels of vitamin D metabolites in other body compartments may further aid the understanding of vitamin D metabolism and function. Thus, the development of reliable and efficient sample preparation protocols for sample matrices other than serum/plasma, which will remove potential interferences and selectively extract the targeted metabolites, is of great importance. This review summarizes sample preparation methods for measurement of vitamin D metabolites using liquid chromatography-(tandem)mass spectrometry in more than ten different human tissues, including hair, saliva, adipose tissue, brain and others.
Collapse
Affiliation(s)
- Anastasia Alexandridou
- Bioanalytical Chemistry, Humboldt University Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Dietrich A Volmer
- Bioanalytical Chemistry, Humboldt University Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| |
Collapse
|
9
|
Rihal V, Khan H, Kaur A, Singh TG. Vitamin D as therapeutic modulator in cerebrovascular diseases: a mechanistic perspectives. Crit Rev Food Sci Nutr 2022; 63:7772-7794. [PMID: 35285752 DOI: 10.1080/10408398.2022.2050349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitamin D deficiency has been linked to several major chronic diseases, such as cardiovascular and neurodegenerative diseases, diabetes, and cancer, linked to oxidative stress, inflammation, and aging. Vitamin D deficiency appears to be particularly harmful to the cardiovascular system, as it can cause endothelial dysfunctioning and vascular abnormalities through the modulation of various downstream mechanisms. As a result, new research indicates that therapeutic approaches targeting vitamin D inadequacies or its significant downstream effects, such as impaired autophagy, abnormal pro-inflammatory and pro-oxidant reactions, may delay the onset and severity of major cerebrovascular disorders such as stroke and neurologic malformations. Vitamin D modulates the various molecular pathways, i.e., Nitric Oxide, PI3K-Akt Pathway, cAMP pathway, NF-kB Pathway, Sirtuin 1, Nrf2, FOXO, in cerebrovascular disorder. The current review shows evidence for vitamin D's mitigating or slowing the progression of these cerebrovascular disorders, which are significant causes of disability and death worldwide.
Collapse
Affiliation(s)
- Vivek Rihal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
10
|
Safety Assessment of Vitamin D and Its Photo-Isomers in UV-Irradiated Baker's Yeast. Foods 2021; 10:foods10123142. [PMID: 34945693 PMCID: PMC8701098 DOI: 10.3390/foods10123142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Vitamin D deficiency due to, e.g., nutritional and life style reasons is a health concern that is gaining increasing attention over the last two decades. Vitamin D3, the most common isoform of vitamin D, is only available in food derived from animal sources. However, mushrooms and yeast are rich in ergosterol. This compound can be converted into vitamin D2 by UV-light, and therefore act as a precursor for vitamin D. Vitamin D2 from UV-irradiated mushrooms has become an alternative source of vitamin D, especially for persons pursuing a vegan diet. UV-irradiated baker’s yeast (Saccharomyces cerevisiae) for the production of fortified yeast-leavened bread and baked goods was approved as a Novel Food Ingredient in the European Union, according to Regulation (EC) No. 258/97. The Scientific Opinion provided by the European Food Safety Authority Panel on Dietetic Products, Nutrition, and Allergies has assessed this Novel Food Ingredient as safe under the intended nutritional use. However, recent findings on the formation of side products during UV-irradiation, e.g., the photoproducts tachysterol and lumisterol which are compounds with no adequate risk assessment performed, have only been marginally considered for this EFSA opinion. Furthermore, proceedings in analytics can provide additional insights, which might open up new perspectives, also regarding the bioavailability and potential health benefits of vitamin D-fortified mushrooms and yeast. Therefore, this review is intended to give an overview on the current status of UV irradiation in mushrooms and yeast in general and provide a detailed assessment on the potential health effects of UV-irradiated baker’s yeast.
