1
|
Olenginski LT, Spradlin SF, Batey RT. Flipping the script: Understanding riboswitches from an alternative perspective. J Biol Chem 2024; 300:105730. [PMID: 38336293 PMCID: PMC10907184 DOI: 10.1016/j.jbc.2024.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Riboswitches are broadly distributed regulatory elements most frequently found in the 5'-leader sequence of bacterial mRNAs that regulate gene expression in response to the binding of a small molecule effector. The occupancy status of the ligand-binding aptamer domain manipulates downstream information in the message that instructs the expression machinery. Currently, there are over 55 validated riboswitch classes, where each class is defined based on the identity of the ligand it binds and/or sequence and structure conservation patterns within the aptamer domain. This classification reflects an "aptamer-centric" perspective that dominates our understanding of riboswitches. In this review, we propose a conceptual framework that groups riboswitches based on the mechanism by which RNA manipulates information directly instructing the expression machinery. This scheme does not replace the established aptamer domain-based classification of riboswitches but rather serves to facilitate hypothesis-driven investigation of riboswitch regulatory mechanisms. Based on current bioinformatic, structural, and biochemical studies of a broad spectrum of riboswitches, we propose three major mechanistic groups: (1) "direct occlusion", (2) "interdomain docking", and (3) "strand exchange". We discuss the defining features of each group, present representative examples of riboswitches from each group, and illustrate how these RNAs couple small molecule binding to gene regulation. While mechanistic studies of the occlusion and docking groups have yielded compelling models for how these riboswitches function, much less is known about strand exchange processes. To conclude, we outline the limitations of our mechanism-based conceptual framework and discuss how critical information within riboswitch expression platforms can inform gene regulation.
Collapse
Affiliation(s)
| | | | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
2
|
St-Pierre P, Shaw E, Jacques S, Dalgarno PA, Perez-Gonzalez C, Picard-Jean F, Penedo JC, Lafontaine DA. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition. Nucleic Acids Res 2021; 49:5891-5904. [PMID: 33963862 PMCID: PMC8191784 DOI: 10.1093/nar/gkab307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Riboswitches are RNA sequences that regulate gene expression by undergoing structural changes upon the specific binding of cellular metabolites. Crystal structures of purine-sensing riboswitches have revealed an intricate network of interactions surrounding the ligand in the bound complex. The mechanistic details about how the aptamer folding pathway is involved in the formation of the metabolite binding site have been previously shown to be highly important for the riboswitch regulatory activity. Here, a combination of single-molecule FRET and SHAPE assays have been used to characterize the folding pathway of the adenine riboswitch from Vibrio vulnificus. Experimental evidences suggest a folding process characterized by the presence of a structural intermediate involved in ligand recognition. This intermediate state acts as an open conformation to ensure ligand accessibility to the aptamer and folds into a structure nearly identical to the ligand-bound complex through a series of structural changes. This study demonstrates that the add riboswitch relies on the folding of a structural intermediate that pre-organizes the aptamer global structure and the ligand binding site to allow efficient metabolite sensing and riboswitch genetic regulation.
