1
|
Quintero SM, Van Nyvel L, Roig N, Casado J, Alonso M. Electron Transport through Linear-, Broken-, and Cross-Conjugated Polycyclic Compounds. J Phys Chem A 2024; 128:6140-6157. [PMID: 39041954 DOI: 10.1021/acs.jpca.4c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Quantum interference (QI) effects offer unique opportunities to modulate charge transport through single molecules. In recent years, several transmission selection rules have been developed to determine constructive and destructive QIs in an intuitive and simple manner, although some of these rules fail for cross-conjugated systems. In this work, we evaluate the performance of distinct transmission rules on a broad series of anthracene and fluorene derivatives with distinctive structural features including linear-, broken-, and cross-conjugation, heteroatoms, and five-membered rings as such species affords a predictive challenge for the qualitative selection rules for QI effects. The electron transport properties and local transmission plots are first evaluated by combining DFT and the nonequilibrium Green function method allowing for an equal-footing comparison of the conductance of the different polycyclic compounds. Our findings are in line with experimental observations on the influence of the type of conjugation and the connectivity to the metallic electrodes on the transport properties. Thus, cross-conjugated systems exhibit reduced conductance values as compared to the linear-conjugated ones, although the transmission is enhanced in the meta-connected junctions. Remarkably, our study reveals that aromatic cores exhibit generally larger zero-bias conductance for a given connectivity, in contrast to the negative aromaticity-conductance relationship found in literature.
Collapse
Affiliation(s)
- Sergio Moles Quintero
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Louis Van Nyvel
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Nil Roig
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
2
|
Fujii S, Seko S, Tanaka T, Yoshihara Y, Furukawa S, Nishino T, Saito M. Charge Transport through Single-Molecule Junctions with σ-Delocalized Systems. J Am Chem Soc 2024; 146:19566-19571. [PMID: 38957924 PMCID: PMC11258778 DOI: 10.1021/jacs.4c06732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Single-molecule junctions, formed by a single molecule bridging a gap between two metal electrodes, are attracting attention as basic models of ultrasmall electronic devices. Although charge transport through π-conjugated molecules with π-delocalized system has been widely studied for a number of molecular junctions, there has been almost no research on charge transport through molecular junctions with a σ-delocalized orbital system. Compounds with hexa-selenium-substituted benzene form a σ-delocalized orbital system on the periphery of the benzene ring. In this study, we fabricated single-molecule junctions with the σ-delocalized orbital systems arising from lone-pair interactions of selenium atoms and clarified their electronic properties using the break-junction method. The single-molecule junctions with the σ-orbital systems show efficient charge transport properties and can be one of the alternatives to those with conventional π-orbital systems as minute electronic conductors.
Collapse
Affiliation(s)
- Shintaro Fujii
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1
W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Saya Seko
- Department
of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Taichi Tanaka
- Department
of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Yuki Yoshihara
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1
W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shunsuke Furukawa
- Department
of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Tomoaki Nishino
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1
W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Masaichi Saito
- Department
of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| |
Collapse
|
3
|
Hurtado-Gallego J, van der Poel S, Blaschke M, Gallego A, Hsu C, López-Nebreda R, Mayor M, Pauly F, Agraït N, van der Zant HSJ. Benchmarking break-junction techniques: electric and thermoelectric characterization of naphthalenophanes. NANOSCALE 2024; 16:10751-10759. [PMID: 38747099 PMCID: PMC11154865 DOI: 10.1039/d4nr00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/15/2024] [Indexed: 06/07/2024]
Abstract
Break-junction techniques provide the possibility to study electric and thermoelectric properties of single-molecule junctions in great detail. These techniques rely on the same principle of controllably breaking metallic contacts in order to create single-molecule junctions, whilst keeping track of the junction's conductance. Here, we compare results from mechanically controllable break junction (MCBJ) and scanning tunneling microscope (STM) methods, while characterizing conductance properties of the same novel mechanosensitive para- and meta-connected naphtalenophane compounds. In addition, thermopower measurements are carried out for both compounds using the STM break junction (STM-BJ) technique. For the conductance experiments, the same data processing using a clustering analysis is performed. We obtain to a large extent similar results for both methods, although values of conductance and stretching lengths for the STM-BJ technique are slightly larger in comparison with the MCBJ. STM-BJ thermopower experiments show similar Seebeck coefficients for both compounds. An increase in the Seebeck coefficient is revealed, whilst the conductance decreases, after which it saturates at around 10 μV K-1. This phenomenon is studied theoretically using a tight binding model. It shows that changes of molecule-electrode electronic couplings combined with shifts of the resonance energies explain the correlated behavior of conductance and Seebeck coefficient.
Collapse
Affiliation(s)
- Juan Hurtado-Gallego
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Sebastiaan van der Poel
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | - Matthias Blaschke
- Institute of Physics and Center for Advanced Analytics and Predictive Sciences, University of Augsburg, 86159 Augsburg, Germany.
| | - Almudena Gallego
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | - Chunwei Hsu
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | - Rubén López-Nebreda
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Marcel Mayor
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
- Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510274, P. R. China
| | - Fabian Pauly
- Institute of Physics and Center for Advanced Analytics and Predictive Sciences, University of Augsburg, 86159 Augsburg, Germany.
| | - Nicolás Agraït
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales 'Nicolás Cabrera' (INC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| |
Collapse
|
4
|
Blankevoort N, Bastante P, Davidson RJ, Salthouse RJ, Daaoub AHS, Cea P, Solans SM, Batsanov AS, Sangtarash S, Bryce MR, Agrait N, Sadeghi H. Exploring the Impact of the HOMO-LUMO Gap on Molecular Thermoelectric Properties: A Comparative Study of Conjugated Aromatic, Quinoidal, and Donor-Acceptor Core Systems. ACS OMEGA 2024; 9:8471-8477. [PMID: 38405513 PMCID: PMC10882689 DOI: 10.1021/acsomega.3c09760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Thermoelectric materials have garnered significant interest for their potential to efficiently convert waste heat into electrical energy at room temperature without moving parts or harmful emissions. This study investigated the impact of the HOMO-LUMO (H-L) gap on the thermoelectric properties of three distinct classes of organic compounds: conjugated aromatics (isoindigos (IIGs)), quinoidal molecules (benzodipyrrolidones (BDPs)), and donor-acceptor systems (bis(pyrrol-2-yl)squaraines (BPSs)). These compounds were chosen for their structural simplicity and linear π-conjugated conductance paths, which promote high electrical conductance and minimize complications from quantum interference. Single-molecule thermoelectric measurements revealed that despite their low H-L gaps, the Seebeck coefficients of these compounds remain low. The alignment of the frontier orbitals relative to the Fermi energy was found to play a crucial role in determining the Seebeck coefficients, as exemplified by the BDP compounds. Theoretical calculations support these findings and suggest that anchor group selection could further enhance the thermoelectric behavior of these types of molecules.
Collapse
Affiliation(s)
- Nickel Blankevoort
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | - Pablo Bastante
- Departamento
de Física de la Materia Condensada C-III, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ross J. Davidson
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | | | - Abdalghani H. S. Daaoub
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | - Pilar Cea
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Física, Universidad
de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio
de Microscopias Avanzadas (LMA), Universidad
de Zaragoza, 50018 Zaragoza, Spain
| | - Santiago Martin Solans
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Física, Universidad
de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio
de Microscopias Avanzadas (LMA), Universidad
de Zaragoza, 50018 Zaragoza, Spain
| | | | - Sara Sangtarash
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Nicolas Agrait
- Departamento
de Física de la Materia Condensada C-III, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia
de Materiales “Nicolás Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Hatef Sadeghi
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
5
|
Deng JR, González MT, Zhu H, Anderson HL, Leary E. Ballistic Conductance through Porphyrin Nanoribbons. J Am Chem Soc 2024; 146:3651-3659. [PMID: 38301131 PMCID: PMC10870699 DOI: 10.1021/jacs.3c07734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 02/03/2024]
Abstract
The search for long molecular wires that can transport charge with maximum efficiency over many nanometers has driven molecular electronics since its inception. Single-molecule conductance normally decays with length and is typically far below the theoretical limit of G0 (77.5 μS). Here, we measure the conductances of a family of edge-fused porphyrin ribbons (lengths 1-7 nm) that display remarkable behavior. The low-bias conductance is high across the whole series. Charging the molecules in situ results in a dramatic realignment of the frontier orbitals, increasing the conductance to 1 G0 (corresponding to a current of 20 μA). This behavior is most pronounced in the longer molecules due to their smaller HOMO-LUMO gaps. The conductance-voltage traces frequently exhibit peaks at zero bias, showing that a molecular energy level is in resonance with the Fermi level. This work lays the foundations for long, perfectly transmissive, molecular wires with technological potential.
