1
|
Suganami Y, Oshikiri T, Mitomo H, Sasaki K, Liu YE, Shi X, Matsuo Y, Ijiro K, Misawa H. Spatially Uniform and Quantitative Surface-Enhanced Raman Scattering under Modal Ultrastrong Coupling Beyond Nanostructure Homogeneity Limits. ACS NANO 2024; 18:4993-5002. [PMID: 38299996 PMCID: PMC10867886 DOI: 10.1021/acsnano.3c10959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
We developed a substrate that enables highly sensitive and spatially uniform surface-enhanced Raman scattering (SERS). This substrate comprises densely packed gold nanoparticles (d-AuNPs)/titanium dioxide/Au film (d-ATA). The d-ATA substrate demonstrates modal ultrastrong coupling between localized surface plasmon resonances (LSPRs) of AuNPs and Fabry-Pérot nanocavities. d-ATA exhibits a significant enhancement of the near-field intensity, resulting in a 78-fold increase in the SERS signal for crystal violet (CV) compared to that of d-AuNP/TiO2 substrates. Importantly, high sensitivity and a spatially uniform signal intensity can be obtained without precise control of the shape and arrangement of the nanoscale AuNPs, enabling quantitative SERS measurements. Additionally, SERS measurements of rhodamine 6G (R6G) on this substrate under ultralow adsorption conditions (0.6 R6G molecules/AuNP) show a spatial variation in the signal intensity within 3%. These findings suggest that the SERS signal under modal ultrastrong coupling originates from multiple plasmonic particles with quantum coherence.
Collapse
Affiliation(s)
- Yoshiki Suganami
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
| | - Tomoya Oshikiri
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
- Institute
of Multidisciplinary Research, Tohoku University, Sendai 980-8577, Japan
| | - Hideyuki Mitomo
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
- Institute
of Multidisciplinary Research, Tohoku University, Sendai 980-8577, Japan
| | - Keiji Sasaki
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
| | - Yen-En Liu
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
| | - Xu Shi
- Creative
Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasutaka Matsuo
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
| | - Kuniharu Ijiro
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
| | - Hiroaki Misawa
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
2
|
Rist D, DePalma T, Stagner E, Tallman MM, Venere M, Skardal A, Schultz ZD. Cancer Cell Targeting, Magnetic Sorting, and SERS Detection through Cell Surface Receptors. ACS Sens 2023; 8:4636-4645. [PMID: 37988612 PMCID: PMC10921760 DOI: 10.1021/acssensors.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Integrins are cellular surface receptors responsible for the activation of many cellular pathways in cancer. These integrin proteins can be specifically targeted by small peptide sequences that offer the potential for the differentiation of cellular subpopulations by using magnetically assisted cellular sorting techniques. By adding a gold shell to the magnetic nanoparticles, these integrin-peptide interactions can be differentiated by surface-enhanced Raman spectroscopy (SERS), providing a quick and reliable method for on-target binding. In this paper, we demonstrate the ability to differentiate the peptide-protein interactions of the small peptides CDPGYIGSR and cyclic RGDfC functionalized on gold-coated magnetic nanoparticles with the integrins they are known to bind to using their SERS signal. SW480 and SW620 colorectal cancer cells known to have the integrins of interest were then magnetically sorted using these functionalized nanoparticles, suggesting differentiation between the sorted populations and integrin populations among the two cell lines.
Collapse
Affiliation(s)
- David Rist
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tom DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emerie Stagner
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Miranda M Tallman
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Monica Venere
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aleksander Skardal
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Aluminum Foil vs. Gold Film: Cost-Effective Substrate in Sandwich SERS Immunoassays of Biomarkers Reveals Potential for Selectivity Improvement. Int J Mol Sci 2023; 24:ijms24065578. [PMID: 36982652 PMCID: PMC10051902 DOI: 10.3390/ijms24065578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The first application of aluminum foil (Al F) as a low-cost/high-availability substrate for sandwich immunoassay using surface-enhanced Raman spectroscopy (SERS) is reported. Untreated and unmodified Al F and gold film are used as substrates for sandwich SERS immunoassay to detect tuberculosis biomarker MPT64 and human immunoglobulin (hIgG) in less than 24 h. The limits of detection (LODs) for tuberculosis (TB) biomarker MPT64 on Al foil, obtained with commercial antibodies, are about 1.8–1.9 ng/mL, which is comparable to the best LOD (2.1 ng/mL) reported in the literature for sandwich ELISA, made with fresh in-house antibodies. Not only is Al foil competitive with traditional SERS substrate gold for the sandwich SERS immunoassay in terms of LOD, which is in the range 18–30 pM or less than 1 pmol of human IgG, but it also has a large cost/availability advantage over gold film. Moreover, human IgG assays on Al foil and Si showed better selectivity (by about 30–70% on Al foil and at least eightfold on Si) and a nonspecific response to rat or rabbit IgG, in comparison to the selectivity in assays using gold film.
