1
|
Alsaç EP, Boke M, Bissonnette JR, Smith RDL. Interplay between element-specific distortions and electrocatalytic oxygen evolution for cobalt-iron hydroxides. Chem Sci 2024:d4sc01841a. [PMID: 39234216 PMCID: PMC11367221 DOI: 10.1039/d4sc01841a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
A microscopic understanding of how Fe-doping of Co(OH)2 improves electrocatalytic oxygen evolution remains elusive. We study two Co1-x Fe x (OH)2 series that differ in fabrication protocol and find composition alone poorly correlates to catalyst performance. Structural descriptors extracted using X-ray diffraction, X-ray absorption spectroscopy, and Raman spectroscopy reveal element-specific distortions in Co1-x Fe x (OH)2. These structural descriptors are composition-dependent within individual sample series but inconsistent across fabrication protocols, revealing fabrication-dependence in catalyst microstructure. Correlations between structural parameters from different techniques show that Fe-O resists bond length changes, forcing distortion of Co environments. We find the difference in O-M-O bond angles between Co and Fe sites to correlate with electrocatalytic behavior across both sample series, which we attribute to asymmetric distortion of potential energy surfaces for the Co(iii) to Co(iv) oxidation. A Tafel slope consistent with a rate-limiting step without electron transfer emerges as the O-Co-O angle decreases, implying a distortion-induced transition in the rate-limiting step. The fabrication dependence of electronic and bonding structure in the catalysts should be considered in theoretical and high-throughput analyses of electrocatalyst materials.
Collapse
Affiliation(s)
- Elif Pınar Alsaç
- Department of Chemistry, University of Waterloo, 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada
| | - Marlyn Boke
- Department of Chemistry, University of Waterloo, 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada
| | - Justine R Bissonnette
- Department of Chemistry, University of Waterloo, 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada
| | - Rodney D L Smith
- Department of Chemistry, University of Waterloo, 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada
- Waterloo Artificial Intelligence Institute, University of Waterloo, 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
2
|
Jones TE, Teschner D, Piccinin S. Toward Realistic Models of the Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2024; 124:9136-9223. [PMID: 39038270 DOI: 10.1021/acs.chemrev.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The electrocatalytic oxygen evolution reaction (OER) supplies the protons and electrons needed to transform renewable electricity into chemicals and fuels. However, the OER is kinetically sluggish; it operates at significant rates only when the applied potential far exceeds the reversible voltage. The origin of this overpotential is hidden in a complex mechanism involving multiple electron transfers and chemical bond making/breaking steps. Our desire to improve catalytic performance has then made mechanistic studies of the OER an area of major scientific inquiry, though the complexity of the reaction has made understanding difficult. While historically, mechanistic studies have relied solely on experiment and phenomenological models, over the past twenty years ab initio simulation has been playing an increasingly important role in developing our understanding of the electrocatalytic OER and its reaction mechanisms. In this Review we cover advances in our mechanistic understanding of the OER, organized by increasing complexity in the way through which the OER is modeled. We begin with phenomenological models built using experimental data before reviewing early efforts to incorporate ab initio methods into mechanistic studies. We go on to cover how the assumptions in these early ab initio simulations─no electric field, electrolyte, or explicit kinetics─have been relaxed. Through comparison with experimental literature, we explore the veracity of these different assumptions. We summarize by discussing the most critical open challenges in developing models to understand the mechanisms of the OER.