Collapse
|
11
|
Liu J, Lan Z, Yang J. An efficient implementation of spin-orbit coupling within the framework of semiempirical orthogonalization-corrected methods for ultrafast intersystem crossing dynamics. Phys Chem Chem Phys 2021; 23:22313-22323. [PMID: 34591049 DOI: 10.1039/d1cp03477d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We implement spin-orbit coupling (SOC) within the framework of semiempirical orthogonalization-corrected methods (OMx). The excited-state wavefunction is generated from configuration interaction with single excitations (CIS). The SOC Hamiltonian in terms of the one-electron Breit-Pauli operator with effective nuclear charges is adopted in this work. Benchmark calculations show that SOCs evaluated using the OMx/CIS method agree very well with those obtained from time-dependent density functional theory. As a particularly attractive application, we incorporate SOCs between singlet and triplet states into Tully's fewest switches surface hopping algorithm to enable excited-state nonadiabatic dynamics simulations, treating internal conversion and intersystem crossing on an equal footing. This semiempirical dynamics simulation approach is applied to investigate ultrafast intersystem crossing processes in core-substituted naphthalenediimides.
Collapse
Affiliation(s)
- Jie Liu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
12
|
Sofferman DL, Konar A, Mastron JN, Spears KG, Cisneros C, Smith AC, Tapavicza E, Sension RJ. Probing the Formation and Conformational Relaxation of Previtamin D 3 and Analogues in Solution and in Lipid Bilayers. J Phys Chem B 2021; 125:10085-10096. [PMID: 34473504 DOI: 10.1021/acs.jpcb.1c04376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photosynthesis of vitamin D3 in mammalian skin results from UV-B irradiation of provitamin D3 (7-dehydrocholesterol, DHC) at ca. 290 nm. Upon return to the ground state, the hexatriene product, previtamin D3, undergoes a conformational equilibration between helical gZg and more planar tZg and tZt forms. The helical gZg forms provide a pathway for the formation of vitamin D3 via a [1,7]-sigmatropic hydrogen shift. Steady state photolysis and UV transient absorption spectroscopy are combined to explore the conformational relaxation of previtamin D3 formed from DHC in isotropic solution and confined to lipid bilayers chosen to model the biological cell membrane. The results are compared with measurements for two analogues: previtamin D2 formed from ergosterol (provitamin D2) and previtamin D3 acetate formed from DHC acetate. The resulting spectral dynamics are interpreted in the context of simulations of optical excitation energy and oscillator strength as a function of conformation. In solution, the relaxation dynamics and steady state product distributions of the three compounds are nearly identical, favoring tZg forms. When confined to lipid bilayers, the heterogeneity and packing forces alter the conformational distributions and enhance the population of a gZg conformer capable of vitamin D formation.
Collapse
Affiliation(s)
- Danielle L Sofferman
- Program in Applied Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Joseph N Mastron
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States.,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kenneth G Spears
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Cecilia Cisneros
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Adam C Smith
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Roseanne J Sension
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States.,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
13
|
Tapavicza E, von Rudorff GF, De Haan DO, Contin M, George C, Riva M, von Lilienfeld OA. Elucidating an Atmospheric Brown Carbon Species-Toward Supplanting Chemical Intuition with Exhaustive Enumeration and Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8447-8457. [PMID: 34080853 DOI: 10.1021/acs.est.1c00885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brown carbon (BrC) is involved in atmospheric light absorption and climate forcing and can cause adverse health effects. Understanding the formation mechanisms and molecular structure of BrC is of key importance in developing strategies to control its environment and health impact. Structure determination of BrC is challenging, due to the lack of experiments providing molecular fingerprints and the sheer number of molecular candidates with identical mass. Suggestions based on chemical intuition are prone to errors due to the inherent bias. We present an unbiased algorithm, using graph-based molecule generation and machine learning, which can identify all molecular structures of compounds involved in biomass burning and the composition of BrC. We apply this algorithm to C12H12O7, a light-absorbing "test case" molecule identified in chamber experiments on the aqueous photo-oxidation of syringol, a prevalent marker in wood smoke. Of the 260 million molecular graphs, the algorithm leaves only 36,518 (0.01%) as viable candidates matching the spectrum. Although no unique molecular structure is obtained from only a chemical formula and a UV/vis absorption spectrum, we discuss further reduction strategies and their efficacy. With additional data, the method can potentially more rapidly identify isomers extracted from lab and field aerosol particles without introducing human bias.