Collapse
|
4
|
Aitekenov S, Sultangaziyev A, Boranova A, Dyussupova A, Ilyas A, Gaipov A, Bukasov R. SERS for Detection of Proteinuria: A Comparison of Gold, Silver, Al Tape, and Silicon Substrates for Identification of Elevated Protein Concentration in Urine. SENSORS (BASEL, SWITZERLAND) 2023; 23:1605. [PMID: 36772644 PMCID: PMC9921516 DOI: 10.3390/s23031605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Excessive protein excretion in human urine is an early and sensitive marker of diabetic nephropathy and primary and secondary renal disease. Kidney problems, particularly chronic kidney disease, remain among the few growing causes of mortality in the world. Therefore, it is important to develop an efficient, expressive, and low-cost method for protein determination. Surface enhanced Raman spectroscopy (SERS) methods are potential candidates to achieve these criteria. In this paper, a SERS method was developed to distinguish patients with proteinuria from the healthy group. Commercial gold nanoparticles (AuNPs) with diameters of 60 nm and 100 nm, and silver nanoparticles (AgNPs) with a diameter of 100 nm were tested on the surface of four different substrates including silver and gold films, silicon, and aluminum tape. SERS spectra were acquired from 111 unique human urine samples prepared and measured for each of the seven different nanoparticle plus substrate combinations. Data analysis by the PCA-LDA algorithm and the ROC curves gave results for the diagnostic figures of merits. The best sensitivity, specificity, accuracy, and AUC were 0.91, 0.84, 0.88, and 0.94 for the set with 100 nm Au NPs on the silver substrate, respectively. Among the three metal substrates, the substrate with AuNPs and Al tape performed slightly worse than the other three substrates, and 100 nm gold nanoparticles on average produced better results than 60 nm gold nanoparticles. The 60 nm diameter AuNPs and silicon, which is about one order of magnitude more cost-effective than AuNPs and gold film, showed a relative performance close to the performance of 60 nm AuNPs and Au film (average AUC 0.88 (Si) vs. 0.89 (Au)). This is likely the first reported application of unmodified silicon in SERS substrates applied for direct detection of proteins in any biofluid, particularly in urine. These results position silicon and AuNPs@Si in particular as a perspective SERS substrate for direct urine analysis, including clinical diagnostics of proteinuria.
Collapse
Affiliation(s)
- Sultan Aitekenov
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Alisher Sultangaziyev
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Aigerim Boranova
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Aigerim Dyussupova
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Aisha Ilyas
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
5
|
An ultra sensitive and rapid SERS detection method based on vortex aggregation enhancement effect for anti-infective drug residues detection in water. Anal Chim Acta 2022; 1235:340539. [DOI: 10.1016/j.aca.2022.340539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022]
|
6
|
Surface-enhanced Raman spectroscopy (SERS) for protein determination in human urine. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
7
|
Sultangaziyev A, Ilyas A, Dyussupova A, Bukasov R. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. BIOSENSORS 2022; 12:bios12110967. [PMID: 36354477 PMCID: PMC9688019 DOI: 10.3390/bios12110967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
This article compares the applications of traditional gold and silver-based SERS substrates and less conventional (Pd/Pt, Cu, Al, Si-based) SERS substrates, focusing on sensing, biosensing, and clinical analysis. In recent decades plethora of new biosensing and clinical SERS applications have fueled the search for more cost-effective, scalable, and stable substrates since traditional gold and silver-based substrates are quite expensive, prone to corrosion, contamination and non-specific binding, particularly by S-containing compounds. Following that, we briefly described our experimental experience with Si and Al-based SERS substrates and systematically analyzed the literature on SERS on substrate materials such as Pd/Pt, Cu, Al, and Si. We tabulated and discussed figures of merit such as enhancement factor (EF) and limit of detection (LOD) from analytical applications of these substrates. The results of the comparison showed that Pd/Pt substrates are not practical due to their high cost; Cu-based substrates are less stable and produce lower signal enhancement. Si and Al-based substrates showed promising results, particularly in combination with gold and silver nanostructures since they could produce comparable EFs and LODs as conventional substrates. In addition, their stability and relatively low cost make them viable alternatives for gold and silver-based substrates. Finally, this review highlighted and compared the clinical performance of non-traditional SERS substrates and traditional gold and silver SERS substrates. We discovered that if we take the average sensitivity, specificity, and accuracy of clinical SERS assays reported in the literature, those parameters, particularly accuracy (93-94%), are similar for SERS bioassays on AgNP@Al, Si-based, Au-based, and Ag-based substrates. We hope that this review will encourage research into SERS biosensing on aluminum, silicon, and some other substrates. These Al and Si based substrates may respond efficiently to the major challenges to the SERS practical application. For instance, they may be not only less expensive, e.g., Al foil, but also in some cases more selective and sometimes more reproducible, when compared to gold-only or silver-only based SERS substrates. Overall, it may result in a greater diversity of applicable SERS substrates, allowing for better optimization and selection of the SERS substrate for a specific sensing/biosensing or clinical application.