Collapse
Affiliation(s)
- Travis E Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
| | - Detre Teschner
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Simone Piccinin
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Trieste 34136, Italy
| |
Collapse
|
3
|
Hasegawa T, Hagiwara S, Otani M, Maeda S. A Combined Reaction Path Search and Hybrid Solvation Method for the Systematic Exploration of Elementary Reactions at the Solid-Liquid Interface. J Phys Chem Lett 2023; 14:8796-8804. [PMID: 37747821 DOI: 10.1021/acs.jpclett.3c02233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
We present a combined simulation method of single-component artificial force induced reaction (SC-AFIR) and effective screening medium combined with the reference interaction site model (ESM-RISM), termed SC-AFIR+ESM-RISM. SC-AFIR automatically and systematically explores the chemical reaction pathway, and ESM-RISM directly simulates the precise electronic structure at the solid-liquid interface. Hence, SC-AFIR+ESM-RISM enables us to explore reliable reaction pathways at the solid-liquid interface. We applied it to explore the dissociation pathway of an H2O molecule at the Cu(111)/water interface. The reaction path networks of the whole reaction and the minimum energy paths from H2O to H2 + O depend on the interfacial environment. The qualitative difference in the energy diagrams and the resulting change in the kinematically favored dissociation pathway upon changing the solvation environments are discussed. We believe that SC-AFIR+ESM-RISM will be a powerful tool to reveal the details of chemical reactions in surface catalysis and electrochemistry.
Collapse
Affiliation(s)
- Taisuke Hasegawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Satoshi Hagiwara
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba 305-8577, Japan
| | - Minoru Otani
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba 305-8577, Japan
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Sapporo 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
4
|
Yang X, Bhowmik A, Vegge T, Hansen HA. Neural network potentials for accelerated metadynamics of oxygen reduction kinetics at Au-water interfaces. Chem Sci 2023; 14:3913-3922. [PMID: 37035698 PMCID: PMC10074416 DOI: 10.1039/d2sc06696c] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The application of ab initio molecular dynamics (AIMD) for the explicit modeling of reactions at solid-liquid interfaces in electrochemical energy conversion systems like batteries and fuel cells can provide new understandings towards reaction mechanisms. However, its prohibitive computational cost severely restricts the time- and length-scales of AIMD. Equivariant graph neural network (GNN) based accurate surrogate potentials can accelerate the speed of performing molecular dynamics after learning on representative structures in a data efficient manner. In this study, we combined uncertainty-aware GNN potentials and enhanced sampling to investigate the reactive process of the oxygen reduction reaction (ORR) at an Au(100)-water interface. By using a well-established active learning framework based on CUR matrix decomposition, we can evenly sample equilibrium structures from MD simulations and non-equilibrium reaction intermediates that are rarely visited during the reaction. The trained GNNs have shown exceptional performance in terms of force prediction accuracy, the ability to reproduce structural properties, and low uncertainties when performing MD and metadynamics simulations. Furthermore, the collective variables employed in this work enabled the automatic search of reaction pathways and provide a detailed understanding towards the ORR reaction mechanism on Au(100). Our simulations identified the associative reaction mechanism without the presence of *O and a low reaction barrier of 0.3 eV, which is in agreement with experimental findings. The methodology employed in this study can pave the way for modeling complex chemical reactions at electrochemical interfaces with an explicit solvent under ambient conditions.