Collapse
Affiliation(s)
- Patrick St-Pierre
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Euan Shaw
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Samuel Jacques
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Paul A Dalgarno
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Cibran Perez-Gonzalez
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Frédéric Picard-Jean
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
3
|
Abdelsattar AS, Mansour Y, Aboul-Ela F. The Perturbed Free-Energy Landscape: Linking Ligand Binding to Biomolecular Folding. Chembiochem 2021; 22:1499-1516. [PMID: 33351206 DOI: 10.1002/cbic.202000695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Indexed: 12/24/2022]
Abstract
The effects of ligand binding on biomolecular conformation are crucial in drug design, enzyme mechanisms, the regulation of gene expression, and other biological processes. Descriptive models such as "lock and key", "induced fit", and "conformation selection" are common ways to interpret such interactions. Another historical model, linked equilibria, proposes that the free-energy landscape (FEL) is perturbed by the addition of ligand binding energy for the bound population of biomolecules. This principle leads to a unified, quantitative theory of ligand-induced conformation change, building upon the FEL concept. We call the map of binding free energy over biomolecular conformational space the "binding affinity landscape" (BAL). The perturbed FEL predicts/explains ligand-induced conformational changes conforming to all common descriptive models. We review recent experimental and computational studies that exemplify the perturbed FEL, with emphasis on RNA. This way of understanding ligand-induced conformation dynamics motivates new experimental and theoretical approaches to ligand design, structural biology and systems biology.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Youssef Mansour
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Fareed Aboul-Ela
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| |
Collapse
|
4
|
Di Cera E. Mechanisms of ligand binding. BIOPHYSICS REVIEWS 2020; 1:011303. [PMID: 33313600 PMCID: PMC7714259 DOI: 10.1063/5.0020997] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Many processes in chemistry and biology involve interactions of a ligand with its molecular target. Interest in the mechanism governing such interactions has dominated theoretical and experimental analysis for over a century. The interpretation of molecular recognition has evolved from a simple rigid body association of the ligand with its target to appreciation of the key role played by conformational transitions. Two conceptually distinct descriptions have had a profound impact on our understanding of mechanisms of ligand binding. The first description, referred to as induced fit, assumes that conformational changes follow the initial binding step to optimize the complex between the ligand and its target. The second description, referred to as conformational selection, assumes that the free target exists in multiple conformations in equilibrium and that the ligand selects the optimal one for binding. Both descriptions can be merged into more complex reaction schemes that better describe the functional repertoire of macromolecular systems. This review deals with basic mechanisms of ligand binding, with special emphasis on induced fit, conformational selection, and their mathematical foundations to provide rigorous context for the analysis and interpretation of experimental data. We show that conformational selection is a surprisingly versatile mechanism that includes induced fit as a mathematical special case and even captures kinetic properties of more complex reaction schemes. These features make conformational selection a dominant mechanism of molecular recognition in biology, consistent with the rich conformational landscape accessible to biological macromolecules being unraveled by structural biology.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| |
Collapse
|
5
|
McCluskey K, Boudreault J, St-Pierre P, Perez-Gonzalez C, Chauvier A, Rizzi A, Beauregard PB, Lafontaine DA, Penedo JC. Unprecedented tunability of riboswitch structure and regulatory function by sub-millimolar variations in physiological Mg2. Nucleic Acids Res 2020; 47:6478-6487. [PMID: 31045204 PMCID: PMC6614840 DOI: 10.1093/nar/gkz316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Riboswitches are cis-acting regulatory RNA biosensors that rival the efficiency of those found in proteins. At the heart of their regulatory function is the formation of a highly specific aptamer–ligand complex. Understanding how these RNAs recognize the ligand to regulate gene expression at physiological concentrations of Mg2+ ions and ligand is critical given their broad impact on bacterial gene expression and their potential as antibiotic targets. In this work, we used single-molecule FRET and biochemical techniques to demonstrate that Mg2+ ions act as fine-tuning elements of the amino acid-sensing lysC aptamer's ligand-free structure in the mesophile Bacillus subtilis. Mg2+ interactions with the aptamer produce encounter complexes with strikingly different sensitivities to the ligand in different, yet equally accessible, physiological ionic conditions. Our results demonstrate that the aptamer adapts its structure and folding landscape on a Mg2+-tunable scale to efficiently respond to changes in intracellular lysine of more than two orders of magnitude. The remarkable tunability of the lysC aptamer by sub-millimolar variations in the physiological concentration of Mg2+ ions suggests that some single-aptamer riboswitches have exploited the coupling of cellular levels of ligand and divalent metal ions to tightly control gene expression.