Collapse
Affiliation(s)
- Jie-Ren Deng
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, U.K.
| | - M. Teresa González
- Fundación
IMDEA Nanociencia, Calle
Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - He Zhu
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, U.K.
| | - Harry L. Anderson
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, U.K.
| | - Edmund Leary
- Fundación
IMDEA Nanociencia, Calle
Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Zimbovskaya NA. Thermoelectric properties of Marcus molecular junctions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:185301. [PMID: 38262055 DOI: 10.1088/1361-648x/ad21ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
In the present work we theoretically analyze thermoelectric transport in single-molecule junctions (SMJ) characterized by strong interactions between electrons on the molecular linkers and phonons in their nuclear environments where electron hopping between the electrodes and the molecular bridge states predominates in the steady state electron transport. The analysis is based on the modified Marcus theory accounting for the lifetime broadening of the bridge's energy levels. We show that the reorganization processes in the environment accompanying electron transport may significantly affect SMJ thermoelectric properties both within and beyond linear transport regime. Specifically, we study the effect of environmental phonons on the electron conductance, the thermopower and charge current induced by the temperature gradient applied across the system.
Collapse
Affiliation(s)
- Natalya A Zimbovskaya
- Department of Physics and Electronics, University of Puerto Rico-Humacao, CUH Station, Humacao, PR 00791, United States of America
| |
Collapse
|
7
|
Senapati P, Parida P. Charge and spin thermoelectric transport in benzene-based molecular nano-junctions: a quantum many-body study. NANOSCALE 2024; 16:2574-2590. [PMID: 38224290 DOI: 10.1039/d3nr04714h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Within the Coulomb blockade regime, our study delves into the charge, spin, and thermoelectric transport characteristics of a benzene-based molecular nano-junction using the Pauli master equation and linear response theory. The charge- and spin-transport studies show strong negative differential conductance features in the current-voltage (I-V) characteristics for the ortho and meta connections of electrodes on either side. Contrarily, the para-connection displays Coulomb staircase behavior. By exploring spin current behavior in the presence of spin-polarized electrodes or an external Zeeman field, we establish a methodology that facilitates precise control over the specific spin flow. Various charge and spin thermoelectric transport coefficients have been studied with varying chemical potentials. We focus on spin-polarized conductance, the Seebeck coefficient, and the figure of merit. By adjusting electrode polarization or employing an external magnetic field, we achieve an impressive peak value for the spin thermoelectric figure of merit, approximately 4.10. This outcome underscores the strategic value of harnessing both spin-polarized electrodes and external magnetic fields within the domain of spin caloritronics.
Collapse
Affiliation(s)
- Parbati Senapati
- Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India.
| | - Prakash Parida
- Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India.
| |
Collapse
|
8
|
Alsaqer M, Daaoub AH, Sangtarash S, Sadeghi H. Large Mechanosensitive Thermoelectric Enhancement in Metallo-Organic Magnetic Molecules. NANO LETTERS 2023; 23:10719-10724. [PMID: 37988562 PMCID: PMC10722535 DOI: 10.1021/acs.nanolett.3c02569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Organic materials are promising candidates for thermoelectric cooling and energy harvesting at room temperature. However, their electrical conductance (G) and Seebeck coefficient (S) need to be improved to make them technologically competitive. Therefore, radically new strategies need to be developed to tune their thermoelectric properties. Here, we demonstrate that G and S can be tuned mechanically in paramagnetic metallocenes, and their thermoelectric properties can be significantly enhanced by the application of mechanical forces. With a 2% junction compression, the full thermoelectric figure of merit is enhanced by more than 200 times. We demonstrate that this is because spin transport resonances in paramagnetic metallocenes are strongly sensitive to the interaction between organic ligands and the metal center, which is not the case in their diamagnetic analogue. These results open a new avenue for the development of organic thermoelectric materials for cooling future quantum computers and generating electricity from low-grade energy sources.
Collapse
Affiliation(s)
- Munirah Alsaqer
- Device Modelling Group, School
of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Abdalghani H.S. Daaoub
- Device Modelling Group, School
of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Sara Sangtarash
- Device Modelling Group, School
of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Hatef Sadeghi
- Device Modelling Group, School
of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| |
Collapse
|
9
|
Frank T, Shmueli S, Cohen Jungerman M, Shekhter P, Selzer Y. Large Seebeck Values in Metal-Molecule-Semimetal Junctions Attained by a Gateless Level-Alignment Method. NANO LETTERS 2023; 23:10473-10479. [PMID: 37930154 DOI: 10.1021/acs.nanolett.3c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Molecular junctions are potentially highly efficient devices for thermal energy harvesting since their transmission properties can be tailored to break electron-hole transport symmetry and consequently yield high Seebeck and Peltier coefficients. Full harnessing of this potential requires, however, a capability to precisely position their Fermi level within the transmission landscape. Currently, with the lack of such a "knob" for two-lead junctions, their thermoelectric performance is too low for applications. Here we report that the requested capability can be realized by using junctions with a semimetal lead and molecules with a tailored effect of their monolayers on the work function of the semimetal. The approach is demonstrated by junctions with monolayers of alkanethiols on bismuth (Bi). Fermi-level tuning enables in this case increasing the Seebeck coefficient by more than 2 orders of magnitude. The underlying mechanism of this capability is discussed, as well as its general applicability.
Collapse
Affiliation(s)
- Tamar Frank
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shachar Shmueli
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Pini Shekhter
- The Tel Aviv Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Yoram Selzer
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
10
|
Qiu Y, Zhang B. Interface design of the thermoelectric transport properties of phosphorene-tetrathiafulvalene nanoscale devices. Phys Chem Chem Phys 2023; 25:27448-27456. [PMID: 37796158 DOI: 10.1039/d3cp03120a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Interface design and energy band engineering are two key strategies for improving the thermoelectric conversion efficiency of low dimensional nanoscale devices. By using first-principle-based density functional theory combined with a non-equilibrium Green function method, the thermoelectric properties of a single tetrathiafulvalene (TTF) molecule coupled with armchair phosphorene nanoribbons (APNRs) within different interface modes have been investigated. The results indicate that phonon transport can be dramatically suppressed in this intermediate weak-coupling system due to strong interfacial phonon scattering behavior, where very few phonons can propagate through two nonbonded interface regions from left side lead to a TTF molecule and then to right side lead. Furthermore, connecting a thiophene group at both the head and tail of the intermediate TTF molecule can significantly enhance the power factor (S2σ) of such a weak-coupling system based on an out-of-plane electronic transmission mechanism, and there is obvious charge transfer from S atoms to upper and lower APNRs. Compared to a single regular method, composite interface co-design can achieve more accurate control of thermal/electrical transmission performance. Electrical conductance can be effectively improved with low phonon thermal conductance being maintained at the same time, and an excellent thermoelectric figure of merit (ZT) of 0.73 has been obtained near 0.6 eV.
Collapse
Affiliation(s)
- Yifeng Qiu
- Xinjiang Key Laboratory of Solid State Physics and Device, Xinjiang University, Urumqi, Xinjiang 830046, China.