Collapse
Affiliation(s)
- Xin Yang
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej, 2800 Kgs Lyngby Denmark
| | - Arghya Bhowmik
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej, 2800 Kgs Lyngby Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej, 2800 Kgs Lyngby Denmark
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej, 2800 Kgs Lyngby Denmark
| |
Collapse
|
5
|
Geppert J, Röse P, Pauer S, Krewer U. Microkinetic Barriers of the Oxygen Evolution on the Oxides of Iridium, Ruthenium and their Binary Mixtures. ChemElectroChem 2022. [DOI: 10.1002/celc.202200481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Janis Geppert
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute for Applied Matierals - Electrochemical Technologies Adenauerring 20b 76131 Karlsruhe GERMANY
| | - Philipp Röse
- Karlsruher Institut für Technologie: Karlsruher Institut fur Technologie Institute for Applied Materials - Electrochemical Technologies Adenauerring 20b 76131 Karlsruhe GERMANY
| | - Swantje Pauer
- Karlsruher Institut für Technologie: Karlsruher Institut fur Technologie Institute for Applied Materials - Electrochemical Technologies Adenauerring 20b 76131 Karlsruhe GERMANY
| | - Ulrike Krewer
- Institute for Applied Materials - Materials for Electrical and Electronic Engineering Electrical Engineering and Information Technology Adenauerring 20b 76131 Karlsruhe GERMANY
| |
Collapse
|
6
|
Hutchison P, Rice PS, Warburton RE, Raugei S, Hammes-Schiffer S. Multilevel Computational Studies Reveal the Importance of Axial Ligand for Oxygen Reduction Reaction on Fe-N-C Materials. J Am Chem Soc 2022; 144:16524-16534. [PMID: 36001092 DOI: 10.1021/jacs.2c05779] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The systematic improvement of Fe-N-C materials for fuel cell applications has proven challenging, due in part to an incomplete atomistic understanding of the oxygen reduction reaction (ORR) under electrochemical conditions. Herein, a multilevel computational approach, which combines ab initio molecular dynamics simulations and constant potential density functional theory calculations, is used to assess proton-coupled electron transfer (PCET) processes and adsorption thermodynamics of key ORR intermediates. These calculations indicate that the potential-limiting step for ORR on Fe-N-C materials is the formation of the FeIII-OOH intermediate. They also show that an active site model with a water molecule axially ligated to the iron center throughout the catalytic cycle produces results that are consistent with the experimental measurements. In particular, reliable prediction of the ORR onset potential and the Fe(III/II) redox potential associated with the conversion of FeIII-OH to FeII and desorbed H2O requires an axial H2O co-adsorbed to the iron center. The observation of a five-coordinate rather than four-coordinate active site has significant implications for the thermodynamics and mechanism of ORR. These findings highlight the importance of solvent-substrate interactions and surface charge effects for understanding the PCET reaction mechanisms and transition-metal redox couples under realistic electrochemical conditions.
Collapse
Affiliation(s)
- Phillips Hutchison
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Peter S Rice
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Robert E Warburton
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Simone Raugei
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | |
Collapse
|
7
|
Vijay S, Kastlunger G, Gauthier JA, Patel A, Chan K. Force-Based Method to Determine the Potential Dependence in Electrochemical Barriers. J Phys Chem Lett 2022; 13:5719-5725. [PMID: 35713626 DOI: 10.1021/acs.jpclett.2c01367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Determining ab initio potential-dependent energetics is critical to the investigation of mechanisms for electrochemical reactions. While methodology for evaluating reaction thermodynamics is established, simulation techniques for the corresponding kinetics is still a major challenge owing to a lack of potential control, finite cell size effects, or computational expense. In this work, we develop a model that allows for computing electrochemical activation energies from just a handful of density functional theory (DFT) calculations. The sole input into the model are the atom-centered forces obtained from DFT calculations performed on a homogeneous grid composed of varying field strengths. We show that the activation energies as a function of the potential obtained from our model are consistent for different supercell sizes and proton concentrations for a range of electrochemical reactions.
Collapse
Affiliation(s)
- Sudarshan Vijay
- CatTheory, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Georg Kastlunger
- CatTheory, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Joseph A Gauthier
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720 Berkeley, California, United States
- Department of Chemical and Biomolecular Engineering, University of California, 94720 Berkeley, California, United States
| | - Anjli Patel
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 94305 Stanford, California, United States
| | - Karen Chan
- CatTheory, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Schmickler W, Santos E. Desorption of hydrogen from graphene induced by charge injection. ChemElectroChem 2022. [DOI: 10.1002/celc.202200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Elizabeth Santos
- Ulm University: Universitat Ulm Instiitute of Theoretical Chemistry Albert Einstein Allee 11 89089 Ulm GERMANY
| |
Collapse
|
9
|
Zhao X, Levell ZH, Yu S, Liu Y. Atomistic Understanding of Two-dimensional Electrocatalysts from First Principles. Chem Rev 2022; 122:10675-10709. [PMID: 35561417 DOI: 10.1021/acs.chemrev.1c00981] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional electrocatalysts have attracted great interest in recent years for renewable energy applications. However, the atomistic mechanisms are still under debate. Here we review the first-principles studies of the atomistic mechanisms of common 2D electrocatalysts. We first introduce the first-principles models for studying heterogeneous electrocatalysis then discuss the common 2D electrocatalysts with a focus on N doped graphene, single metal atoms in graphene, and transition metal dichalcogenides. The reactions include hydrogen evolution, oxygen evolution, oxygen reduction, and carbon dioxide reduction. Finally, we discuss the challenges and the future directions to improve the fundamental understanding of the 2D electrocatalyst at atomic level.