Collapse
Affiliation(s)
- Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Guido Falk von Rudorff
- Faculty of Physics, University of Vienna, Kolingasse 14-16, AT-1090 Wien, Austria
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - David O De Haan
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Mario Contin
- Facultad de Farmacia y Bioquímica, Departamento de Química Analitica y Fisicoquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires C1113AAD, Argentina
| | - Christian George
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Matthieu Riva
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - O Anatole von Lilienfeld
- Faculty of Physics, University of Vienna, Kolingasse 14-16, AT-1090 Wien, Austria
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
14
|
de Queiroz TB, de Figueroa ER, Coutinho-Neto MD, Maciel CD, Tapavicza E, Hashemi Z, Leppert L. First principles theoretical spectroscopy of methylene blue: Between limitations of time-dependent density functional theory approximations and its realistic description in the solvent. J Chem Phys 2021; 154:044106. [PMID: 33514105 DOI: 10.1063/5.0029727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methylene blue [3,7-Bis(di-methylamino) phenothiazin-5-ium chloride] is a phenothiazine dye with applications as a sensitizer for photodynamic therapy, photoantimicrobials, and dye-sensitized solar cells. Time-dependent density functional theory (TDDFT), based on (semi)local and global hybrid exchange-correlation functionals, fails to correctly describe its spectral features due to known limitations for describing optical excitations of π-conjugated systems. Here, we use TDDFT with a non-empirical optimally tuned range-separated hybrid functional to explore the optical excitations of gas phase and solvated methylene blue. We compute solvated configurations using molecular dynamics and an iterative procedure to account for explicit solute polarization. We rationalize and validate that by extrapolating the optimized range separation parameter to an infinite amount of solvating molecules, the optical gap of methylene blue is well described. Moreover, this method allows us to resolve contributions from solvent-solute intermolecular interactions and dielectric screening. We validate our results by comparing them to first-principles calculations based on the GW+Bethe-Salpeter equation approach and experiment. Vibronic calculations using TDDFT and the generating function method account for the spectra's subbands and bring the computed transition energies to within 0.15 eV of the experimental data. This methodology is expected to perform equivalently well for describing solvated spectra of π-conjugated systems.
Collapse
Affiliation(s)
- Thiago B de Queiroz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, 09510-580 Santo André-SP, Brazil
| | - Erick R de Figueroa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, 09510-580 Santo André-SP, Brazil
| | - Maurício D Coutinho-Neto
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, 09510-580 Santo André-SP, Brazil
| | - Cleiton D Maciel
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Itaquaquecetuba, Avenida Primeiro de Maio, 500, 08571-050 Itaquaquecetuba-SP, Brazil
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, USA
| | - Zohreh Hashemi
- Institute of Physics, University of Bayreuth, Bayreuth 95440, Germany
| | - Linn Leppert
- Institute of Physics, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
15
|
Di Luigi L, Antinozzi C, Piantanida E, Sgrò P. Vitamin D, sport and health: a still unresolved clinical issue. J Endocrinol Invest 2020; 43:1689-1702. [PMID: 32632904 DOI: 10.1007/s40618-020-01347-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Vitamin D metabolites have a pleiotropic role in human physiology, both in static and dynamic conditions, and a lot of vitamin D-related biological effects could influence physical and sport performances in athletes. Probably due to different factors (e.g., drugs, doping, nutrition, ultraviolet B radiation exposure), in athletes a very high prevalence of vitamin D inadequacy (i.e., deficiency or insufficiency) has been observed. Vitamin D inadequacy in athletes could be associated with specific health risks and to alterations of functional capacities, potentially influencing the fine adjustment of physical performances during training and sport competitions. When risk factors for vitamin D inadequacy exist, a preventive vitamin D supplementation is indicated, and if a vitamin D inadequacy is diagnosed, its supplementation is recommended. Unfortunately, on these issues many concerns remain unresolved. Indeed, it is not clear if athletes should be classified as a special population at increased risk for vitamin D inadequacy; moreover, in comparison to the non-athletic population, it is still not clear if athletes should have different reference ranges and different optimal target levels for serum vitamin D, if they have additional health risks, and if they need different type of supplementations (doses) for prevention and/or replacement therapy. Moreover, in athletes also the abuse of vitamin D supplements for ergogenic purposes raise different ethical and safety concerns. In this review, the main physio-pathological, functional and clinical issues that relate vitamin D to the world of athletes are described.