- School of Physical Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Bei Zhang
- Xinjiang Key Laboratory of Solid State Physics and Device, Xinjiang University, Urumqi, Xinjiang 830046, China.
- School of Physical Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| |
Collapse
|
11
|
Kumar R, Seth C, Venkatramani R, Kaliginedi V. Do quantum interference effects manifest in acyclic aliphatic molecules with anchoring groups? NANOSCALE 2023; 15:15050-15058. [PMID: 37671581 DOI: 10.1039/d3nr02140h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The ability to control single molecule electronic conductance is imperative for achieving functional molecular electronics applications such as insulation, switching, and energy conversion. Quantum interference (QI) effects are generally used to control electronic transmission through single molecular junctions by tuning the molecular structure or the position of the anchoring group(s) in the molecule. While previous studies focussed on the QI between σ and/or π channels of the molecular backbone, here, we show that single molecule electronic devices can be designed based on QI effects originating from the interactions of anchoring groups. Furthermore, while previous studies have concentrated on the QI mostly in conjugated/cyclic systems, our study showcases that QI effects can be harnessed even in the simplest acyclic aliphatic systems-alkanedithiols, alkanediamines, and alkanediselenols. We identify band gap state resonances in the transmission spectrum of these molecules whose positions and intensities depend on the chain length, and anchoring group sensitive QI between the nearly degenerate molecular orbitals localized on the anchoring groups. We predict that these QI features can be harnessed through an external mechanical stimulus to tune the charge transport properties of single molecules in the break-junction experiments.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India.
| | - Charu Seth
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560012, India.
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India.
| | - Veerabhadrarao Kaliginedi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560012, India.
| |
Collapse
|
12
|
Salthouse R, Hurtado-Gallego J, Grace IM, Davidson R, Alshammari O, Agraït N, Lambert CJ, Bryce MR. Electronic Conductance and Thermopower of Cross-Conjugated and Skipped-Conjugated Molecules in Single-Molecule Junctions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:13751-13758. [PMID: 37528901 PMCID: PMC10389811 DOI: 10.1021/acs.jpcc.3c00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/21/2023] [Indexed: 08/03/2023]
Abstract
We report a combined experimental and theoretical study of a series of thiomethyl (SMe) anchored cross-conjugated molecules featuring an acyclic central bridging ketone and their analogous skipped-conjugated alcohol derivatives. Studies of these molecules in a gold|single-molecule|gold junction using scanning tunneling microscopy-break junction techniques reveal a similar conductance (G) value for both the cross-conjugated molecules and their skipped-conjugated partners. Theoretical studies based on density functional theory of the molecules in their optimum geometries in the junction reveal the reason for this similarity in conductance, as the predicted conductance for the alcohol series of compounds varies more with the tilt angle. Thermopower measurements reveal a higher Seebeck coefficient (S) for the cross-conjugated ketone molecules relative to the alcohol derivatives, with a particularly high S for the biphenyl derivative 3a (-15.6 μV/K), an increase of threefold compared to its alcohol analog. The predicted behavior of the quantum interference (QI) in this series of cross-conjugated molecules is found to be constructive, though the appearance of a destructive QI feature for 3a is due to the degeneracy of the HOMO orbital and may explain the enhancement of the value of S for this molecule.
Collapse
Affiliation(s)
| | - Juan Hurtado-Gallego
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - Iain M. Grace
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Ross Davidson
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Ohud Alshammari
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Nicolás Agraït
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
- Condensed
Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia
de Materiales “Nicolás Cabrera” (INC), Universidad Autónoma de Madrid, Madrid E-28049, Spain
- Instituto
Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, Madrid E-28049, Spain
| | - Colin J. Lambert
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| |
Collapse
|
13
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
14
|
Hamill JM, Ismael A, Al-Jobory A, Bennett TLR, Alshahrani M, Wang X, Akers-Douglas M, Wilkinson LA, Robinson BJ, Long NJ, Lambert C, Albrecht T. Quantum Interference and Contact Effects in the Thermoelectric Performance of Anthracene-Based Molecules. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:7484-7491. [PMID: 37113454 PMCID: PMC10123663 DOI: 10.1021/acs.jpcc.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Indexed: 06/19/2023]
Abstract
We report on the single-molecule electronic and thermoelectric properties of strategically chosen anthracene-based molecules with anchor groups capable of binding to noble metal substrates, such as gold and platinum. Specifically, we study the effect of different anchor groups, as well as quantum interference, on the electric conductance and the thermopower of gold/single-molecule/gold junctions and generally find good agreement between theory and experiments. All molecular junctions display transport characteristics consistent with coherent transport and a Fermi alignment approximately in the middle of the highest occupied molecular orbital/lowest unoccupied molecular orbital gap. Single-molecule results are in agreement with previously reported thin-film data, further supporting the notion that molecular design considerations may be translated from the single- to many-molecule devices. For combinations of anchor groups where one binds significantly more strongly to the electrodes than the other, the stronger anchor group appears to dominate the thermoelectric behavior of the molecular junction. For other combinations, the choice of electrode material can determine the sign and magnitude of the thermopower. This finding has important implications for the design of thermoelectric generator devices, where both n- and p-type conductors are required for thermoelectric current generation.
Collapse
Affiliation(s)
- Joseph M. Hamill
- School
of Chemistry, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, U.K.
| | - Ali Ismael
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Alaa Al-Jobory
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- Department
of Physics, College of Science, University
of Anbar, Ramadi 31001, Anbar, Iraq
| | - Troy L. R. Bennett
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Maryam Alshahrani
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- Physics
Department, College of Science, University
of Bisha, P.O. Box 344, Bisha 61922, Kingdom of Saudi Arabia
| | - Xintai Wang
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- School
of
Information Science and Technology, Dalian
Maritime University, Dalian 116026, China
| | - Maxwell Akers-Douglas
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Luke A. Wilkinson
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | | | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Colin Lambert
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Tim Albrecht
- School
of Chemistry, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, U.K.
| |
Collapse
|
15
|
Svatek S, Sacchetti V, Rodríguez-Pérez L, Illescas BM, Rincón-García L, Rubio-Bollinger G, González MT, Bailey S, Lambert CJ, Martín N, Agraït N. Enhanced Thermoelectricity in Metal-[60]Fullerene-Graphene Molecular Junctions. NANO LETTERS 2023; 23:2726-2732. [PMID: 36970777 PMCID: PMC10103166 DOI: 10.1021/acs.nanolett.3c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The thermoelectric properties of molecular junctions consisting of a metal Pt electrode contacting [60]fullerene derivatives covalently bound to a graphene electrode have been studied by using a conducting-probe atomic force microscope (c-AFM). The [60]fullerene derivatives are covalently linked to the graphene via two meta-connected phenyl rings, two para-connected phenyl rings, or a single phenyl ring. We find that the magnitude of the Seebeck coefficient is up to nine times larger than that of Au-C60-Pt molecular junctions. Moreover, the sign of the thermopower can be either positive or negative depending on the details of the binding geometry and on the local value of the Fermi energy. Our results demonstrate the potential of using graphene electrodes for controlling and enhancing the thermoelectric properties of molecular junctions and confirm the outstanding performance of [60]fullerene derivatives.