Collapse
Affiliation(s)
- Xunhua Zhao
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary H Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Abstract
Electron transfer is the most important electrochemical process. In this review, we present elements of various aspects of electron transfer theory from the early work of Marcus and Hush to recent developments. The emphasis is on the role of the electronic, and to a lesser extent the geometrical, properties of the electrode. A variety of experimental works are discussed in light of these theoretical concepts. Because the field of electron transfer is so vast, this review is far from comprehensive; rather, we focus on systems that offer a special interest and illuminate aspects of the theory.
Collapse
Affiliation(s)
- Elizabeth Santos
- Institute of Theoretical Chemistry, Ulm University, Ulm 89081, Germany
| | | |
Collapse
|
11
|
Warburton RE, Soudackov AV, Hammes-Schiffer S. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chem Rev 2022; 122:10599-10650. [PMID: 35230812 DOI: 10.1021/acs.chemrev.1c00929] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton-coupled electron transfer (PCET) plays an essential role in a wide range of electrocatalytic processes. A vast array of theoretical and computational methods have been developed to study electrochemical PCET. These methods can be used to calculate redox potentials and pKa values for molecular electrocatalysts, proton-coupled redox potentials and bond dissociation free energies for PCET at metal and semiconductor interfaces, and reorganization energies associated with electrochemical PCET. Periodic density functional theory can also be used to compute PCET activation energies and perform molecular dynamics simulations of electrochemical interfaces. Various approaches for maintaining a constant electrode potential in electronic structure calculations and modeling complex interactions in the electric double layer (EDL) have been developed. Theoretical formulations for both homogeneous and heterogeneous electrochemical PCET spanning the adiabatic, nonadiabatic, and solvent-controlled regimes have been developed and provide analytical expressions for the rate constants and current densities as functions of applied potential. The quantum mechanical treatment of the proton and inclusion of excited vibronic states have been shown to be critical for describing experimental data, such as Tafel slopes and potential-dependent kinetic isotope effects. The calculated rate constants can be used as input to microkinetic models and voltammogram simulations to elucidate complex electrocatalytic processes.
Collapse
Affiliation(s)
- Robert E Warburton
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
12
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Kano K, Hagiwara S, Igarashi T, Otani M. Study on the free corrosion potential at an interface between an Al electrode and an acidic aqueous NaCl solution through density functional theory combined with the reference interaction site model. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Herlem G, Picaud F. Breaking the Controversy of the Electropolymerization of Pyrrole Mechanisms by the Effective Screening Medium Quantum Charged Model Interface. J Phys Chem A 2021; 125:1860-1869. [PMID: 33625857 DOI: 10.1021/acs.jpca.0c10269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several mechanisms for the electropolymerization of pyrrole have been proposed since the first report 40 years ago. However, none of them were consensual despite a range of assumptions. We simulated and explained the preliminary steps governing the electropolymerization of pyrrole in a charged model interface using first-principles molecular dynamics calculations to solve the problem. We have shown under these conditions that adjacent pyrrole molecules in water can react together, causing their electropolymerization at the interface with a biased platinum electrode in anodic oxidation. In this work, the effective screening medium method that prevents energy divergence of the system was applied to different configurations of pyrrole, water, and electrolyte molecules to best screen the phase space. Furthermore, we worked on a Pt(100) electrode surface in an aqueous electrolyte to be as close as possible to the experimental conditions, MD taking the average of their different orientations.