Collapse
|
8
|
Mehta N, Mahigir A, Veronis G, Gartia MR. Hyperspectral dark field optical microscopy for orientational imaging of a single plasmonic nanocube using a physics-based learning method. NANOSCALE ADVANCES 2022; 4:4094-4101. [PMID: 36285219 PMCID: PMC9514559 DOI: 10.1039/d2na00469k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Rotational dynamics at the molecular level could provide additional data regarding protein diffusion and cytoskeleton formation at the cellular level. Due to the isotropic emission pattern of fluorescence molecules, it is challenging to extract rotational information from them during imaging. Metal nanoparticles show a polarization-dependent response and could be used for sensing rotational motion. Nanoparticles as an orientation sensing probe offer bio-compatibility and robustness against photo-blinking and photo-bleaching compared to conventional fluorescent molecules. Previously, asymmetric geometrical structures such as nanorods have been used for orientational imaging. Here, we show orientational imaging of symmetric geometrical structures such as 100 nm isolated silver nanocubes by coupling a hyperspectral detector and a focused ion beam (FIB)-fabricated correlating substrate. More than 100 nanocubes are analyzed to confirm spectral shifts in the scattering spectra due to variations in the orientation of the nanocubes with respect to the incoming light. Results are further validated using finite-difference time-domain simulations. Our observations suggest a novel strategy for high-throughput orientation imaging of nanoparticles.
Collapse
Affiliation(s)
- Nishir Mehta
- Department of Mechanical and Industrial Engineering, School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA +1-225-578-5900
| | - Amirreza Mahigir
- School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA
- Center for Computation and Technology, Louisiana State University Baton Rouge Louisiana 70803 USA
| | - Georgios Veronis
- School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA
- Center for Computation and Technology, Louisiana State University Baton Rouge Louisiana 70803 USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA +1-225-578-5900
| |
Collapse
|
9
|
Highly Stable, Graphene-Wrapped, Petal-like, Gap-Enhanced Raman Tags. NANOMATERIALS 2022; 12:nano12101626. [PMID: 35630847 PMCID: PMC9144347 DOI: 10.3390/nano12101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 02/01/2023]
Abstract
Gap-enhanced Raman tags (GERTs) were widely used in cell or biological tissue imaging due to their narrow spectral linewidth, weak photobleaching effect, and low biological matrix interference. Here, we reported a new kind of graphene-wrapped, petal-like, gap-enhanced Raman tags (GP-GERTs). The 4-Nitrobenzenethiol (4-NBT) Raman reporters were embedded in the petal-like nanogap, and graphene was wrapped on the surface of the petal-like, gap-enhanced Raman tags. Finite-difference time-domain (FDTD) simulations and Raman experimental studies jointly reveal the Raman enhancement mechanism of graphene. The SERS enhancement of GP-GERTs is jointly determined by the petal-like “interstitial hotspots” and electron transfer between graphene and 4-NBT molecules, and the total Raman enhancement factor (EF) can reach 1010. Mesoporous silica was grown on the surface of GP-GERTs by tetraethyl orthosilicate hydrolysis to obtain Raman tags of MS-GP-GERTs. Raman tag stability experiments showed that: MS-GP-GERTs not only can maintain the signal stability in aqueous solutions of different pH values (from 3 to 12) and simulated the physiological environment (up to 72 h), but it can also stably enhance the signal of different Raman molecules. These highly stable, high-signal-intensity nanotags show great potential for SERS-based bioimaging and multicolor imaging.
Collapse
|
10
|
Aitekenov S, Sultangaziyev A, Abdirova P, Yussupova L, Gaipov A, Utegulov Z, Bukasov R. Raman, Infrared and Brillouin Spectroscopies of Biofluids for Medical Diagnostics and for Detection of Biomarkers. Crit Rev Anal Chem 2022; 53:1561-1590. [PMID: 35157535 DOI: 10.1080/10408347.2022.2036941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
This review surveys Infrared, Raman/SERS and Brillouin spectroscopies for medical diagnostics and detection of biomarkers in biofluids, that include urine, blood, saliva and other biofluids. These optical sensing techniques are non-contact, noninvasive and relatively rapid, accurate, label-free and affordable. However, those techniques still have to overcome some challenges to be widely adopted in routine clinical diagnostics. This review summarizes and provides insights on recent advancements in research within the field of vibrational spectroscopy for medical diagnostics and its use in detection of many health conditions such as kidney injury, cancers, cardiovascular and infectious diseases. The six comprehensive tables in the review and four tables in supplementary information summarize a few dozen experimental papers in terms of such analytical parameters as limit of detection, range, diagnostic sensitivity and specificity, and other figures of merits. Critical comparison between SERS and FTIR methods of analysis reveals that on average the reported sensitivity for biomarkers in biofluids for SERS vs FTIR is about 103 to 105 times higher, since LOD SERS are lower than LOD FTIR by about this factor. High sensitivity gives SERS an edge in detection of many biomarkers present in biofluids at low concentration (nM and sub nM), which can be particularly advantageous for example in early diagnostics of cancer or viral infections.HighlightsRaman, Infrared spectroscopies use low volume of biofluidic samples, little sample preparation, fast time of analysis and relatively inexpensive instrumentation.Applications of SERS may be a bit more complicated than applications of FTIR (e.g., limited shelf life for nanoparticles and substrates, etc.), but this can be generously compensated by much higher (by several order of magnitude) sensitivity in comparison to FTIR.High sensitivity makes SERS a noninvasive analytical method of choice for detection, quantification and diagnostics of many health conditions, metabolites, and drugs, particularly in diagnostics of cancer, including diagnostics of its early stages.FTIR, particularly ATR-FTIR can be a method of choice for efficient sensing of many biomarkers, present in urine, blood and other biofluids at sufficiently high concentrations (mM and even a few µM)Brillouin scattering spectroscopy detecting visco-elastic properties of probed liquid medium, may also find application in clinical analysis of some biofluids, such as cerebrospinal fluid and urine.