Collapse
Affiliation(s)
- Simon
A. Svatek
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente
7, 28049 Madrid, Spain
| | - Valentina Sacchetti
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
- Organic
Chemistry Department, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Laura Rodríguez-Pérez
- Organic
Chemistry Department, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Beatriz M. Illescas
- Organic
Chemistry Department, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Laura Rincón-García
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente
7, 28049 Madrid, Spain
| | - Gabino Rubio-Bollinger
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente
7, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia
de Materiales “Nicolás Cabrera” (INC), Facultad
de Ciencias, Universidad Autónoma
de Madrid, C/Francisco
Tomás y Valiente 7, 28049 Madrid, Spain
| | - M. Teresa González
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
| | - Steven Bailey
- Department
of Physics, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Colin J. Lambert
- Department
of Physics, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Nazario Martín
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
- Organic
Chemistry Department, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Nicolás Agraït
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente
7, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia
de Materiales “Nicolás Cabrera” (INC), Facultad
de Ciencias, Universidad Autónoma
de Madrid, C/Francisco
Tomás y Valiente 7, 28049 Madrid, Spain
| |
Collapse
|
16
|
O'Driscoll LJ, Jay M, Robinson BJ, Sadeghi H, Wang X, Penhale-Jones B, Bryce MR, Lambert CJ. Planar aromatic anchors control the electrical conductance of gold|molecule|graphene junctions. NANOSCALE ADVANCES 2023; 5:2299-2306. [PMID: 37056609 PMCID: PMC10089101 DOI: 10.1039/d2na00873d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The synthesis of a family of alkanethiol molecules with planar aromatic head groups, designed to anchor molecules effectively to graphene electrodes, is reported. Characterisation of self-assembled monolayers of these molecules on a gold surface via conductive atomic force microscopy shows that when an aromatic head group is present, the conductance G graphene obtained using a graphene coated probe is higher than the conductance G Pt obtained using a platinum (Pt) probe. For Pt probe and graphene probe junctions, the tunnelling decay constant of benzyl ether derivatives with an alkanethiol molecular backbone is determined as β = 5.6 nm-1 and 3.5 nm-1, respectively. The conductance ratio G graphene/G Pt increases as the number of rings present in the aromatic head unit, n, increases. However, as the number of rings increases, the conductance path length increases because the planar head groups lie at an angle to the plane of the electrodes. This means that overall conductance decreases as n increases. Density functional theory-based charge transport calculations support these experimental findings. This study confirms that planar aromatic head groups can function as effective anchoring units for graphene electrodes in large area molecular junctions. However, the results also indicate that the size and geometry of these head groups must be considered in order to produce effective molecular designs.
Collapse
Affiliation(s)
| | - Michael Jay
- Dept. of Physics, Lancaster University Lancaster LA1 4YB UK
| | | | - Hatef Sadeghi
- Dept. of Engineering, Warwick University Coventry CV4 7AL UK
| | - Xintai Wang
- School of Information Science and Technology, Dalian Maritime University Dalian China
| | | | | | | |
Collapse
|
17
|
Park S, Jang J, Tanaka Y, Yoon HJ. High Seebeck Coefficient Achieved by Multinuclear Organometallic Molecular Junctions. NANO LETTERS 2022; 22:9693-9699. [PMID: 36441166 DOI: 10.1021/acs.nanolett.2c03974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This paper describes the thermoelectric properties of molecular junctions incorporating multinuclear ruthenium alkynyl complexes that comprise Ru(dppe)2 [dppe = 1,2-bis(diphenylphosphino)ethane] fragments and diethylnyl aromatic bridging ligands with thioether anchors. Using the liquid metal technique, the Seebeck coefficient was examined as a function of metal nuclearity, oxidation state, and substituent on the organic ligand backbone. High Seebeck coefficients up to 73 μV/K and appreciable thermal stability with thermovoltage up to ∼3.3 mV at a heating temperature of 423 K were observed. An unusually high proximity of the highest occupied molecular orbital (HOMO) energy level to the Fermi level was revealed to give the remarkable thermoelectric performance as suggested by combined experiments and calculations. This work offers important insights into the development of molecular-scale devices for efficient thermoregulation and heat-to-electricity conversion.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
18
|
Park S, Jo JW, Jang J, Ohto T, Tada H, Yoon HJ. Thermopower in Transition from Tunneling to Hopping. NANO LETTERS 2022; 22:7682-7689. [PMID: 36067367 DOI: 10.1021/acs.nanolett.2c03083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Seebeck effect of a molecular junction in a hopping regime or tunneling-to-hopping transition remains uncertain. This paper describes the Seebeck effect in molecular epitaxy films (OPIn where n = 1-9) based on imine condensation between an aryl amine and aldehyde and investigates how the Seebeck coefficient (S, μV/K) varies at the crossover region. The S value of OPIn linearly increased with increasing the molecular length (d, nm), ranging from 7.2 to 38.0 μV/K. The increasing rate changed from 0.99 to 0.38 μV·K-1 Å-1 at d = 3.4 nm (OPI4). Combined experimental and theoretical studies indicated that such a change stems from a tunneling-to-hopping transition, and the small but detectable length-dependence of thermopower in the long molecules originates from the gradual reduction of the tunneling contribution to the broadening of molecular orbital energy level, rather than its relative position to the Fermi level. Our work helps to bridge the gap between bulk and nanoscale thermoelectric systems.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jeong Woo Jo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hirokazu Tada
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
19
|
Mondal K, Ganguly S, Maiti SK. Strain-induced thermoelectricity in pentacene. Phys Chem Chem Phys 2022; 24:23679-23689. [PMID: 36148772 DOI: 10.1039/d2cp02523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work discusses a non-synthetic strategy to achieve a favorable thermoelectric response in pentacene via strain. It is found that a uni-axial strain is capable of inducing spatial anisotropy in the molecule. As a result, the transmission spectrum becomes highly asymmetric under a particular strained scenario, which is the primary requirement to get a favorable thermoelectric response. Different thermoelectric quantities are computed for the strain-induced pentacene using Green's function formalism following the Landauer-Büttiker prescription. Various scenarios are considered to make the present work more realistic, such as the effects of substrate, coupling strength between the molecule and electrodes, dangling bonds, etc. Such a scheme to enhance the thermoelectric performance in pentacene is technologically intriguing and completely new to the best of our knowledge.
Collapse
Affiliation(s)
- Kallol Mondal
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni, Odisha, 752050, India.
| | - Sudin Ganguly
- Department of Physics, School of Applied Sciences, University of Science and Technology Meghalaya, Ri-Bhoi, 793101, India.
| | - Santanu K Maiti
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata, 700108, India.
| |
Collapse
|
20
|
Roemer M, Gillespie A, Jago D, Costa-Milan D, Alqahtani J, Hurtado-Gallego J, Sadeghi H, Lambert CJ, Spackman PR, Sobolev AN, Skelton BW, Grosjean A, Walkey M, Kampmann S, Vezzoli A, Simpson PV, Massi M, Planje I, Rubio-Bollinger G, Agraït N, Higgins SJ, Sangtarash S, Piggott MJ, Nichols RJ, Koutsantonis GA. 2,7- and 4,9-Dialkynyldihydropyrene Molecular Switches: Syntheses, Properties, and Charge Transport in Single-Molecule Junctions. J Am Chem Soc 2022; 144:12698-12714. [PMID: 35767015 DOI: 10.1021/jacs.2c02289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes the syntheses of several functionalized dihydropyrene (DHP) molecular switches with different substitution patterns. Regioselective nucleophilic alkylation of a 5-substituted dimethyl isophthalate allowed the development of a workable synthetic protocol for the preparation of 2,7-alkyne-functionalized DHPs. Synthesis of DHPs with surface-anchoring groups in the 2,7- and 4,9-positions is described. The molecular structures of several intermediates and DHPs were elucidated by X-ray single-crystal diffraction. Molecular properties and switching capabilities of both types of DHPs were assessed by light irradiation experiments, spectroelectrochemistry, and cyclic voltammetry. Spectroelectrochemistry, in combination with density functional theory (DFT) calculations, shows reversible electrochemical switching from the DHP forms to the cyclophanediene (CPD) forms. Charge-transport behavior was assessed in single-molecule scanning tunneling microscope (STM) break junctions, combined with density functional theory-based quantum transport calculations. All DHPs with surface-contacting groups form stable molecular junctions. Experiments show that the molecular conductance depends on the substitution pattern of the DHP motif. The conductance was found to decrease with increasing applied bias.