Collapse
Affiliation(s)
- Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK
| | - Julien Boudreault
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Patrick St-Pierre
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Adrien Chauvier
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Adrien Rizzi
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Pascale B Beauregard
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | | | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, Scotland KY16 9ST, UK
| |
Collapse
|
6
|
Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev 2019; 48:1390-1419. [PMID: 30707214 DOI: 10.1039/c8cs00880a] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acid aptamers are single stranded DNA or RNA sequences that specifically bind a cognate ligand. In addition to their widespread use as stand-alone affinity binding reagents in analytical chemistry, aptamers have been engineered into a variety of ligand-specific biosensors, termed aptasensors. One of the most common aptasensor formats is the duplexed aptamer (DA). As defined herein, DAs are aptasensors containing two nucleic acid elements coupled via Watson-Crick base pairing: (i) an aptamer sequence, which serves as a ligand-specific receptor, and (ii) an aptamer-complementary element (ACE), such as a short DNA oligonucleotide, which is designed to hybridize to the aptamer. The ACE competes with ligand binding, such that DAs generate a signal upon ligand-dependent ACE-aptamer dehybridization. DAs possess intrinsic advantages over other aptasensor designs. For example, DA biosensing designs generalize across DNA and RNA aptamers, DAs are compatible with many readout methods, and DAs are inherently tunable on the basis of nucleic acid hybridization. However, despite their utility and popularity, DAs have not been well defined in the literature, leading to confusion over the differences between DAs and other aptasensor formats. In this review, we introduce a framework for DAs based on ACEs, and use this framework to distinguish DAs from other aptasensor formats and to categorize cis- and trans-DA designs. We then explore the ligand binding dynamics and chemical properties that underpin DA systems, which fall under conformational selection and induced fit models, and which mirror classical SN1 and SN2 models of nucleophilic substitution reactions. We further review a variety of in vitro and in vivo applications of DAs in the chemical and biological sciences, including riboswitches and riboregulators. Finally, we present future directions of DAs as ligand-responsive nucleic acids. Owing to their tractability, versatility and ease of engineering, DA biosensors bear a great potential for the development of new applications and technologies in fields ranging from analytical chemistry and mechanistic modeling to medicine and synthetic biology.
Collapse
Affiliation(s)
- Jeffrey D Munzar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
7
|
Rode AB, Endoh T, Sugimoto N. Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ambadas B. Rode
- Frontier Institute for Biomolecular Engineering Research (FIBER); Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
8
|
Imashimizu M, Takahashi M, Amano R, Nakamura Y. Single-round isolation of diverse RNA aptamers from a random sequence pool. Biol Methods Protoc 2018; 3:bpy004. [PMID: 32161798 PMCID: PMC6994090 DOI: 10.1093/biomethods/bpy004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023] Open
Abstract
Aptamers are oligonucleotide ligands with specific binding affinity to target molecules. Generally, RNA aptamers are selected from an RNA pool with random sequences, using the technique termed SELEX, in which the target-binding RNA molecules are repeatedly isolated and exponentially amplified. Despite several advantages, SELEX often produces uncertain results during the iterative amplifications of the rare target-binding RNA molecules. Here, we develop a non-repeated, primer-less and target immobilization-free isolation method for generating RNA aptamers, which is robust to experimental noise. Uniquely, this method focuses on finding and removal of non-aptamer sequences from the RNA pool by RNase digestion leaving target-bound aptamer molecules, and thus is independent of aptamer types. The undigested RNA sequences remaining are so few in number that they must be mixed with a large excess of a known sequence for further manipulations and this sequence is then removed by restriction digestion followed by high-throughput sequencing analysis to identify aptamers. Using this method, we generated multiple RNA aptamers targeting α-thrombin and TGFβ1 proteins, independently. This method potentially generates thousands of sequences as aptamer candidates, which may enable us to predict a common average sequence or structural property of these aptamers that is different from input RNA.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Masaki Takahashi
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Ryo Amano
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshikazu Nakamura
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.,RIBOMIC Inc., Minato-ku, Tokyo, 108-0071, Japan
| |
Collapse
|
9
|
Rode AB, Endoh T, Sugimoto N. Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit. Angew Chem Int Ed Engl 2018; 57:6868-6872. [PMID: 29663603 DOI: 10.1002/anie.201803052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/06/2018] [Indexed: 11/07/2022]
Abstract
In bacteria, the binding between the riboswitch aptamer domain and ligand is regulated by environmental cues, such as low Mg2+ in macrophages during pathogenesis to ensure spatiotemporal expression of virulence genes. Binding was investigated between the flavin mononucleotide (FMN) riboswitch aptamer and its anionic ligand in the presence of molecular crowding agent without Mg2+ ion, which mimics pathogenic conditions. Structural, kinetic, and thermodynamic analyses under the crowding revealed more dynamic conformational rearrangements of the FMN riboswitch aptamer compared to dilute Mg2+ -containing solution. It is hypothesized that under crowding conditions FMN binds through an induced fit mechanism in contrast to the conformational selection mechanism previously demonstrated in dilute Mg2+ solution. Since these two mechanisms involve different conformational intermediates and rate constants, these findings have practical significance in areas such as drug design and RNA engineering.
Collapse
Affiliation(s)
- Ambadas B Rode
- Frontier Institute for Biomolecular Engineering Research (FIBER), Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|