1
|
Diroll BT, Dabard C, Hua M, Climente JI, Lhuillier E, Ithurria S. Hole Relaxation Bottlenecks in CdSe/CdTe/CdSe Lateral Heterostructures Lead to Bicolor Emission. NANO LETTERS 2024; 24:7934-7940. [PMID: 38885197 DOI: 10.1021/acs.nanolett.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Concentric lateral CdSe/CdTe/CdSe heterostructures show bicolor photoluminescence from both a red charge transfer band of the CdSe/CdTe interface and a green fluorescence from CdSe. This work uses visible and near-infrared transient spectroscopy measurements to demonstrate that the deviation from Kasha's rule arises from a hole relaxation bottleneck from CdSe to CdTe. Hole transfer can take up to 1 ns, which permits radiative relaxation of excitons remaining in CdSe. Simulations indicate that the hole relaxation bottleneck arises due to the sparse density of states and poor spatial overlap of hole states at energies near the CdSe band edge. The divergent kinetics of transfer for band edge and hot holes is exploited to vary the ratio of green and red photoluminescence with excitation wavelength, providing another knob to control emission color. These findings support the use of lateral heterojunctions as a method for slowing carrier relaxation in two-dimensional materials.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory. 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin, Paris 75005, France
| | - Muchuan Hua
- Center for Nanoscale Materials, Argonne National Laboratory. 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Juan I Climente
- Departament de Química Física i Analítica, Universitat Jaume I, Castelló de la Plana 12080, Spain
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 Place Jussieu, Paris 75005, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin, Paris 75005, France
| |
Collapse
|
2
|
Li Q, Wu K, Zhu H, Yang Y, He S, Lian T. Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals. Chem Rev 2024; 124:5695-5763. [PMID: 38629390 PMCID: PMC11082908 DOI: 10.1021/acs.chemrev.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/09/2024]
Abstract
The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.
Collapse
Affiliation(s)
- Qiuyang Li
- Department
of Physics, University of Michigan, 450 Church St, Ann Arbor, Michigan 48109, United States
| | - Kaifeng Wu
- State
Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiming Zhu
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ye Yang
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM
(Collaborative Innovation Center of Chemistry for Energy Materials),
College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng He
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Stingel AM, Leemans J, Hens Z, Geiregat P, Petersen PB. Narrow homogeneous linewidths and slow cooling dynamics across infrared intra-band transitions in n-doped HgSe colloidal quantum dots. J Chem Phys 2023; 158:114202. [PMID: 36948807 DOI: 10.1063/5.0139795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Intra-band transitions in colloidal quantum dots (QDs) are promising for opto-electronic applications in the mid-IR spectral region. However, such intra-band transitions are typically very broad and spectrally overlapping, making the study of individual excited states and their ultrafast dynamics very challenging. Here, we present the first full spectrum two-dimensional continuum infrared (2D CIR) spectroscopy study of intrinsically n-doped HgSe QDs, which exhibit mid-infrared intra-band transitions in their ground state. The obtained 2D CIR spectra reveal that underneath the broad absorption line shape of ∼500 cm-1, the transitions exhibit surprisingly narrow intrinsic linewidths with a homogeneous broadening of 175-250 cm-1. Furthermore, the 2D IR spectra are remarkably invariant, with no sign of spectral diffusion dynamics at waiting times up to 50 ps. Accordingly, we attribute the large static inhomogeneous broadening to the distribution of size and doping level of the QDs. In addition, the two higher-lying P-states of the QDs can be clearly identified in the 2D IR spectra along the diagonal with a cross-peak. However, there is no indication of cross-peak dynamics indicating that, despite the strong spin-orbit coupling in HgSe, transitions between the P-states must be longer than our maximum waiting time of 50 ps. This study illustrates a new frontier of 2D IR spectroscopy enabling the study of intra-band carrier dynamics in nanocrystalline materials across the entire mid-infrared spectrum.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Jari Leemans
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Nguyen HL, Do TN, Durmusoglu EG, Izmir M, Sarkar R, Pal S, Prezhdo OV, Demir HV, Tan HS. Measuring the Ultrafast Spectral Diffusion and Vibronic Coupling Dynamics in CdSe Colloidal Quantum Wells using Two-Dimensional Electronic Spectroscopy. ACS NANO 2023; 17:2411-2420. [PMID: 36706108 DOI: 10.1021/acsnano.2c09606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We measure the ultrafast spectral diffusion, vibronic dynamics, and energy relaxation of a CdSe colloidal quantum wells (CQWs) system at room temperature using two-dimensional electronic spectroscopy (2DES). The energy relaxation of light-hole (LH) excitons and hot carriers to heavy-hole (HH) excitons is resolved with a time scale of ∼210 fs. We observe the equilibration dynamics between the spectroscopically accessible HH excitonic state and a dark state with a time scale of ∼160 fs. We use the center line slope analysis to quantify the spectral diffusion dynamics in HH excitons, which contains an apparent sub-200 fs decay together with oscillatory features resolved at 4 and 25 meV. These observations can be explained by the coupling to various lattice phonon modes. We further perform quantum calculations that can replicate and explain the observed dynamics. The 4 meV mode is observed to be in the near-critically damped regime and may be mediating the transition between the bright and dark HH excitons. These findings show that 2DES can provide a comprehensive and detailed characterization of the ultrafast spectral properties in CQWs and similar nanomaterials.