Collapse
Affiliation(s)
- Max Roemer
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Angus Gillespie
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - David Jago
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - David Costa-Milan
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Jehan Alqahtani
- Department of Physics, King Khalid University, Abha 62529, Saudi Arabia
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Juan Hurtado-Gallego
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Hatef Sadeghi
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Peter R Spackman
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Alexandre N Sobolev
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia
| | - Brian W Skelton
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia
| | - Arnaud Grosjean
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark Walkey
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Sven Kampmann
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Andrea Vezzoli
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Peter V Simpson
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Inco Planje
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Gabino Rubio-Bollinger
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Nicolás Agraït
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049 Madrid, Spain
| | - Simon J Higgins
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Sara Sangtarash
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Matthew J Piggott
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - George A Koutsantonis
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
21
|
Ismael AK, Rincón-García L, Evangeli C, Dallas P, Alotaibi T, Al-Jobory AA, Rubio-Bollinger G, Porfyrakis K, Agraït N, Lambert CJ. Exploring seebeck-coefficient fluctuations in endohedral-fullerene, single-molecule junctions. NANOSCALE HORIZONS 2022; 7:616-625. [PMID: 35439804 DOI: 10.1039/d1nh00527h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For the purpose of creating single-molecule junctions, which can convert a temperature difference ΔT into a voltage ΔV via the Seebeck effect, it is of interest to screen molecules for their potential to deliver high values of the Seebeck coefficient S = -ΔV/ΔT. Here we demonstrate that insight into molecular-scale thermoelectricity can be obtained by examining the widths and extreme values of Seebeck histograms. Using a combination of experimental scanning-tunnelling-microscopy-based transport measurements and density-functional-theory-based transport calculations, we study the electrical conductance and Seebeck coefficient of three endohedral metallofullerenes (EMFs) Sc3N@C80, Sc3C2@C80, and Er3N@C80, which based on their structures, are selected to exhibit different degrees of charge inhomogeneity and geometrical disorder within a junction. We demonstrate that standard deviations in the Seebeck coefficient σS of EMF-based junctions are correlated with the geometric standard deviation σ and the charge inhomogeneity σq. We benchmark these molecules against C60 and demonstrate that both σq, σS are the largest for Sc3C2@C80, both are the smallest for C60 and for the other EMFs, they follow the order Sc3C2@C80 > Sc3N@C80 > Er3N@C80 > C60. A large value of σS is a sign that a molecule can exhibit a wide range of Seebeck coefficients, which means that if orientations corresponding to high values can be selected and controlled, then the molecule has the potential to exhibit high-performance thermoelectricity. For the EMFs studied here, large values of σS are associated with distributions of Seebeck coefficients containing both positive and negative signs, which reveals that all these EMFs are bi-thermoelectric materials.
Collapse
Affiliation(s)
- Ali K Ismael
- Department of Physics, Lancaster University, Lancaster, UK.
- Department of Physics, College of Education for Pure Science, Tikrit University, Tikrit, Iraq
| | - Laura Rincón-García
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | - Panagiotis Dallas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310 Athens, Greece
- Department of Materials, University of Oxford, OX1 3PH, UK
| | - Turki Alotaibi
- Department of Physics, Lancaster University, Lancaster, UK.
- Department of Physics, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Alaa A Al-Jobory
- Department of Physics, Lancaster University, Lancaster, UK.
- Department of Physics, College of Science, University of Anbar, Anbar, Iraq
| | - Gabino Rubio-Bollinger
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Kyriakos Porfyrakis
- Department of Materials, University of Oxford, OX1 3PH, UK
- Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, UK
| | - Nicolás Agraït
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Fundación IMDEA Nanociencia, Calle Faraday 9, Campus Universitario de Cantoblanco, E-28049 Madrid, Spain
| | | |
Collapse
|
22
|
Park S, Kang S, Yoon HJ. Thermopower of Molecular Junction in Harsh Thermal Environments. NANO LETTERS 2022; 22:3953-3960. [PMID: 35575639 DOI: 10.1021/acs.nanolett.2c00422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular junctions can be miniaturized devices for heat-to-electricity conversion application, yet these operate only in mild thermal environments (less than 323 K) because thiol, the most widely used anchor moiety for chemisorption of active molecules onto surface of electrode, easily undergoes thermal degradation. N-Heterocyclic carbene (NHC) can be an alternative to traditional thiol anchor for producing ultrastable thermoelectric molecular junctions. Our experiments showed that the NHC-based molecular junctions withstood remarkably high temperatures up to 573 K, exhibiting consistent Seebeck effect and thermovoltage up to approximately |1900 μV|. Our work advances our understanding of molecule-electrode contact in the Seebeck effect, providing a roadmap for constructing robust and efficient organic thermoelectric devices.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Seohyun Kang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
23
|
Abstract
Single-molecule junctions - devices fabricated by electrically connecting a single molecule to two electrodes - can respond to a variety of stimuli, that include electrostatic/electrochemical gating, light, other chemical species, and mechanical forces. When the latter is used, the device becomes mechanoresistive which means that its electrical resistance/conductance changes upon application of a mechanical stress. The mechanoresistive phenomenon can arise at the metal-molecule interface or it can be embedded in the molecular backbone, and several strategies to attain high reproducibility, high sensitivity and reversible behaviour have been developed over the years. These devices offer a unique insight on the process of charge transfer/transport at the metal/molecule interface, and have potential for applications as nanoelectromechanical systems, integrating electrical and mechanical functionality at the nanoscale. In this review, the status of the field is presented, with a focus on those systems that proved to have reversible behaviour, along with a discussion on the techniques used to fabricate and characterise mechanoresistive devices.
Collapse
Affiliation(s)
- Andrea Vezzoli
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK.
- Stephenson Institute for Renewable Energy, University of Liverpool, Peach Streat, Liverpool L69 7ZF, UK
| |
Collapse
|
24
|
Hurtado-Gallego J, Sangtarash S, Davidson R, Rincón-García L, Daaoub A, Rubio-Bollinger G, Lambert CJ, Oganesyan VS, Bryce MR, Agraït N, Sadeghi H. Thermoelectric Enhancement in Single Organic Radical Molecules. NANO LETTERS 2022; 22:948-953. [PMID: 35073099 DOI: 10.1021/acs.nanolett.1c03698] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic thermoelectric materials have potential for wearable heating, cooling, and energy generation devices at room temperature. For this to be technologically viable, high-conductance (G) and high-Seebeck-coefficient (S) materials are needed. For most semiconductors, the increase in S is accompanied by a decrease in G. Here, using a combined experimental and theoretical investigation, we demonstrate that a simultaneous enhancement of S and G can be achieved in single organic radical molecules, thanks to their intrinsic spin state. A counterintuitive quantum interference (QI) effect is also observed in stable Blatter radical molecules, where constructive QI occurs for a meta-connected radical, leading to further enhancement of thermoelectric properties. Compared to an analogous closed-shell molecule, the power factor is enhanced by more than 1 order of magnitude in radicals. These results open a new avenue for the development of organic thermoelectric materials operating at room temperature.