Collapse
Affiliation(s)
- Sultan Aitekenov
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Alisher Sultangaziyev
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Perizat Abdirova
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Lyailya Yussupova
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Zhandos Utegulov
- Department of Physics, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
11
|
Li X, Lin L, Chiang WH, Chang K, Xu H. Microplasma synthesized gold nanoparticles for surface enhanced Raman spectroscopic detection of methylene blue. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00446h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Surface enhanced Raman scattering (SERS) is a powerful and sensitive spectroscopic technique that allows for rapid detection of trace-level chemical species in a non-invasive and non-destructive manner.
Collapse
Affiliation(s)
- Xuanhe Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Liangliang Lin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
- Key Laboratory of Nanodevices of Jiangsu Province, Suzhou 215123, People's Republic of China
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Kuan Chang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Hujun Xu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
12
|
Kaur V, Sharma M, Sen T. DNA Origami-Templated Bimetallic Nanostar Assemblies for Ultra-Sensitive Detection of Dopamine. Front Chem 2021; 9:772267. [PMID: 35004609 PMCID: PMC8733555 DOI: 10.3389/fchem.2021.772267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The abundance of hotspots tuned via precise arrangement of coupled plasmonic nanostructures highly boost the surface-enhanced Raman scattering (SERS) signal enhancements, expanding their potential applicability to a diverse range of applications. Herein, nanoscale assembly of Ag coated Au nanostars in dimer and trimer configurations with tunable nanogap was achieved using programmable DNA origami technique. The resulting assemblies were then utilized for SERS-based ultra-sensitive detection of an important neurotransmitter, dopamine. The trimer assemblies were able to detect dopamine with picomolar sensitivity, and the assembled dimer structures achieved SERS sensitivity as low as 1 fM with a limit of detection of 0.225 fM. Overall, such coupled nanoarchitectures with superior plasmon tunability are promising to explore new avenues in biomedical diagnostic applications.
Collapse
Affiliation(s)
| | | | - Tapasi Sen
- Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
13
|
Arbuz A, Sultangaziyev A, Rapikov A, Kunushpayeva Z, Bukasov R. How gap distance between gold nanoparticles in dimers and trimers on metallic and non-metallic SERS substrates can impact signal enhancement. NANOSCALE ADVANCES 2021; 4:268-280. [PMID: 36132951 PMCID: PMC9417094 DOI: 10.1039/d1na00114k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/08/2021] [Indexed: 06/02/2023]
Abstract
The impact of variation in the interparticle gaps in dimers and trimers of gold nanoparticles (AuNPs), modified with Raman reporter (2-MOTP), on surface-enhanced Raman scattering (SERS) intensity, relative to the SERS intensity of a single AuNP, is investigated in this paper. The dimers, trimers, and single particles are investigated on the surfaces of four substrates: gold (Au), aluminium (Al), silver (Ag) film, and silicon (Si) wafer. The interparticle distance between AuNPs was tuned by selecting mercaptocarboxylic acids of various carbon chain lengths when each acid forms a mixed SAM with 2-MOTP. The SERS signal quantification was accomplished by combining maps of SERS intensity from a Raman microscope, optical microscope images (×100), and maps/images from AFM or SEM. In total, we analysed 1224 SERS nanoantennas (533 dimers, 648 monomers, and 43 trimers). The average interparticle gaps were measured using TEM. We observed inverse exponential trends for the Raman intensity ratio and enhancement factor ratio versus gap distance on all substrates. Gold substrate, followed by silicon, showed the highest Raman intensity ratio (9) and dimer vs. monomer enhancement factor ratio (up to 4.5), in addition to the steepest inverse exponential curve. The results may help find a balance between SERS signal reproducibility and signal intensity that would be beneficial for future agglomerated NPs in SERS measurements. The developed method of 3 to 1 map combination by an increase in image transparency can be used to study structure-activity relationships on various substrates in situ, and it can be applied beyond SERS microscopy.