Collapse
Affiliation(s)
- Hoang Long Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Thanh Nhut Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Emek G Durmusoglu
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Merve Izmir
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Ritabrata Sarkar
- Department of Chemistry, University of Gour Banga, Malda732103, India
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany
| | - Sougata Pal
- Department of Chemistry, University of Gour Banga, Malda732103, India
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California90089, United States
| | - Hilmi Volkan Demir
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM─Institute of Materials Science and Nanotechnology, Bilkent University, Ankara06800, Turkey
| | - Howe-Siang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| |
Collapse
|
5
|
Failla M, García Flórez F, Salzmann BBV, Vanmaekelbergh D, Stoof HTC, Siebbeles LDA. Effects of Pump Photon Energy on Generation and Ultrafast Relaxation of Excitons and Charge Carriers in CdSe Nanoplatelets. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:1899-1907. [PMID: 36761230 PMCID: PMC9900632 DOI: 10.1021/acs.jpcc.2c07292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Indexed: 06/18/2023]
Abstract
We studied the initial nature and relaxation of photoexcited electronic states in CdSe nanoplatelets (NPLs). Ultrafast transient optical absorption (TA) measurements were combined with the theoretical analysis of the formation and decay of excitons, biexcitons, free charge carriers, and trions. In the latter, photons and excitons were treated as bosons and free charge carriers as fermions. The initial quantum yields of heavy-hole (HH) excitons, light-hole (LH) excitons, and charge carriers vary strongly with photon energy, while thermal relaxation occurs always within 1 ps. After that, the population of LH excitons is negligible due to relaxation to HH excitons or decay into free electrons and holes. Up to the highest average number of about four absorbed photons per NPL in our experiments, we found no signatures of the presence of biexcitons or larger complexes. Biexcitons were only observed due to the interaction of a probe-generated exciton with an exciton produced previously by the pump pulse. For higher pump photon energies, the initial presence of more free charge carriers leads to formation of trions by probe photons. On increasing the number of absorbed pump photons in an NPL, the yield of excitons becomes higher as compared to free charge carriers, since electron-hole recombination becomes more likely. In addition to a TA absorption feature at energy below the HH exciton peak, we also observed a TA signal at the high-energy side of this peak, which we attribute to formation of LH-HH biexcitons or trions consisting of a charge and LH exciton.