Collapse
Affiliation(s)
- Juan Hurtado-Gallego
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Ross Davidson
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Laura Rincón-García
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Abdalghani Daaoub
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Gabino Rubio-Bollinger
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Colin J Lambert
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Vasily S Oganesyan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Martin R Bryce
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Nicolás Agraït
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049 Madrid, Spain
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| |
Collapse
|
25
|
Park S, Yoon HJ. Thermal and Thermoelectric Properties of SAM-Based Molecular Junctions. ACS APPLIED MATERIALS & INTERFACES 2021; 14:22818-22825. [PMID: 34961308 DOI: 10.1021/acsami.1c20840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In molecular thermoelectrics, the thermopower of molecular junctions is closely interlinked with their thermal properties; however, the detailed relationship between them remains uncertain. This study systematically investigates the thermal properties of self-assembled monolayer (SAM)-based molecular junctions and relates them to the thermoelectric performance of the junctions. The electrode temperatures for the bare AuTS, AuTS/EGaIn, and AuTS/TPT SAM//Ga2O3/EGaIn samples placed on a hot chuck were measured under different conditions, such as air vs vacuum and the presence and absence of thermal grease, which generates a heat conduction channel from a hot chuck to gold. It was revealed that the SAM was the most efficient thermal resistor, which was responsible for the creation of a temperature differential (ΔT) across the junction; ΔT in an air atmosphere is overestimated to some extent, and air mainly contributes to large dispersions of thermovoltage (ΔV) data. While junction measurements in air were possible at low ΔT (up to 13 K), the new optimal condition, under a vacuum and with thermal grease, allowed us to examine a wide temperature range up to ΔT = 40 K and obtain a more reliable Seebeck coefficient (S, μV/K). The value of S under the new condition was ∼1.4 times higher than that measured in air without thermal grease. Our study shows the potential of liquid-metal-based junctions to reliably investigate heat conduction across nanometer-thick organic films and elaborates on how the thermal properties of molecular junctions affect their thermoelectric performance.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
26
|
Fu T, Frommer K, Nuckolls C, Venkataraman L. Single-Molecule Junction Formation in Break-Junction Measurements. J Phys Chem Lett 2021; 12:10802-10807. [PMID: 34723548 DOI: 10.1021/acs.jpclett.1c03160] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The scanning tunneling microscope-based break-junction (STM-BJ) technique is the most common method used to study the electronic properties of single-molecule junctions. It relies on repeatedly forming and rupturing a Au contact in an environment of the target molecules. The probability of junction formation is typically very high (∼70-95%), prompting questions relating to how the nanoscale structure of the Au electrode before the metal point contact ruptures alters junction formation. Here we analyze conductance traces measured with the STM-BJ setup by combining correlation analysis and multiple machine learning tools, including gradient-boosted trees and neural networks. We show that two key features describing the Au-Au contact prior to rupture determine the extent of contact relaxation (snapback) and the probability of junction formation. Importantly, our data strongly indicate that molecular junctions are formed prior to the rupture of the Au-Au contact, explaining the high probability of junction formation observed in room-temperature solution measurements.
Collapse
Affiliation(s)
- Tianren Fu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kathleen Frommer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
27
|
Park S, Kim HR, Kim J, Hong BH, Yoon HJ. Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor-Induced Electron Doping of Single-Layer Graphene Electrode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103177. [PMID: 34453364 DOI: 10.1002/adma.202103177] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Enhancing thermopower is a key goal in organic and molecular thermoelectrics. Herein, it is shown that introducing noncovalent contact with a single-layer graphene (SLG) electrode improves the thermopower of saturated molecules as compared to the traditional gold-thiolate covalent contact. Thermoelectric junction measurements with a liquid-metal technique reveal that the value of Seebeck coefficient in large-area junctions based on n-alkylamine self-assembled monolayers (SAMs) on SLG is increased up to fivefold compared to the analogous junction based on n-alkanethiolate SAMs on gold. Experiments with Raman spectroscopy and field-effect transistor analysis indicate that such enhancements benefit from the creation of new in-gap states and electron doping through noncovalent interaction between the amine anchor and the SLG electrode, which leads to a reduced energy offset between the Fermi level and the transport channel. This work demonstrates that control of interfacial bonding nature in molecular junctions improves the Seebeck effect in saturated molecules.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Hwa Rang Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Juhee Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Byung-Hee Hong
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
28
|
O'Driscoll LJ, Bryce MR. A review of oligo(arylene ethynylene) derivatives in molecular junctions. NANOSCALE 2021; 13:10668-10711. [PMID: 34110337 DOI: 10.1039/d1nr02023d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oligo(arylene ethynylene) (OAE) derivatives are the "workhorse" molecules of molecular electronics. Their ease of synthesis and flexibility of functionalisation mean that a diverse array of OAE molecular wires have been designed, synthesised and studied theoretically and experimentally in molecular junctions using both single-molecule and ensemble methods. This review summarises the breadth of molecular designs that have been investigated with emphasis on structure-property relationships with respect to the electronic conductance of OAEs. The factors considered include molecular length, connectivity, conjugation, (anti)aromaticity, heteroatom effects and quantum interference (QI). Growing interest in the thermoelectric properties of OAE derivatives, which are expected to be at the forefront of research into organic thermoelectric devices, is also explored.
Collapse
Affiliation(s)
- Luke J O'Driscoll
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, UKDH1 3LE.
| | - Martin R Bryce
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, UKDH1 3LE.
| |
Collapse
|
29
|
Abstract
This article reviews the scope of inorganic cluster compounds interrogated in single-molecule break-junction measurements. This body of work lies at the intersection between the fields of inorganic cluster chemistry and single-molecule electronics, where discrete inorganic cluster molecules are used as the active components in molecular electronic circuitry. We explore the breadth of transition metal and main group cluster compounds that have been studied in single-cluster junctions, largely within the context of scanning tunnelling microscopy break-junction (STM-BJ) measurements. Our discussion centers on how the structure and bonding of inorganic cluster compounds give rise to desirable quantum transport effects such as room-temperature current blockade, sequential tunneling, voltage-gated conductance switching, destructive quantum interference, and high thermoelectric currents.
Collapse
Affiliation(s)
- Timothy C Siu
- Department of Chemistry, University of California, Riverside, CA 92521, USA.
| | - Joshua Y Wong
- Department of Chemistry, University of California, Riverside, CA 92521, USA.
| | - Matthew O Hight
- Department of Chemistry, University of California, Riverside, CA 92521, USA.
| | - Timothy A Su
- Department of Chemistry, University of California, Riverside, CA 92521, USA. and Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
30
|
Gehring P, Sowa JK, Hsu C, de Bruijckere J, van der Star M, Le Roy JJ, Bogani L, Gauger EM, van der Zant HSJ. Complete mapping of the thermoelectric properties of a single molecule. NATURE NANOTECHNOLOGY 2021; 16:426-430. [PMID: 33649585 DOI: 10.1038/s41565-021-00859-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Theoretical studies suggest that mastering the thermocurrent through single molecules can lead to thermoelectric energy harvesters with unprecedentedly high efficiencies.1-6 This can be achieved by engineering molecule length,7 optimizing the tunnel coupling strength of molecules via chemical anchor groups8 or by creating localized states in the backbone with resulting quantum interference features.4 Empirical verification of these predictions, however, faces considerable experimental challenges and is still awaited. Here we use a novel measurement protocol that simultaneously probes the conductance and thermocurrent flow as a function of bias voltage and gate voltage. We find that the resulting thermocurrent is strongly asymmetric with respect to the gate voltage, with evidence of molecular excited states in the thermocurrent Coulomb diamond maps. These features can be reproduced by a rate-equation model only if it accounts for both the vibrational coupling and the electronic degeneracies, thus giving direct insight into the interplay of electronic and vibrational degrees of freedom, and the role of spin entropy in single molecules. Overall these results show that thermocurrent measurements can be used as a spectroscopic tool to access molecule-specific quantum transport phenomena.
Collapse
Affiliation(s)
- Pascal Gehring
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
- IMCN/NAPS, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Jakub K Sowa
- Department of Materials, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Chunwei Hsu
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Joeri de Bruijckere
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Martijn van der Star
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jennifer J Le Roy
- Department of Materials, University of Oxford, Oxford, United Kingdom
| | - Lapo Bogani
- Department of Materials, University of Oxford, Oxford, United Kingdom
| | - Erik M Gauger
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
31
|
Naher M, Milan DC, Al-Owaedi OA, Planje IJ, Bock S, Hurtado-Gallego J, Bastante P, Abd Dawood ZM, Rincón-García L, Rubio-Bollinger G, Higgins SJ, Agraït N, Lambert CJ, Nichols RJ, Low PJ. Molecular Structure-(Thermo)electric Property Relationships in Single-Molecule Junctions and Comparisons with Single- and Multiple-Parameter Models. J Am Chem Soc 2021; 143:3817-3829. [PMID: 33606524 DOI: 10.1021/jacs.0c11605] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The most probable single-molecule conductance of each member of a series of 12 conjugated molecular wires, 6 of which contain either a ruthenium or platinum center centrally placed within the backbone, has been determined. The measurement of a small, positive Seebeck coefficient has established that transmission through these molecules takes place by tunneling through the tail of the HOMO resonance near the middle of the HOMO-LUMO gap in each case. Despite the general similarities in the molecular lengths and frontier-orbital compositions, experimental and computationally determined trends in molecular conductance values across this series cannot be satisfactorily explained in terms of commonly discussed "single-parameter" models of junction conductance. Rather, the trends in molecular conductance are better rationalized from consideration of the complete molecular junction, with conductance values well described by transport calculations carried out at the DFT level of theory, on the basis of the Landauer-Büttiker model.