Collapse
Affiliation(s)
- Alexandr Arbuz
- Chemistry Department, SSH, Nazarbayev University Nur-Sultan Kazakhstan
| | | | - Alisher Rapikov
- Chemistry Department, SSH, Nazarbayev University Nur-Sultan Kazakhstan
| | | | - Rostislav Bukasov
- Chemistry Department, SSH, Nazarbayev University Nur-Sultan Kazakhstan
| |
Collapse
|
14
|
Kogikoski S, Tapio K, von Zander RE, Saalfrank P, Bald I. Raman Enhancement of Nanoparticle Dimers Self-Assembled Using DNA Origami Nanotriangles. Molecules 2021; 26:1684. [PMID: 33802892 PMCID: PMC8002687 DOI: 10.3390/molecules26061684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Surface-enhanced Raman scattering is a powerful approach to detect molecules at very low concentrations, even up to the single-molecule level. One important aspect of the materials used in such a technique is how much the signal is intensified, quantified by the enhancement factor (EF). Herein we obtained the EFs for gold nanoparticle dimers of 60 and 80 nm diameter, respectively, self-assembled using DNA origami nanotriangles. Cy5 and TAMRA were used as surface-enhanced Raman scattering (SERS) probes, which enable the observation of individual nanoparticles and dimers. EF distributions are determined at four distinct wavelengths based on the measurements of around 1000 individual dimer structures. The obtained results show that the EFs for the dimeric assemblies follow a log-normal distribution and are in the range of 106 at 633 nm and that the contribution of the molecular resonance effect to the EF is around 2, also showing that the plasmonic resonance is the main source of the observed signal. To support our studies, FDTD simulations of the nanoparticle's electromagnetic field enhancement has been carried out, as well as calculations of the resonance Raman spectra of the dyes using DFT. We observe a very close agreement between the experimental EF distribution and the simulated values.
Collapse
Affiliation(s)
- Sergio Kogikoski
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
- Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas—UNICAMP, P.O. Box 6154, Campinas 13084-974, SP, Brazil
| | - Kosti Tapio
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Robert Edler von Zander
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Peter Saalfrank
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| |
Collapse
|
15
|
Rastogi R, Arianfard H, Moss D, Juodkazis S, Adam PM, Krishnamoorthy S. Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9113-9121. [PMID: 33583180 DOI: 10.1021/acsami.0c17929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electromagnetic hot-spots at ultranarrow plasmonic nanogaps carry immense potential to drive detection limits down to few molecules in sensors based on surface-enhanced Raman or fluorescence spectroscopies. However, leveraging the EM hot-spots requires access to the gaps, which in turn depends on the size of the analyte in relation to gap distances. Herein, we leverage a well-calibrated process based on self-assembly of block copolymer colloids on a full-wafer level to produce high-density plasmonic nanopillar arrays exhibiting a large number (>1010 cm-2) of uniform interpillar EM hot-spots. The approach allows convenient handles to systematically vary the interpillar gap distances down to a sub-10 nm regime. The results show compelling trends of the impact of analyte dimensions in relation to the gap distances toward their leverage over interpillar hot-spots and the resulting sensitivity in SERS-based molecular assays. Comparing the detection of labeled proteins in surface-enhanced Raman and metal-enhanced fluorescence configurations further reveal the relative advantage of fluorescence over Raman detection while encountering the spatial limitations imposed by the gaps. Quantitative assays with limits of detection down to picomolar concentrations are realized for both small organic molecules and proteins. The well-defined geometries delivered by a nanofabrication approach are critical to arriving at realistic geometric models to establish meaningful correlation between the structure, optical properties, and sensitivity of nanopillar arrays in plasmonic assays. The findings emphasize the need for the rational design of EM hot-spots that takes into account the analyte dimensions to drive ultrahigh sensitivity in plasmon-enhanced spectroscopies.
Collapse
Affiliation(s)
- Rishabh Rastogi
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Technology, 41, Rue du Brill, Belvaux L-4422, Luxembourg
- Laboratory Light, Nanomaterials & Nanotechnologies - L2n, University of Technology of Troyes and CNRS ERL 7004, 12 rue Marie Curie, 10000 Troyes, France
| | - Hamed Arianfard
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - David Moss
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Pierre-Michel Adam
- Laboratory Light, Nanomaterials & Nanotechnologies - L2n, University of Technology of Troyes and CNRS ERL 7004, 12 rue Marie Curie, 10000 Troyes, France
| | - Sivashankar Krishnamoorthy
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Technology, 41, Rue du Brill, Belvaux L-4422, Luxembourg
| |
Collapse
|
16
|
Kunushpayeva Z, Rapikov A, Akhmetova A, Sultangaziyev A, Dossym D, Bukasov R. Sandwich SERS immunoassay of human immunoglobulin on silicon wafer compared to traditional SERS substrate, gold film. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Aluminum foil as a substrate for metal enhanced fluorescence of bacteria labelled with quantum dots, shows very large enhancement and high contrast. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Wu S, Duan N, He C, Yu Q, Dai S, Wang Z. Surface-enhanced Raman spectroscopic-based aptasensor for Shigella sonnei using a dual-functional metal complex-ligated gold nanoparticles dimer. Colloids Surf B Biointerfaces 2020; 190:110940. [PMID: 32151909 DOI: 10.1016/j.colsurfb.2020.110940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/20/2022]
Abstract
Herein, we constructed an aptamer-based sensor for the sensitive and highly specific detection of Shigella sonnei via surface enhanced Raman spectroscopy (SERS) analysis. A composite material integrated of the Raman active 4-MBA ligand of the Eu-complex and citrate-stabilized Au nanoparticles (cit-Au NPs) was synthesized and served as both active substrate and Raman reporter. Aptamers targeted to S. Sonnei was then modified onto the surface of this dual-functional material. With the introduction of S. Sonnei, aptamer bound with target with high affinity and specificity, leaving the dual-functional material onto the bacteria. The SERS intensity response showed a strong positive linear correlation (R = 0.9956) with increasing concentrations of S. sonnei (ranging from 10 to 106 cfu/mL). High specificity was achieved at Shigella species (S. dysenteriae, S. flexneri, S. boydii) and other common bacteria (Salmonella typhimurium, Staphylococcus aureus and Escherichia coli). When applied in real samples, the approach showed recoveries from 92.6 to 103.8 %. The designed approach holds great potential for the construction of various aptasensors for the effective and convenient detection of different food hazards.