Collapse
Affiliation(s)
- Michele Failla
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, 2629 HZDelft, The Netherlands
| | - Fransisco García Flórez
- Institute
for Theoretical Physics and Center for Extreme Matter and Emergent
Phenomena, Utrecht University, Princetonplein 5, 3584 CCUtrecht, The Netherlands
| | - Bastiaan B. V. Salzmann
- Condensed
Matter and Interfaces, Debye Institute, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Daniel Vanmaekelbergh
- Condensed
Matter and Interfaces, Debye Institute, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Henk T. C. Stoof
- Institute
for Theoretical Physics and Center for Extreme Matter and Emergent
Phenomena, Utrecht University, Princetonplein 5, 3584 CCUtrecht, The Netherlands
| | - Laurens D. A. Siebbeles
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, 2629 HZDelft, The Netherlands
| |
Collapse
|
6
|
Double-crowned 2D semiconductor nanoplatelets with bicolor power-tunable emission. Nat Commun 2022; 13:5094. [PMID: 36042249 PMCID: PMC9427944 DOI: 10.1038/s41467-022-32713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Nanocrystals (NCs) are now established building blocks for optoelectronics and their use as down converters for large gamut displays has been their first mass market. NC integration relies on a combination of green and red NCs into a blend, which rises post-growth formulation issues. A careful engineering of the NCs may enable dual emissions from a single NC population which violates Kasha’s rule, which stipulates that emission should occur at the band edge. Thus, in addition to an attentive control of band alignment to obtain green and red signals, non-radiative decay paths also have to be carefully slowed down to enable emission away from the ground state. Here, we demonstrate that core/crown/crown 2D nanoplatelets (NPLs), made of CdSe/CdTe/CdSe, can combine a large volume and a type-II band alignment enabling simultaneously red and narrow green emissions. Moreover, we demonstrate that the ratio of the two emissions can be tuned by the incident power, which results in a saturation of the red emission due to non-radiative Auger recombination that affects this emission much stronger than the green one. Finally, we also show that dual-color, power tunable, emission can be obtained through an electrical excitation. Nanocrystals are desirable light sources for advanced display technologies. Here, the authors report on double-crowned 2D semiconductor nanoplatelets as light downconverters that offer both green and red emissions to achieve a wide color gamut.
Collapse
|
7
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
8
|
He S, Li Q, Jin T, Lian TT. Contributions of exciton fine structure and hole trapping on the hole state filling effect in the transient absorption spectra of CdSe quantum dots. J Chem Phys 2022; 156:054704. [DOI: 10.1063/5.0081192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sheng He
- Chemistry, Emory University, United States of America
| | - Qiuyang Li
- Physics, University of Michigan, United States of America
| | - Tao Jin
- Chemistry Department, Emory University, United States of America
| | | |
Collapse
|
9
|
Banerjee S, Kistwal T, Sajeevan A, Datta A. Release of Warfarin from Human Serum Albumin by Water‐soluble CdSe Nanotetrapods. Chemphyschem 2020; 21:2709-2714. [DOI: 10.1002/cphc.202000292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/27/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Sucheta Banerjee
- Department of Chemistry Indian Institute of Technology Bombay Powai, Mumbai 400 076 India
| | - Tanuja Kistwal
- Department of Chemistry Indian Institute of Technology Bombay Powai, Mumbai 400 076 India
| | - Amritha Sajeevan
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Campus Rd Mohanpur, West Bengal 741246 India
| | - Anindya Datta
- Department of Chemistry Indian Institute of Technology Bombay Powai, Mumbai 400 076 India
| |
Collapse
|
10
|
Li Q, He S, Lian T. How Exciton and Single Carriers Block the Excitonic Transition in Two-Dimensional Cadmium Chalcogenide Nanoplatelets. NANO LETTERS 2020; 20:6162-6169. [PMID: 32697589 DOI: 10.1021/acs.nanolett.0c02461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cadmium chalcogenide nanoplatelets (NPLs) possess unique properties and have shown great potential in lasing, light-emitting diodes, and photocatalytic applications. However, the exact natures of the band-edge exciton and single carrier (electron and hole) states remain unclear, even though they affect the key properties and applications of these materials. Herein, we study the contribution of a single carrier (electron or hole) state to phase space filling of single exciton states of cadmium chalcogenide NPLs. With pump fluence dependent TA study and selective electron removal, we determine that a single electron and hole states contribute 85% and 12%, respectively, to the blocking of the excitonic transition in CdSe/ZnS core/shell NPLs. These observations can be rationalized by a model of band-edge exciton and single carrier states of 2D NPLs that differs significantly from that of quantum dots.
Collapse
Affiliation(s)
- Qiuyang Li
- Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| | - Sheng He
- Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Sanderson WM, Wang F, Schrier J, Buhro WE, Loomis RA. Intraband Relaxation Dynamics of Charge Carriers within CdTe Quantum Wires. J Phys Chem Lett 2020; 11:4901-4910. [PMID: 32491860 DOI: 10.1021/acs.jpclett.0c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The state-to-state intraband relaxation dynamics of charge carriers photogenerated within CdTe quantum wires (QWs) are characterized via transient absorption spectroscopy. Overlapping signals from the energetic-shifting of the quantum-confinement features and the occupancy of carriers in the states associated with these features are separated using the quantum-state renormalization model. Holes generated with an excitation energy of 2.75 eV reach the band edge within the instrument response of the measurement, ∼200 fs. This extremely short relaxation time is consistent with the low photoluminescence quantum yield of the QWs, ∼0.2%, and the presence of alternative relaxation pathways for the holes. The electrons relax through the different energetically available quantum-confinement states, likely via phonon coupling, with an overall rate of ∼0.6 eV ps-1.