Collapse
Affiliation(s)
- Masnun Naher
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - David C Milan
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Oday A Al-Owaedi
- Department of Laser Physics, College of Science for Girls, The University of Babylon, Hilla 51001, Iraq
| | - Inco J Planje
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Sören Bock
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Juan Hurtado-Gallego
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - Pablo Bastante
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - Zahra Murtada Abd Dawood
- Department of Laser Physics, College of Science for Girls, The University of Babylon, Hilla 51001, Iraq
| | - Laura Rincón-García
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - Gabino Rubio-Bollinger
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain.,Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Simon J Higgins
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Nicolás Agraït
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain.,Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049 Madrid, Spain
| | - Colin J Lambert
- Department of Physics, University of Lancaster, Lancaster LA1 4YB, U.K
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
32
|
Kang S, Byeon SE, Yoon HJ. N
‐Heterocyclic
Carbene Anchors in Electronics Applications. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Seohyun Kang
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Seo Eun Byeon
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
33
|
Gueye MN, Vercouter A, Jouclas R, Guérin D, Lemaur V, Schweicher G, Lenfant S, Antidormi A, Geerts Y, Melis C, Cornil J, Vuillaume D. Thermal conductivity of benzothieno-benzothiophene derivatives at the nanoscale. NANOSCALE 2021; 13:3800-3807. [PMID: 33565562 DOI: 10.1039/d0nr08619c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We study by scanning thermal microscopy the nanoscale thermal conductance of films (40-400 nm thick) of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT-C8). We demonstrate that the out-of-plane thermal conductivity is significant along the interlayer direction, larger for BTBT (0.63 ± 0.12 W m-1 K-1) compared to C8-BTBT-C8 (0.25 ± 0.13 W m-1 K-1). These results are supported by molecular dynamics calculations (approach to equilibrium molecular dynamics method) performed on the corresponding molecular crystals. The calculations point to significant thermal conductivity (3D-like) values along the 3 crystalline directions, with anisotropy factors between the crystalline directions below 1.8 for BTBT and below 2.8 for C8-BTBT-C8, in deep contrast with the charge transport properties featuring a two-dimensional character for these materials. In agreement with the experiments, the calculations yield larger values in BTBT compared to C8-BTBT-C8 (0.6-1.3 W m-1 K-1versus 0.3-0.7 W m-1 K-1, respectively). The weak thickness dependence of the nanoscale thermal resistance is in agreement with a simple analytical model.
Collapse
Affiliation(s)
- Magatte N Gueye
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, Av. Poincaré, Villeneuve d'Ascq, France.
| | - Alexandre Vercouter
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, Mons, Belgium.
| | - Rémy Jouclas
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050, Brussels, Belgium.
| | - David Guérin
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, Av. Poincaré, Villeneuve d'Ascq, France.
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, Mons, Belgium.
| | - Guillaume Schweicher
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050, Brussels, Belgium.
| | - Stéphane Lenfant
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, Av. Poincaré, Villeneuve d'Ascq, France.
| | - Aleandro Antidormi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Yves Geerts
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050, Brussels, Belgium. and International Solvay Institutes for Physics and Chemistry, Brussels, Belgium
| | - Claudio Melis
- Dipartimento di Fisica, Universita di Cagliari, Cittadella Universitaria, 09042 Monserrato (Ca), Italy
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, Mons, Belgium.
| | - Dominique Vuillaume
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, Av. Poincaré, Villeneuve d'Ascq, France.
| |
Collapse
|
34
|
Zhu Y, Natelson D, Cui L. Probing energy dissipation in molecular-scale junctions via surface enhanced Raman spectroscopy: vibrational pumping and hot carrier enhanced light emission. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:134001. [PMID: 33429369 DOI: 10.1088/1361-648x/abda7b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Experimentally resolving the microscopic energy dissipation and redistribution pathways in a molecular-scale junction, the smallest possible nanoelectronic device, is of great current interest. Here we report measurements of the vibrational pumping and light emission processes in current-carrying molecular junctions using surface enhanced Raman spectroscopy. We show that the heating of vibrational modes exhibits distinct features when the molecular junctions are driven by electrical bias or optical power. We further discuss the hot carrier origin of the broadband continuum emission observed in the Raman scattering spectrum.
Collapse
Affiliation(s)
- Yunxuan Zhu
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
| | - Douglas Natelson
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, United States of America
| | - Longji Cui
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
- Paul M Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, United States of America
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
35
|
The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a worldwide race to convert waste heat to useful energy using thermoelectric materials. Molecules are attractive candidates for thermoelectricity because they can be synthesised with the atomic precision, and intriguing properties due to quantum effects such as quantum interference can be induced at room temperature. Molecules are also expected to show a low thermal conductance that is needed to enhance the performance of thermoelectric materials. Recently, the technological challenge of measuring the thermal conductance of single molecules was overcome. Therefore, it is timely to develop strategies to reduce their thermal conductance for high performance thermoelectricity. In this paper and for the first time, we exploit systematically the effect of anchor groups on the phonon thermal conductance of oligo (phenylene ethynylene) (OPE3) molecules connected to gold electrodes via pyridyl, thiol, methyl sulphide and carbodithioate anchor groups. We show that thermal conductance is affected significantly by the choice of anchor group. The lowest and highest thermal conductances were obtained in the OPE3 with methyl sulphide and carbodithioate anchor groups, respectively. The thermal conductance of OPE3 with thiol anchor was higher than that with methyl sulphide but lower than the OPE3 with pyridyl anchor group.
Collapse
|
36
|
Popp MA, Erpenbeck A, Weber HB. Thermoelectricity of near-resonant tunnel junctions and their relation to Carnot efficiency. Sci Rep 2021; 11:2031. [PMID: 33479391 PMCID: PMC7820355 DOI: 10.1038/s41598-021-81466-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
We present a conceptual study motivated by electrical and thermoelectrical measurements on various near-resonant tunnel junctions. The squeezable nano junction technique allows the quasi-synchronous measurement of conductance G, I(V) characteristics and Seebeck coefficient S. Correlations between G and S are uncovered, in particular boundaries for S(G). We find the simplest and consistent description of the observed phenomena in the framework of the single level resonant tunneling model within which measuring I(V) and S suffice for determining all model parameters. We can further employ the model for assigning thermoelectric efficiencies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\eta $$\end{document}η without measuring the heat flow. Within the ensemble of thermoelectric data, junctions with assigned \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\eta $$\end{document}η close to the Carnot limit can be identified. These insights allow providing design rules for optimized thermoelectric efficiency in nanoscale junctions.