Collapse
Affiliation(s)
- L Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, Università Degli Studi Di Roma "Foro Italico", Piazza Lauro de Bosis, 6, 00135, Rome, Italy.
| | - C Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, Università Degli Studi Di Roma "Foro Italico", Piazza Lauro de Bosis, 6, 00135, Rome, Italy
| | - E Piantanida
- Department of Medicine and Surgery, University of Insubria, Via Ravasi 2, 21100, Varese, Italy
| | - P Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, Università Degli Studi Di Roma "Foro Italico", Piazza Lauro de Bosis, 6, 00135, Rome, Italy
| |
Collapse
|
16
|
Balasubramani SG, Chen GP, Coriani S, Diedenhofen M, Frank MS, Franzke YJ, Furche F, Grotjahn R, Harding ME, Hättig C, Hellweg A, Helmich-Paris B, Holzer C, Huniar U, Kaupp M, Marefat Khah A, Karbalaei Khani S, Müller T, Mack F, Nguyen BD, Parker SM, Perlt E, Rappoport D, Reiter K, Roy S, Rückert M, Schmitz G, Sierka M, Tapavicza E, Tew DP, van Wüllen C, Voora VK, Weigend F, Wodyński A, Yu JM. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J Chem Phys 2020; 152:184107. [PMID: 32414256 PMCID: PMC7228783 DOI: 10.1063/5.0004635] [Citation(s) in RCA: 601] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE's functionality, including excited-state methods, RPA and Green's function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE's current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE's development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.
Collapse
Affiliation(s)
- Sree Ganesh Balasubramani
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Guo P Chen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Michael Diedenhofen
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Arnim Hellweg
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Uwe Huniar
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Alireza Marefat Khah
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Thomas Müller
- Forschungszentrum Jülich, Jülich Supercomputer Centre, Wilhelm-Jonen Straße, 52425 Jülich, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Eva Perlt
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Dmitrij Rappoport
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kevin Reiter
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Saswata Roy
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Matthias Rückert
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Marek Sierka
- TURBOMOLE GmbH, Litzenhardtstraße 19, 76135 Karlsruhe, Germany
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, USA
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstaße 1, 70569 Stuttgart, Germany
| | - Christoph van Wüllen
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Staße 52, 67663 Kaiserslautern, Germany
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
17
|
Grathwol CW, Wössner N, Swyter S, Smith AC, Tapavicza E, Hofstetter RK, Bodtke A, Jung M, Link A. Azologization and repurposing of a hetero-stilbene-based kinase inhibitor: towards the design of photoswitchable sirtuin inhibitors. Beilstein J Org Chem 2019; 15:2170-2183. [PMID: 31598174 PMCID: PMC6774072 DOI: 10.3762/bjoc.15.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
The use of light as an external trigger to change ligand shape and as a result its bioactivity, allows the probing of pharmacologically relevant systems with spatiotemporal resolution. A hetero-stilbene lead resulting from the screening of a compound that was originally designed as kinase inhibitor served as a starting point for the design of photoswitchable sirtuin inhibitors. Because the original stilbenoid structure exerted unfavourable photochemical characteristics it was remodelled to its heteroarylic diazeno analogue. By this intramolecular azologization, the shape of the molecule was left unaltered, whereas the photoswitching ability was improved. As anticipated, the highly analogous compound showed similar activity in its thermodynamically stable stretched-out (E)-form. Irradiation of this isomer triggers isomerisation to the long-lived (Z)-configuration with a bent geometry causing a considerably shorter end-to-end distance. The resulting affinity shifts are intended to enable real-time photomodulation of sirtuins in vitro.
Collapse
Affiliation(s)
- Christoph W Grathwol
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Nathalie Wössner
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Sören Swyter
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Adam C Smith
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840 USA
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840 USA
| | - Robert K Hofstetter
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Anja Bodtke
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| |
Collapse
|
18
|
Parker SM, Roy S, Furche F. Multistate hybrid time-dependent density functional theory with surface hopping accurately captures ultrafast thymine photodeactivation. Phys Chem Chem Phys 2019; 21:18999-19010. [DOI: 10.1039/c9cp03127h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an efficient analytical implementation of first-order nonadiabatic derivative couplings between arbitrary Born–Oppenheimer states in the hybrid time-dependent density functional theory (TDDFT) framework using atom-centered basis functions.