Collapse
Affiliation(s)
- William M Sanderson
- Department of Chemistry and Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Fudong Wang
- Department of Chemistry and Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Joshua Schrier
- Department of Chemistry, Fordham University, The Bronx, New York 10458, United States
| | - William E Buhro
- Department of Chemistry and Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Richard A Loomis
- Department of Chemistry and Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| |
Collapse
|
12
|
Piveteau L, Dirin DN, Gordon CP, Walder BJ, Ong TC, Emsley L, Copéret C, Kovalenko MV. Colloidal-ALD-Grown Core/Shell CdSe/CdS Nanoplatelets as Seen by DNP Enhanced PASS-PIETA NMR Spectroscopy. NANO LETTERS 2020; 20:3003-3018. [PMID: 32078332 PMCID: PMC7227022 DOI: 10.1021/acs.nanolett.9b04870] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ligand exchange and CdS shell growth onto colloidal CdSe nanoplatelets (NPLs) using colloidal atomic layer deposition (c-ALD) were investigated by solid-state nuclear magnetic resonance (NMR) experiments, in particular, dynamic nuclear polarization (DNP) enhanced phase adjusted spinning sidebands-phase incremented echo-train acquisition (PASS-PIETA). The improved sensitivity and resolution of DNP enhanced PASS-PIETA permits the identification and study of the core, shell, and surface species of CdSe and CdSe/CdS core/shell NPLs heterostructures at all stages of c-ALD. The cadmium chemical shielding was found to be proportionally dependent on the number and nature of coordinating chalcogen-based ligands. DFT calculations permitted the separation of the the 111/113Cd chemical shielding into its different components, revealing that the varying strength of paramagnetic and spin-orbit shielding contributions are responsible for the chemical shielding trend of cadmium chalcogenides. Overall, this study points to the roughening and increased chemical disorder at the surface during the shell growth process, which is not readily captured by the conventional characterization tools such as electron microscopy.
Collapse
Affiliation(s)
- Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse
129, Zurich CH-8600, Switzerland
| | - Dmitry N. Dirin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse
129, Zurich CH-8600, Switzerland
| | - Christopher P. Gordon
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Brennan J. Walder
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ta-Chung Ong
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- E-mail:
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse
129, Zurich CH-8600, Switzerland
- E-mail:
| |
Collapse
|
13
|
Pandya R, Steinmetz V, Puttisong Y, Dufour M, Chen WM, Chen RYS, Barisien T, Sharma A, Lakhwani G, Mitioglu A, Christianen PCM, Legrand L, Bernardot F, Testelin C, Chin AW, Ithurria S, Chamarro M, Rao A. Fine Structure and Spin Dynamics of Linearly Polarized Indirect Excitons in Two-Dimensional CdSe/CdTe Colloidal Heterostructures. ACS NANO 2019; 13:10140-10153. [PMID: 31490653 DOI: 10.1021/acsnano.9b03252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heterostructured two-dimensional colloidal nanoplatelets are a class of material that has attracted great interest for optoelectronic applications due to their high photoluminescence yield, atomically tunable thickness, and ultralow lasing thresholds. Of particular interest are laterally heterostructured core-crown nanoplatelets with a type-II band alignment, where the in-plane spatial separation of carriers leads to indirect (or charge transfer) excitons with long lifetimes and bright, highly Stokes shifted emission. Despite this, little is known about the nature of the lowest energy exciton states responsible for emission in these materials. Here, using polarization-controlled, steady-state, and time-resolved photoluminescence measurements, at temperatures down to 1.6 K and magnetic fields up to 30 T, we study the exciton fine structure and spin dynamics of archetypal type-II CdSe/CdTe core-crown nanoplatelets. Complemented by theoretical modeling and zero-field quantum beat measurements, we find the bright-exciton fine structure consists of two linearly polarized states with a fine structure splitting ∼50 μeV and an indirect exciton Landé g-factor of 0.7. In addition, we show the exciton spin lifetime to be in the microsecond range with an unusual B-3 magnetic field dependence. The discovery of linearly polarized exciton states and emission highlights the potential for use of such materials in display and imaging applications without polarization filters. Furthermore, the small exciton fine structure splitting and a long spin lifetime are fundamental advantages when envisaging CdSe/CdTe nanoplatelets as elementary bricks for the next generation of quantum devices, particularly given their ease of fabrication.