Collapse
Affiliation(s)
- Guillaume Herlem
- NanoMedicine, Imaging and Therapeutics Lab, EA 4662, UFR Sciences & Techniques, CHU Jean Minjoz, University of Franche-Comte, 25030 Besançon Cedex, France
| | - Fabien Picaud
- NanoMedicine, Imaging and Therapeutics Lab, EA 4662, UFR Sciences & Techniques, CHU Jean Minjoz, University of Franche-Comte, 25030 Besançon Cedex, France
| |
Collapse
|
15
|
Lu J, Zhu B, Sakaki S. O 2 activation by core-shell Ru 13@Pt 42 particles in comparison with Pt 55 particles: a DFT study. RSC Adv 2020; 10:36090-36100. [PMID: 35517069 PMCID: PMC9057003 DOI: 10.1039/d0ra05738j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 11/21/2022] Open
Abstract
The reaction of O2 with a Ru13@Pt42 core-shell particle consisting of a Ru13 core and a Pt42 shell was theoretically investigated in comparison with Pt55. The O2 binding energy with Pt55 is larger than that with Ru13@Pt42, and O-O bond cleavage occurs more easily with a smaller activation barrier (E a) on Pt55 than on Ru13@Pt42. Protonation to the Pt42 surface followed by one-electron reduction leads to the formation of an H atom on the surface with considerable exothermicity. The H atom reacts with the adsorbed O2 molecule to afford an OOH species with a larger E a value on Pt55 than on Ru13@Pt42. An OOH species is also formed by protonation of the adsorbed O2 molecule, followed by one-electron reduction, with a large exothermicity in both Pt55 and Ru13@Pt42. O-OH bond cleavage occurs with a smaller E a on Pt55 than on Ru13@Pt42. The lower reactivity of Ru13@Pt42 than that of Pt55 on the O-O and O-OH bond cleavages arises from the presence of lower energy in the d-valence band-top and d-band center in Ru13@Pt42 than in Pt55. The smaller E a for OOH formation on Ru13@Pt42 than on Pt55 arises from weaker Ru13@Pt42-O2 and Ru13@Pt42-H bonds than the Pt55-O2 and Pt55-H bonds, respectively. The low-energy d-valence band-top is responsible for the weak Ru13@Pt42-O and Ru13@Pt42-OH bonds. Thus, the low-energy d-valence band-top and d-band center are important properties of the Ru13@Pt42 particle.
Collapse
Affiliation(s)
- Jing Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University Wuhan 430200 China
| | - Bo Zhu
- Element Strategy Initiative for Catalysts and Batteries, Kyoto University Goryo-Ohara 1-30, Nishikyo-ku Kyoto 615-8245 Japan +81-75-383-3047 +81-75-383-3036
| | - Shigeyoshi Sakaki
- Element Strategy Initiative for Catalysts and Batteries, Kyoto University Goryo-Ohara 1-30, Nishikyo-ku Kyoto 615-8245 Japan +81-75-383-3047 +81-75-383-3036.,Fukui Institute for Fundamental Chemistry (FIFC), Kyoto University Takano-Nishihiraki-cho 34-4, Sakyou-ku Kyoto 606-8103 Japan
| |
Collapse
|
16
|
Sakaushi K, Kumeda T, Hammes-Schiffer S, Melander MM, Sugino O. Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Phys Chem Chem Phys 2020; 22:19401-19442. [DOI: 10.1039/d0cp02741c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding microscopic mechanism of multi-electron multi-proton transfer reactions at complexed systems is important for advancing electrochemistry-oriented science in the 21st century.