Collapse
Affiliation(s)
- Shane M. Parker
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - Saswata Roy
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - Filipp Furche
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| |
Collapse
|
19
|
Benkyi I, Tapavicza E, Fliegl H, Sundholm D. Calculation of vibrationally resolved absorption spectra of acenes and pyrene. Phys Chem Chem Phys 2019; 21:21094-21103. [DOI: 10.1039/c9cp04178h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Absorption spectra of polycyclic aromatic hydrocarbons have been simulated by using a real-time generating function method that combines adiabatic electronic excitation energies with vibrational energies of the excited states.
Collapse
Affiliation(s)
- Isaac Benkyi
- University of Helsinki
- Department of Chemistry
- Faculty of Science
- Finland
| | - Enrico Tapavicza
- California State University
- Long Beach
- Department of Chemistry and Biochemistry
- Long Beach
- USA
| | - Heike Fliegl
- Karlsruhe Institute of Technology (KIT)
- Institute of Nanotechnology
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Dage Sundholm
- University of Helsinki
- Department of Chemistry
- Faculty of Science
- Finland
| |
Collapse
|
20
|
Tapavicza E, Thompson T, Redd K, Kim D. Tuning the photoreactivity of Z-hexatriene photoswitches by substituents - a non-adiabatic molecular dynamics study. Phys Chem Chem Phys 2018; 20:24807-24820. [PMID: 30229769 PMCID: PMC6211802 DOI: 10.1039/c8cp05181j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To understand how substituents can be used to increase the quantum yield of photochemical electrocyclic ring-closing of the Z-hexa-1,3,5-triene (HT) photoswitch forming cyclohexadiene (CHD), we investigate the S1 photo dynamics of HT and its derivatives 2,5-dimethyl-HT (DMHT), 2-isopropyl-5-methyl-HT (2,5-IMHT), 1-isopropyl-4-methyl-HT (1,4-IMHT), and 2,5-diisopropyl-HT (DIHT) using time-dependent density functional theory surface hopping dynamics. We report detailed photoproduct distributions, formation mechanisms, branching ratios, and wavelength-dependent product quantum yields. Most products have been confirmed experimentally and include all-trans HT derivatives, cyclopropanes, cyclobutenes, cyclopentene, cyclohexadienes, and bicyclic compounds. Regarding CHD formation, we find that for the 2,5-substituted derivatives DMHT, 2,5-IMHT, and DIHT, the branching ratios increase with increasing size of the substituents. In contrast the branching ratios of the E/Z-isomerization decrease with increasing size of the substituents. Due to steric interactions, increasing the size of the substituents increases the amount of gZg rotamers in the ground state, which are prone to CHD formation and have lower E/Z-isomerization probability. Furthermore, we find [1,4], [1,5], and [1,6]-sigmatropic hydrogen shift reactions occurring at large percentages (5% to 15%); for sterical reasons these reactions stem from tZg conformers. DIHT shows the lowest percentage of side product formation among the 2,5-substituted molecules and highest CHD branching ratio; its CHD quantum yield can be increased up to more than 64%, by excitation of DIHT on the red tail of its absorption spectrum, whereas the Z/E-isomerization is reduced below 5% and side reactions practically vanish. This makes DIHT the best candidate for applications in molecular switches.
Collapse
Affiliation(s)
- Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA.
| | | | | | | |
Collapse
|
21
|
Thompson T, Tapavicza E. First-Principles Prediction of Wavelength-Dependent Product Quantum Yields. J Phys Chem Lett 2018; 9:4758-4764. [PMID: 30048134 PMCID: PMC6211794 DOI: 10.1021/acs.jpclett.8b02048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present a method to predict wavelength-dependent product quantum yields (PQYs) for photochemical reactions and applied it to Z/E-isomerization and several ring-closing reactions of Z-2,5-dimethyl-1,3,5-hexatriene and truncated previtamin D. Using branching ratios from surface hopping molecular dynamics, individual trajectories are correlated with the absorption spectra of their initial structures. The wavelength-dependent PQYs are computed by dividing the average spectrum of the initial structures of the product-forming trajectories by the average spectrum of all initial structures. Accurate absorption spectra are calculated using the correlated ADC(2) method with an implicit solvent. Calculations reproduce the experimentally found trend of increasing six-ring formation and decreasing Z/E-isomerization on the red side of the spectrum. Over all seven reactions studied, the mean absolute error (MAE) between experimental and calculated PQYs (MAE) amounts to 8.1%, and the largest MAE is 18.6%. For four reactions, predicted values agree quantitatively with experiments within 5.6%.