Collapse
Affiliation(s)
- Raj Pandya
- Cavendish Laboratory , University of Cambridge , J.J. Thomson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Violette Steinmetz
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Yuttapoom Puttisong
- Functional Electronic Materials, Department of Physics, Chemistry and Biology , Linköping University , 58183 Linköping , Sweden
| | - Marion Dufour
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris , PSL Research University, CNRS , 10 rue Vauquelin , 75005 Paris , France
| | - Weimin M Chen
- Functional Electronic Materials, Department of Physics, Chemistry and Biology , Linköping University , 58183 Linköping , Sweden
| | - Richard Y S Chen
- Cavendish Laboratory , University of Cambridge , J.J. Thomson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Thierry Barisien
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Ashish Sharma
- ARC Centre of Excellence in Exciton Science, School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Girish Lakhwani
- ARC Centre of Excellence in Exciton Science, School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Anatolie Mitioglu
- High Field Magnet Laboratory (HFML - EMFL) , Radboud University , 6525 ED Nijmegen , The Netherlands
| | - Peter C M Christianen
- High Field Magnet Laboratory (HFML - EMFL) , Radboud University , 6525 ED Nijmegen , The Netherlands
| | - Laurent Legrand
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Frédérick Bernardot
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Christophe Testelin
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Alex W Chin
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris , PSL Research University, CNRS , 10 rue Vauquelin , 75005 Paris , France
| | - Maria Chamarro
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Akshay Rao
- Cavendish Laboratory , University of Cambridge , J.J. Thomson Avenue , CB3 0HE Cambridge , United Kingdom
| |
Collapse
|
14
|
Li Q, Liu Q, Schaller RD, Lian T. Reducing the Optical Gain Threshold in Two-Dimensional CdSe Nanoplatelets by the Giant Oscillator Strength Transition Effect. J Phys Chem Lett 2019; 10:1624-1632. [PMID: 30892896 DOI: 10.1021/acs.jpclett.9b00759] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional CdSe nanoplatelets are promising lasing materials. Their large lateral areas reduce the optical gain threshold by increasing the oscillator strength and multiexciton lifetimes but also increase the gain threshold by requiring multiple band-edge excitons (>2) to reach the optical gain. We observe that the optical gain threshold of CdSe nanoplatelets at 4 K is ∼4-fold lower than that at room temperature. Transient absorption spectroscopy measurements indicate that the exciton center-of-mass coherent area is smaller than the lateral size at room temperature and extends to nearly the whole nanoplatelets at 4 K. This suggests that the reduction in the optical gain threshold at a low temperature can be attributed to exciton coherent area extension that reduces the saturation number of band-edge excitons to enable biexciton gain and increases the radiative decay rate, consistent with the giant oscillator strength transition effect. This work demonstrates a new direction for lowering the optical gain threshold of nanomaterials.
Collapse
Affiliation(s)
- Qiuyang Li
- Department of Chemistry , Emory University , 1515 Dickey Drive Northeast , Atlanta , Georgia 30322 , United States
| | - Qiliang Liu
- Department of Chemistry , Emory University , 1515 Dickey Drive Northeast , Atlanta , Georgia 30322 , United States
| | - Richard D Schaller
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Tianquan Lian
- Department of Chemistry , Emory University , 1515 Dickey Drive Northeast , Atlanta , Georgia 30322 , United States
| |
Collapse
|
15
|
Das S, Dutta A, Bera R, Patra A. Ultrafast carrier dynamics in 2D-2D hybrid structures of functionalized GO and CdSe nanoplatelets. Phys Chem Chem Phys 2019; 21:15568-15575. [PMID: 31265037 DOI: 10.1039/c9cp02823d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Considerable attention has been paid to designing graphene based 2D hybrid nanostructures for their potential applications in various areas from healthcare to energy harvesting. Herein, we have prepared 2D-2D hybrid structures of 2D CdSe nanoplatelets (NPLs) with thiol (-SH) functionalized reduced graphene oxide (G-Ph-SH). Microscopic and spectroscopic studies reveal that the G-Ph-SH surface is successfully decorated by CdSe NPLs through a thiophenol (-SH) linker. The significant photoluminescence quenching (65%) and the shortening of decay time from 1 ns to 0.4 ns of CdSe NPLs are observed after adding 100 μg of G-Ph-SH. Furthermore, the femto-second transient absorption spectroscopic (fs-TAS) study reveals that the growth time of CdSe NPLs in the composite is reduced to 0.4 ps from 0.8 ps due to faster hot electron cooling. A faster component of 1.4 ps in the kinetic parameters of the composite system further suggests that the ultrafast electron transfer occurs from the conduction band of CdSe NPLs to surface functionalized reduced graphene oxide. This type of 2D-2D hybrid structure may open up new possibilities in light harvesting applications.