Collapse
Affiliation(s)
- Ken Sakaushi
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | - Tomoaki Kumeda
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | | | - Marko M. Melander
- Nanoscience Center
- Department of Chemistry
- University of Jyväskylä
- Jyväskylä
- Finland
| | - Osamu Sugino
- The Institute of Solid State Physics
- the University of Tokyo
- Chiba 277-8581
- Japan
| |
Collapse
|
17
|
Sato M, Imazeki Y, Fujii K, Nakano Y, Sugiyama M. First-principles modeling of GaN(0001)/water interface: Effect of surface charging. J Chem Phys 2019; 150:154703. [PMID: 31005088 DOI: 10.1063/1.5086321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The accumulation properties of photogenerated carriers at the semiconductor surface determine the performance of photoelectrodes. However, to the best of our knowledge, there are no computational studies that methodically examine the effect of "surface charging" on photocatalytic activities. In this work, the effect of excess carriers at the semiconductor surface on the geometric and electronic structures of the semiconductor/electrolyte interface is studied systematically with the aid of first-principles calculations. We found that the number of water molecules that can be dissociated follows the "extended" electron counting rule; the dissociation limit is smaller than that predicted by the standard electron counting rule (0.375 ML) by the number of excess holes at the interface. When the geometric structure of the GaN/water interface obeys the extended electron counting rule, the Ga-originated surface states are removed from the bandgap due to the excess holes and adsorbates, and correspondingly, the Fermi level becomes free from pinning. Clearly, the excess charge has a great impact on the interface structure and most likely on the chemical reactions. This study serves as a basis for further studies on the semiconductor/electrolyte interface under working conditions.
Collapse
Affiliation(s)
- Masahiro Sato
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8904, Japan
| | - Yuki Imazeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Katsushi Fujii
- Photonics Control Technology Team, Advanced Photonics Technology Development Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiaki Nakano
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masakazu Sugiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
18
|
Melander MM, Kuisma MJ, Christensen TEK, Honkala K. Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and electrode potentials. J Chem Phys 2019; 150:041706. [PMID: 30709274 DOI: 10.1063/1.5047829] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Properties of solid-liquid interfaces are of immense importance for electrocatalytic and electrochemical systems, but modeling such interfaces at the atomic level presents a serious challenge and approaches beyond standard methodologies are needed. An atomistic computational scheme needs to treat at least part of the system quantum mechanically to describe adsorption and reactions, while the entire system is in thermal equilibrium. The experimentally relevant macroscopic control variables are temperature, electrode potential, and the choice of the solvent and ions, and these need to be explicitly included in the computational model as well; this calls for a thermodynamic ensemble with fixed ion and electrode potentials. In this work, a general framework within density functional theory (DFT) with fixed electron and ion chemical potentials in the grand canonical (GC) ensemble is established for modeling electrocatalytic and electrochemical interfaces. Starting from a fully quantum mechanical description of multi-component GC-DFT for nuclei and electrons, a systematic coarse-graining is employed to establish various computational schemes including (i) the combination of classical and electronic DFTs within the GC ensemble and (ii) on the simplest level a chemically and physically sound way to obtain various (modified) Poisson-Boltzmann (mPB) implicit solvent models. The detailed and rigorous derivation clearly establishes which approximations are needed for coarse-graining as well as highlights which details and interactions are omitted in vein of computational feasibility. The transparent approximations also allow removing some of the constraints and coarse-graining if needed. We implement various mPB models within a linear dielectric continuum in the GPAW code and test their capabilities to model capacitance of electrochemical interfaces as well as study different approaches for modeling partly periodic charged systems. Our rigorous and well-defined DFT coarse-graining scheme to continuum electrolytes highlights the inadequacy of current linear dielectric models for treating properties of the electrochemical interface.