Collapse
Affiliation(s)
- Travis Thompson
- Department of Chemistry and Biochemistry , California State University, Long Beach , 1250 Bellflower Blvd. , Long Beach , California 90840 , United States
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry , California State University, Long Beach , 1250 Bellflower Blvd. , Long Beach , California 90840 , United States
| |
Collapse
|
22
|
Crespo-Otero R, Barbatti M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chem Rev 2018; 118:7026-7068. [DOI: 10.1021/acs.chemrev.7b00577] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | |
Collapse
|
23
|
De Haan DO, Tapavicza E, Riva M, Cui T, Surratt JD, Smith AC, Jordan MC, Nilakantan S, Almodovar M, Stewart TN, de Loera A, De Haan AC, Cazaunau M, Gratien A, Pangui E, Doussin JF. Nitrogen-Containing, Light-Absorbing Oligomers Produced in Aerosol Particles Exposed to Methylglyoxal, Photolysis, and Cloud Cycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4061-4071. [PMID: 29510022 DOI: 10.1021/acs.est.7b06105] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS2 fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant light-absorbing species at their chromatographic retention times. Detected oligomers incorporated methylglyoxal and amines, as expected, but also pyruvic acid, hydroxyacetone, and significant quantities of acetaldehyde. The finding that ∼80% (by mass) of detected oligomers contained acetaldehyde, a methylglyoxal photolysis product, suggests that daytime methylglyoxal oligomer formation is dominated by radical addition mechanisms involving CH3CO*. These mechanisms are evidently responsible for enhanced browning observed during photolytic cloud events.
Collapse
Affiliation(s)
- David O De Haan
- Department of Chemistry and Biochemistry , University of San Diego , 5998 Alcala Park , San Diego California 92110 , United States
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry , California State University Long Beach , 1250 Bellflower Boulevard , Long Beach , California 90840 , United States
| | - Matthieu Riva
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Adam C Smith
- Department of Chemistry and Biochemistry , California State University Long Beach , 1250 Bellflower Boulevard , Long Beach , California 90840 , United States
| | - Mary-Caitlin Jordan
- Department of Chemistry and Biochemistry , California State University Long Beach , 1250 Bellflower Boulevard , Long Beach , California 90840 , United States
| | - Shiva Nilakantan
- Department of Chemistry and Biochemistry , California State University Long Beach , 1250 Bellflower Boulevard , Long Beach , California 90840 , United States
| | - Marisol Almodovar
- Department of Chemistry and Biochemistry , California State University Long Beach , 1250 Bellflower Boulevard , Long Beach , California 90840 , United States
| | - Tiffany N Stewart
- Department of Chemistry and Biochemistry , University of San Diego , 5998 Alcala Park , San Diego California 92110 , United States
| | - Alexia de Loera
- Department of Chemistry and Biochemistry , University of San Diego , 5998 Alcala Park , San Diego California 92110 , United States
| | - Audrey C De Haan
- Department of Chemistry and Biochemistry , University of San Diego , 5998 Alcala Park , San Diego California 92110 , United States
| | - Mathieu Cazaunau
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS , Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL) , 94010 Créteil , France
| | - Aline Gratien
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS , Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL) , 94010 Créteil , France
| | - Edouard Pangui
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS , Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL) , 94010 Créteil , France
| | - Jean-François Doussin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS , Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL) , 94010 Créteil , France
| |
Collapse
|
24
|
Bayda M, Redwood CE, Gupta S, Dmitrenko O, Saltiel J. Lumisterol to Tachysterol Photoisomerization in EPA Glass at 77 K. A Comparative Study. J Phys Chem A 2017; 121:2331-2342. [DOI: 10.1021/acs.jpca.6b12843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Malgorzata Bayda
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Christopher E. Redwood
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Shipra Gupta
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Olga Dmitrenko
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Jack Saltiel
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|