Collapse
Affiliation(s)
- Soma Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| | - Avisek Dutta
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| | - Rajesh Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| |
Collapse
|
16
|
Pandya R, Chen RYS, Cheminal A, Dufour M, Richter JM, Thomas TH, Ahmed S, Sadhanala A, Booker EP, Divitini G, Deschler F, Greenham NC, Ithurria S, Rao A. Exciton–Phonon Interactions Govern Charge-Transfer-State Dynamics in CdSe/CdTe Two-Dimensional Colloidal Heterostructures. J Am Chem Soc 2018; 140:14097-14111. [DOI: 10.1021/jacs.8b05842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raj Pandya
- Cavendish Laboratory, University of Cambridge, J.J. Thompson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Richard Y. S. Chen
- Cavendish Laboratory, University of Cambridge, J.J. Thompson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Alexandre Cheminal
- Cavendish Laboratory, University of Cambridge, J.J. Thompson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Marion Dufour
- LPEM, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | - Johannes M. Richter
- Cavendish Laboratory, University of Cambridge, J.J. Thompson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Tudor H. Thomas
- Cavendish Laboratory, University of Cambridge, J.J. Thompson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Shahab Ahmed
- Institute for Manufacturing, Department of Engineering, University of Cambridge, 17 Charles Babbage Road, CB3 0FS, Cambridge, United Kingdom
| | - Aditya Sadhanala
- Cavendish Laboratory, University of Cambridge, J.J. Thompson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Edward P. Booker
- Cavendish Laboratory, University of Cambridge, J.J. Thompson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Giorgio Divitini
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS, Cambridge, United Kingdom
| | - Felix Deschler
- Cavendish Laboratory, University of Cambridge, J.J. Thompson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Neil C. Greenham
- Cavendish Laboratory, University of Cambridge, J.J. Thompson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Sandrine Ithurria
- LPEM, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, J.J. Thompson Avenue, CB3 0HE, Cambridge, United Kingdom
| |
Collapse
|
17
|
Gao Y, Li M, Delikanli S, Zheng H, Liu B, Dang C, Sum TC, Demir HV. Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets. NANOSCALE 2018; 10:9466-9475. [PMID: 29767210 DOI: 10.1039/c8nr01838c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Colloidal type-II heterostructures are believed to be a promising solution-processed gain medium given their spatially separated electrons and holes for the suppression of Auger recombination and their wider emission tuning range from the visible to near-infrared region. Amplified spontaneous emission (ASE) was achieved from colloidal type-II core/shell nanocrystals several years ago. However, due to the limited charge-transfer (CT) interfacial states and minimal overlap of electron and hole wave functions, the ASE threshold has still been very high. Herein, we achieved ASE through type-II recombination at a lower threshold using CdSe/CdSeTe core/alloyed-crown nanoplatelets. Random lasing was also demonstrated in the film of these nanoplatelets under sub-ns laser-pumping. Through a detailed carrier dynamics investigation using femtosecond transient absorption, steady state, and time-resolved photoluminescence (PL) spectroscopies, we confirmed the type-II band alignment, and found that compared with normal CdSe/CdTe core/crown nanoplatelets (where no ASE/lasing was observed), CdSe/CdSeTe core/alloyed-crown nanoplatelets had a much higher PL quantum yield (75% vs. 31%), a ∼5-fold larger density of type-II charge-transfer states, a faster carrier transfer to interfaces (0.32 ps vs. 0.61 ps) and a slower Auger recombination lifetime (360 ps vs. 160 ps). Compared with CdSe/CdTe nanoplatelets, their counterparts with an alloyed crown boast a promoted charge transfer process, higher luminescence quantum yield, and smaller Auger rate, which results in their excellent application potential in solution-processed lasers and light-emitting devices.