Collapse
Affiliation(s)
- Marko M Melander
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, P.O. Box 35 (YN), FI-40014 Jyväskylä, Finland
| | - Mikael J Kuisma
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, P.O. Box 35 (YN), FI-40014 Jyväskylä, Finland
| | | | - Karoliina Honkala
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, P.O. Box 35 (YN), FI-40014 Jyväskylä, Finland
| |
Collapse
|
19
|
Kristoffersen HH, Vegge T, Hansen HA. OH formation and H 2 adsorption at the liquid water-Pt(111) interface. Chem Sci 2018; 9:6912-6921. [PMID: 30288234 PMCID: PMC6143996 DOI: 10.1039/c8sc02495b] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/21/2018] [Indexed: 11/21/2022] Open
Abstract
The liquid water-Pt(111) interface is studied with constant temperature ab initio molecular dynamics to explore the importance of liquid water dynamics of catalytic reactions such as the oxygen reduction reaction in PEM fuel cells. The structure and energetics of hydroxyls formed at the liquid water-Pt(111) interface are found to be significantly different from those of the hydroxyl formed on a bare Pt(111) surface and the hydroxyl formed on a Pt(111) surface with a static water layer. We identify 1/12 ML *OH, 5/12 ML *OH and 2/3 ML *OH as particularly stable hydroxyl coverages in highly dynamic liquid water environments, which - contrary to static water-hydroxyl models - contain adjacent uncovered Pt sites. Atomic surface oxygen is found to be unstable in the presence of liquid water, in contrast to static atomic level simulations. These results give an improved understanding of hydroxide and surface oxide formation from Pt(111) cyclic voltammetry and allow us to draw detailed connections between the electrostatic potential and the interface structure. The study of hydrogen adsorption at the liquid water-Pt(111) interface finds competitive adsorption between the adsorbed hydrogen atoms and water molecules. This does not adhere with experimental observations, and this indicates that the Pt(111) surface has to be negatively charged for a correct description of the liquid water-Pt(111) interface at potentials where hydrogen adsorption occurs.
Collapse
Affiliation(s)
- Henrik H Kristoffersen
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark . ; Tel: +45 45 25 82 05
| | - Tejs Vegge
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark . ; Tel: +45 45 25 82 05
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark . ; Tel: +45 45 25 82 05
| |
Collapse
|
20
|
Ohwaki T, Ozaki T, Okuno Y, Ikeshoji T, Imai H, Otani M. Li deposition and desolvation with electron transfer at a silicon/propylene-carbonate interface: transition-state and free-energy profiles by large-scale first-principles molecular dynamics. Phys Chem Chem Phys 2018. [DOI: 10.1039/c7cp08569a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the result of a large-scale first-principles molecular dynamics simulation under different electric biases performed to understand the charge transfer process coupling with lithium deposition and desolvation processes.
Collapse
Affiliation(s)
- Tsukuru Ohwaki
- Device Functional Analysis Department
- NISSAN ARC
- Ltd
- Yokosuka
- Japan
| | - Taisuke Ozaki
- Institute for Solid State Physics
- The University of Tokyo
- Kashiwa
- Japan
| | - Yukihiro Okuno
- Research and Development Headquarters
- FUJIFILM Corporation
- Minamiashigara
- Japan
| | - Tamio Ikeshoji
- Device Functional Analysis Department
- NISSAN ARC
- Ltd
- Yokosuka
- Japan
| | - Hideto Imai
- Device Functional Analysis Department
- NISSAN ARC
- Ltd
- Yokosuka
- Japan
| | - Minoru Otani
- Research Center for Computational Design of Advanced Functional Materials
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba 305-8568
- Japan
| |
Collapse
|
21
|
Cui L, Wang H, Chen S, Zhang J, Xiang Y, Lu S. An efficient cluster model to describe the oxygen reduction reaction activity of metal catalysts: a combined theoretical and experimental study. Phys Chem Chem Phys 2018; 20:26675-26680. [DOI: 10.1039/c8cp05466e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient model containing only 7 metal atoms was proposed to describe the ORR activity of metal catalysts by DFT calculation.
Collapse
Affiliation(s)
- Liting Cui
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing
- China
| | - Haining Wang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing
- China
| | - Sian Chen
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing
- China
| | - Jin Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing
- China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing
- China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing
- China
| |
Collapse
|