Collapse
Affiliation(s)
- Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Chuxian He
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qianru Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shaoliang Dai
- Taicang Customs of the People's Republic of China, Suzhou 215400, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Rakymzhan A, Yakupov T, Yelemessova Z, Bukasov R, Yakovlev VV, Utegulov ZN. Time-resolved Assessment of Drying Plants by Brillouin and Raman Spectroscopies. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2019; 50:1881-1889. [PMID: 33041469 PMCID: PMC7546357 DOI: 10.1002/jrs.5742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/24/2019] [Indexed: 05/27/2023]
Abstract
Raman and Brillouin spectroscopy enable non-invasive assessment of chemical and elastic properties of biomaterials, respectively. In this report, Brillouin micro-spectroscopy was used for the time-resolved analysis of elastic properties of Populus and Geranium leaves, while Raman micro-spectroscopy was employed for the assessment of their chemical variation during drying. Spectroscopic assessment of elastic and chemical properties can improve our understanding of mechano-chemical changes of plants in response to environmental stress and pathogens at the microscopic cellular level. This report demonstrates the potential of multimodal optical sensing and imaging of plants as an emerging technique for the quantitative assessment of agricultural crops.
Collapse
Affiliation(s)
- A Rakymzhan
- Department of Bioengineering, University of Washington, Seattle, USA, WA 98105
- Department of Physics, School of Science and Technology, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - T Yakupov
- Department of Physics, School of Science and Technology, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Z Yelemessova
- Department of Chemistry, School of Science and Technology, Nazarbayev University, Nur-Sultan, Kazakhstan,010000
| | - R Bukasov
- Department of Chemistry, School of Science and Technology, Nazarbayev University, Nur-Sultan, Kazakhstan,010000
| | - V V Yakovlev
- Departments of Biomedical Engineering, Electrical and Computer Engineering and Department of Physics and Astronomy, Texas A&M University, College Station, USA, TX 77843-3120
| | - Z N Utegulov
- Department of Bioengineering, University of Washington, Seattle, USA, WA 98105
| |
Collapse
|
20
|
Lartey JA, Harms JP, Frimpong R, Mulligan CC, Driskell JD, Kim JH. Sandwiching analytes with structurally diverse plasmonic nanoparticles on paper substrates for surface enhanced Raman spectroscopy. RSC Adv 2019; 9:32535-32543. [PMID: 35529713 PMCID: PMC9073094 DOI: 10.1039/c9ra05399a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/04/2019] [Indexed: 01/22/2023] Open
Abstract
This report describes the systematic combination of structurally diverse plasmonic metal nanoparticles (AgNPs, AuNPs, Ag core-Au shell NPs, and anisotropic AuNPs) on flexible paper-based materials to induce signal-enhancing environments for surface enhanced Raman spectroscopy (SERS) applications. The anisotropic AuNP-modified paper exhibits the highest SERS response due to the surface area and the nature of the broad surface plasmon resonance (SPR) neighboring the Raman excitation wavelength. The subsequent addition of a second layer with these four NPs (e.g., sandwich arrangement) leads to the notable increase of the SERS signals by inducing a high probability of electromagnetic field environments associated with the interparticle SPR coupling and hot spots. After examining sixteen total combinations, the highest SERS response is obtained from the second layer with AgNPs on the anisotropic AuNP paper substrate, which allows for a higher calibration sensitivity and wider dynamic range than those of typical AuNP-AuNP arrangement. The variation of the SERS signals is also found to be below 20% based on multiple measurements (both intra-sample and inter-sample). Furthermore, the degree of SERS signal reductions for the sandwiched analytes is notably slow, indicating their increased long-term stability. The optimized combination is then employed in the detection of let-7f microRNA to demonstrate their practicability as SERS substrates. Precisely introducing interparticle coupling and hot spots with readily available plasmonic NPs still allows for the design of inexpensive and practical signal enhancing substrates that are capable of increasing the calibration sensitivity, extending the dynamic range, and lowering the detection limit of various organic and biological molecules.