Collapse
Affiliation(s)
- Yuan Gao
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, and The Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, 639785, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Seiler H, Palato S, Sonnichsen C, Baker H, Kambhampati P. Seeing Multiexcitons through Sample Inhomogeneity: Band-Edge Biexciton Structure in CdSe Nanocrystals Revealed by Two-Dimensional Electronic Spectroscopy. NANO LETTERS 2018; 18:2999-3006. [PMID: 29589448 DOI: 10.1021/acs.nanolett.8b00470] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The electronic structure of multiexcitons significantly impacts the performance of nanostructures in lasing and light-emitting applications. However, these multiexcitons remain poorly understood due to their complexity arising from many-body physics. Standard transient-absorption and photoluminescence spectroscopies are unable to unambiguously distinguish effects of sample inhomogeneity from exciton-biexciton interactions. Here, we exploit the energy and time resolution of two-dimensional electronic spectroscopy to access the electronic structure of the band-edge biexciton in colloidal CdSe quantum dots. By removing effects of inhomogeneities, we show that the band-edge biexciton structure must consist of a discrete manifold of electronic states. Furthermore, the biexciton states within the manifold feature distinctive binding energies. Our findings have direct implications for optical gain thresholds and efficiency droop in light-emitting devices and provide experimental measures of many-body physics in nanostructures.
Collapse
Affiliation(s)
- Hélène Seiler
- Department of Chemistry , McGill University , Montreal , Quebec H3A 0B8 , Canada
| | - Samuel Palato
- Department of Chemistry , McGill University , Montreal , Quebec H3A 0B8 , Canada
| | - Colin Sonnichsen
- Department of Chemistry , McGill University , Montreal , Quebec H3A 0B8 , Canada
| | - Harry Baker
- Department of Chemistry , McGill University , Montreal , Quebec H3A 0B8 , Canada
| | | |
Collapse
|
19
|
Subila K, Sandeep K, Thomas EM, Ghatak J, Shivaprasad SM, Thomas KG. CdSe-CdTe Heterojunction Nanorods: Role of CdTe Segment in Modulating the Charge Transfer Processes. ACS OMEGA 2017; 2:5150-5158. [PMID: 31457790 PMCID: PMC6641699 DOI: 10.1021/acsomega.7b00995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 06/10/2023]
Abstract
Heterojunction nanorods having dissimilar semiconductors possess charge transfer (CT) properties and are proposed as active elements in optoelectronic systems. Herein, we describe the synthetic methodologies for controlling the charge carrier recombination dynamics in CdSe-CdTe heterojunction nanorods through the precise growth of CdTe segment from one of the tips of CdSe nanorods. The location of heterojunction was established through a point-by-point collection of the energy-dispersive X-ray spectra using scanning transmission electron microscopy. The possibilities of the growth of CdTe from both the tips of CdSe nanorods and the overcoating of CdTe over CdSe segment were also ruled out. The CT emission in the heterojunction nanorods originates through an interfacial excitonic recombination and was further tuned to the near-infrared region by varying the two parameters: the aspect ratio of CdSe and the length of CdTe segment. These aspects are evidenced from the emission lifetime and the femtosecond transient absorption studies.
Collapse
Affiliation(s)
- Kurukkal
Balakrishnan Subila
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Maruthamala (PO), Thiruvananthapuram 695551, India
| | - Kulangara Sandeep
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Maruthamala (PO), Thiruvananthapuram 695551, India
| | - Elizabeth Mariam Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Maruthamala (PO), Thiruvananthapuram 695551, India
| | - Jay Ghatak
- Chemistry
and Physics of Materials Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur (PO), Bangalore 560064, India
| | - Sonnada Math Shivaprasad
- Chemistry
and Physics of Materials Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur (PO), Bangalore 560064, India
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Maruthamala (PO), Thiruvananthapuram 695551, India
- Chemistry
and Physics of Materials Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur (PO), Bangalore 560064, India
| |
Collapse
|