Collapse
Affiliation(s)
- Jemima A Lartey
- Department of Chemistry, Illinois State University Normal Illinois 61790-4160 USA
| | - John P Harms
- Department of Chemistry, Illinois State University Normal Illinois 61790-4160 USA
| | - Richard Frimpong
- Department of Chemistry, Illinois State University Normal Illinois 61790-4160 USA
| | | | - Jeremy D Driskell
- Department of Chemistry, Illinois State University Normal Illinois 61790-4160 USA
| | - Jun-Hyun Kim
- Department of Chemistry, Illinois State University Normal Illinois 61790-4160 USA
| |
Collapse
|
21
|
Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Nat Commun 2019; 10:3905. [PMID: 31467266 PMCID: PMC6715656 DOI: 10.1038/s41467-019-11829-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/07/2019] [Indexed: 11/08/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is advantageous over fluorescence for bioimaging due to ultra-narrow linewidth of the fingerprint spectrum and weak photo-bleaching effect. However, the existing SERS imaging speed lags far behind practical needs, mainly limited by Raman signals of SERS nanoprobes. In this work, we report ultrabright gap-enhanced Raman tags (GERTs) with strong electromagnetic hot spots from interior sub-nanometer gaps and external petal-like shell structures, larger immobilization surface area, and Raman cross section of reporter molecules. These GERTs reach a Raman enhancement factor beyond 5 × 109 and a detection sensitivity down to a single-nanoparticle level. We use a 370 μW laser to realize high-resolution cell imaging within 6 s and high-contrast (a signal-to-background ratio of 80) wide-area (3.2 × 2.8 cm2) sentinel lymph node imaging within 52 s. These nanoprobes offer a potential solution to overcome the current bottleneck in the field of SERS-based bioimaging. The speed of surface-enhanced Raman spectroscopy (SERS) imaging is generally limited due to low Raman signals. Here, the authors develop bright gap-enhanced Raman tags with external hot spots and demonstrate their use in fast near-infrared bioimaging.
Collapse
|
22
|
Liu S, Chen Q, Wang Z, Cao T, Zhao G, Zhou Y. Monitoring 2,3',5,5'-tetrachlorobiphenyl with a rapid and sensitive environmental aptamer sensor. Analyst 2019; 144:4841-4847. [PMID: 31290489 DOI: 10.1039/c9an00848a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polychlorinated biphenyl (PCB) detection in the environment is significant for both environmental protection and human health. Herein, a highly sensitive aptamer sensor has been established by employing a 2,3',5,5'-tetrachlorobiphenyl (PCB72) targeting aptamer as a highly specific recognition element and a gold/silver (Au@Ag) nanocomposite as the surface-enhanced Raman spectroscopy (SERS) substrate for detecting environmental PCB72. The Au@Ag nanoparticles (NPs) exhibit a strong SERS enhancement and provide an efficient substrate for immobilizing the PCB72 aptamer and Raman signal labelled molecule, 4-mercaptobenzoic acid (4-MBA). The targeted PCB72 could competitively bind with the PCB72 aptamer, resulting in a few aptamers sticking to the Au@Ag NPs and the "hot spot" strengthening effect of the substrate. Under optimal conditions, this aptamer sensor exhibits great performance with high sensitivity, excellent selectivity and stability for the monitoring of PCB72, which shows an excellent linear correlation ranging from 1 to 1000 pg mL-1 with a limit of detection of 0.3 pg mL-1. Furthermore, this aptamer assay exhibits high specificity and selectivity for PCB72 with the detection error of less than 0.27 for other PCBs and 0.21 for other interfering species, even if the coexisting interferents are 100-fold concentration in the system. Additionally, the recognition mechanism of the binding of aptamers to PCB72 is analyzed via UV-vis spectroscopy and molecular docking simulations, which suggest that PCB72 could insert into the aptamers. Furthermore, this method is successfully utilized for PCB72 detection in real water samples with a simple pre-treatment. In general, this work provides a new and effective method using an environmental aptamer sensor for rapid and sensitive PCB72 detection.
Collapse
Affiliation(s)
- Siyao Liu
- Department of Cardio-Thoracic Surgery, Institute of Translational Research, Tongji Hospital, Tongji University School of medicine, Shanghai 200065, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
23
|
Mukanova Z, Gudun K, Elemessova Z, Khamkhash L, Ralchenko E, Bukasov R. Detection of Paracetamol in Water and Urea in Artificial Urine with Gold Nanoparticle@Al Foil Cost-efficient SERS Substrate. ANAL SCI 2018; 34:183-187. [PMID: 29434104 DOI: 10.2116/analsci.34.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We demonstrated that a cost-efficient, easy to prepare, hybrid SERS substrate-gold nanoparticles (AuNPs) on untreated Al foil (AlF) can effectively detect pharmaceuticals, such as paracetamol and clinical biomarkers, like urea in artificial urine. The limit of detection (LOD) for paracetamol on AuNPs on AlF is superior (0.1 vs. 1 mM ) to the LOD reported for SERS detection of paracetamol in the literature. For SERS detection of urea in urine, AuNPs on both Al foil and Au film performed much better than AuNPs on glass, in terms of the concentration range, linearity and LOD. However, assay on AuNPs on AlF showed a better semi-logarithmic trendline with R2 = 0.98 than an assay on AuNPs on Au film with R2 = 0.94. They have comparable sensitivity with LOD 0.024 and 0.017 M, respectively. The limit of quantification (LOQ) of the former is 0.026 M, which makes it sufficient for the quantification of urea in urine at both normal and pathophysiological (0.03 - 0.15 M) concentration.
Collapse
Affiliation(s)
- Zhansaya Mukanova
- Chemistry Department, School of Science and Technology, Nazarbayev University
| | - Kristina Gudun
- Chemistry Department, School of Science and Technology, Nazarbayev University
| | - Zarina Elemessova
- Chemistry Department, School of Science and Technology, Nazarbayev University
| | - Laura Khamkhash
- Chemistry Department, School of Science and Technology, Nazarbayev University
| | - Ekaterina Ralchenko
- Chemistry Department, School of Science and Technology, Nazarbayev University
| | - Rostislav Bukasov
- Chemistry Department, School of Science and Technology, Nazarbayev University
| |
Collapse
|
24
|
Moram SS, Byram C, Shibu SN, Chilukamarri BM, Soma VR. Ag/Au Nanoparticle-Loaded Paper-Based Versatile Surface-Enhanced Raman Spectroscopy Substrates for Multiple Explosives Detection. ACS OMEGA 2018; 3:8190-8201. [PMID: 31458956 PMCID: PMC6644453 DOI: 10.1021/acsomega.8b01318] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/11/2018] [Indexed: 05/24/2023]
Abstract
We present a systematic study on the fabrication, characterization of versatile, and low-cost filter paper-based surface-enhanced Raman spectroscopy (SERS) substrates loaded with salt-induced aggregated Ag/Au nanoparticles (NPs). These were demonstrated as efficient SERS substrates for the detection of multiple explosive molecules such as picric acid (5 μM), 2,4-dinitrotoluene (1 μM), and 3-nitro-1,2,4-triazol-5-one (10 μM) along with a common dye molecule (methylene blue, 5 nM). The concentrations of the dye and explosive molecules in terms of mass represent 31.98 pg, 11.45 ng, 1.82 ng, and 13.06 ng, respectively. Silver (Ag) and gold (Au) colloidal NPs were prepared by femtosecond laser (∼50 fs, 800 nm, 1 kHz) ablation of Ag/Au-target immersed in distilled water. Subsequently, the aggregated nanoparticles were achieved by mixing the pure Ag and Au NPs with different concentrations of NaCl. These aggregated NPs were characterized by UV-visible absorption and high-resolution transmission electron microscopy techniques. The SERS substrates were prepared by soaking the filter paper in aggregated NPs. The morphologies of the paper substrates were investigated using field-emission scanning electron microscopy technique. We have achieved superior enhancements with high reproducibility and sensitivity for filter paper substrates loaded with Ag/Au NPs mixed for an optimum concentration of 50 mM NaCl.
Collapse
|
25
|
Šubr M, Procházka M. Polarization- and Angular-Resolved Optical Response of Molecules on Anisotropic Plasmonic Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E418. [PMID: 29890758 PMCID: PMC6027211 DOI: 10.3390/nano8060418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 11/17/2022]
Abstract
A sometimes overlooked degree of freedom in the design of many spectroscopic (mainly Raman) experiments involve the choice of experimental geometry and polarization arrangement used. Although these aspects usually play a rather minor role, their neglect may result in a misinterpretation of the experimental results. It is well known that polarization- and/or angular- resolved spectroscopic experiments allow one to classify the symmetry of the vibrations involved or the molecular orientation with respect to a smooth surface. However, very low detection limits in surface-enhancing spectroscopic techniques are often accompanied by a complete or partial loss of this detailed information. In this review, we will try to elucidate the extent to which this approach can be generalized for molecules adsorbed on plasmonic nanostructures. We will provide a detailed summary of the state-of-the-art experimental findings for a range of plasmonic platforms used in the last ~ 15 years. Possible implications on the design of plasmon-based molecular sensors for maximum signal enhancement will also be discussed.
Collapse
Affiliation(s)
- Martin Šubr
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, 121 16 Prague 2, Czech Republic.
| | - Marek Procházka
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, 121 16 Prague 2, Czech Republic.
| |
Collapse
|
26
|
Tanwar S, Haldar KK, Sen T. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering. J Am Chem Soc 2017; 139:17639-17648. [DOI: 10.1021/jacs.7b10410] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Swati Tanwar
- Institute of Nano Science and Technology, Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Krishna Kanta Haldar
- Department
of Chemical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab-151001, India
| | - Tapasi Sen
- Institute of Nano Science and Technology, Phase-10, Sector-64, Mohali, Punjab-160062, India
| |
Collapse
|