Collapse
Affiliation(s)
- Matthias A Popp
- Department Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058, Erlangen, Germany
| | - André Erpenbeck
- Department Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058, Erlangen, Germany
| | - Heiko B Weber
- Department Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058, Erlangen, Germany.
| |
Collapse
|
37
|
O'Driscoll LJ, Bryce MR. Extended curly arrow rules to rationalise and predict structural effects on quantum interference in molecular junctions. NANOSCALE 2021; 13:1103-1123. [PMID: 33393950 DOI: 10.1039/d0nr07819k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ability to easily and reliably predict quantum interference (QI) behaviour would facilitate the design of functional molecular wires with potential applications in switches, transistors and thermoelectric devices. A variety of predictive methods exist, but with the exception of computationally-expensive DFT-based charge transport simulations, these often fail to account for the experimentally observed behaviour of molecules that differ significantly in structure from alternant polycyclic aromatic hydrocarbons. By considering a range of prior studies we have developed an extension to predictive "curly arrow rules". We show that, in most cases, these extended curly arrow rules (ECARs) can rationalise the type of QI exhibited by conjugated molecular wires containing heteroatoms, cross-conjugation and/or non-alternant structures. ECARs provide a straightforward "pen-and-paper" method to predict whether a molecular wire will display constructive, destructive or "shifted destructive" QI, i.e. whether or not its transmission function would be expected to show an antiresonance, and if this antiresonance would occur close to the Fermi energy or be shifted elsewhere.
Collapse
Affiliation(s)
- Luke J O'Driscoll
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| | - Martin R Bryce
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
38
|
Ismael A, Al-Jobory A, Wang X, Alshehab A, Almutlg A, Alshammari M, Grace I, Benett TLR, Wilkinson LA, Robinson BJ, Long NJ, Lambert C. Molecular-scale thermoelectricity: as simple as 'ABC'. NANOSCALE ADVANCES 2020; 2:5329-5334. [PMID: 36132050 PMCID: PMC9417915 DOI: 10.1039/d0na00772b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/11/2021] [Accepted: 10/06/2020] [Indexed: 05/08/2023]
Abstract
If the Seebeck coefficient of single molecules or self-assembled monolayers (SAMs) could be predicted from measurements of their conductance-voltage (G-V) characteristics alone, then the experimentally more difficult task of creating a set-up to measure their thermoelectric properties could be avoided. This article highlights a novel strategy for predicting an upper bound to the Seebeck coefficient of single molecules or SAMs, from measurements of their G-V characteristics. The theory begins by making a fit to measured G-V curves using three fitting parameters, denoted a, b, c. This 'ABC' theory then predicts a maximum value for the magnitude of the corresponding Seebeck coefficient. This is a useful material parameter, because if the predicted upper bound is large, then the material would warrant further investigation using a full Seebeck-measurement setup. On the other hand, if the upper bound is small, then the material would not be promising and this much more technically demanding set of measurements would be avoided. Histograms of predicted Seebeck coefficients are compared with histograms of measured Seebeck coefficients for six different SAMs, formed from anthracene-based molecules with different anchor groups and are shown to be in excellent agreement.
Collapse
Affiliation(s)
- Ali Ismael
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
- Department of Physics, College of Education for Pure Science, Tikrit University Tikrit Iraq
| | - Alaa Al-Jobory
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
- Department of Physics, College of Science, University of Anbar Anbar Iraq
| | - Xintai Wang
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | | | - Ahmad Almutlg
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Majed Alshammari
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Iain Grace
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Troy L R Benett
- Department of Chemistry, Imperial College London, MSRH White City London W12 0BZ UK
| | - Luke A Wilkinson
- Department of Chemistry, Imperial College London, MSRH White City London W12 0BZ UK
| | | | - Nicholas J Long
- Department of Chemistry, Imperial College London, MSRH White City London W12 0BZ UK
| | - Colin Lambert
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| |
Collapse
|
39
|
Dekkiche H, Gemma A, Tabatabaei F, Batsanov AS, Niehaus T, Gotsmann B, Bryce MR. Electronic conductance and thermopower of single-molecule junctions of oligo(phenyleneethynylene) derivatives. NANOSCALE 2020; 12:18908-18917. [PMID: 32902546 DOI: 10.1039/d0nr04413j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the synthesis and the single-molecule transport properties of three new oligo(phenyleneethynylene) (OPE3) derivatives possessing terminal dihydrobenzo[b]thiophene (DHBT) anchoring groups and various core substituents (phenylene, 2,5-dimethoxyphenylene and 9,10-anthracenyl). Their electronic conductance and their Seebeck coefficient have been determined using scanning tunneling microscopy-based break junction (STM-BJ) experiments between gold electrodes. The transport properties of the molecular junctions have been modelled using DFT-based computational methods which reveal a specific binding of the sulfur atom of the DHBT anchor to the electrodes. The experimentally determined Seebeck coefficient varies between -7.9 and -11.4 μV K-1 in the series and the negative sign is consistent with charge transport through the LUMO levels of the molecules.
Collapse
Affiliation(s)
- Hervé Dekkiche
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Grace IM, Olsen G, Hurtado-Gallego J, Rincón-García L, Rubio-Bollinger G, Bryce MR, Agraït N, Lambert CJ. Connectivity dependent thermopower of bridged biphenyl molecules in single-molecule junctions. NANOSCALE 2020; 12:14682-14688. [PMID: 32618309 DOI: 10.1039/d0nr04001k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report measurements on gold|single-molecule|gold junctions, using a modified scanning tunneling microscope-break junction (STM-BJ) technique, of the Seebeck coefficient and electrical conductance of a series of bridged biphenyl molecules, with meta connectivities to pyridyl anchor groups. These data are compared with a previously reported study of para-connected analogues. In agreement with a tight binding model, the electrical conductance of the meta series is relatively low and is sensitive to the nature of the bridging groups, whereas in the para case the conductance is higher and relatively insensitive to the presence of the bridging groups. This difference in sensitivity arises from the presence of destructive quantum interference in the π system of the unbridged aromatic core, which is alleviated to different degrees by the presence of bridging groups. More precisely, the Seebeck coefficient of meta-connected molecules was found to vary between -6.1 μV K-1 and -14.1 μV K-1, whereas that of the para-connected molecules varied from -5.5 μV K-1 and -9.0 μV K-1.
Collapse
Affiliation(s)
- Iain M Grace
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ismael A, Wang X, Bennett TLR, Wilkinson LA, Robinson BJ, Long NJ, Cohen LF, Lambert CJ. Tuning the thermoelectrical properties of anthracene-based self-assembled monolayers. Chem Sci 2020; 11:6836-6841. [PMID: 33033599 PMCID: PMC7504895 DOI: 10.1039/d0sc02193h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
Abstract
It is known that the electrical conductance of single molecules can be controlled in a deterministic manner by chemically varying their anchor groups to external electrodes. Here, by employing synthetic methodologies to vary the terminal anchor groups around aromatic anthracene cores, and by forming self-assembled monolayers (SAMs) of the resulting molecules, we demonstrate that this method of control can be translated into cross-plane SAM-on-gold molecular films. The cross-plane conductance of SAMs formed from anthracene-based molecules with four different combinations of anchors are measured to differ by a factor of approximately 3 in agreement with theoretical predictions. We also demonstrate that the Seebeck coefficient of such films can be boosted by more than an order of magnitude by an appropriate choice of anchor groups and that both positive and negative Seebeck coefficients can be realised. This demonstration that the thermoelectric properties of SAMs are controlled by their anchor groups represents a critical step towards functional ultra-thin-film devices for future molecular-scale electronics.
Collapse
Affiliation(s)
- Ali Ismael
- Physics Department , Lancaster University , Lancaster , LA1 4YB , UK . ;
- Department of Physics , College of Education for Pure Science , Tikrit University , Tikrit , Iraq .
| | - Xintai Wang
- Physics Department , Lancaster University , Lancaster , LA1 4YB , UK . ;
- The Blackett Laboratory , Imperial College London , South Kensington Campus , London , SW7 2AZ , UK .
| | - Troy L R Bennett
- Department of Chemistry , Imperial College London , MSRH , White City , London , W12 0BZ , UK .
| | - Luke A Wilkinson
- Department of Chemistry , Imperial College London , MSRH , White City , London , W12 0BZ , UK .
| | | | - Nicholas J Long
- Department of Chemistry , Imperial College London , MSRH , White City , London , W12 0BZ , UK .
| | - Lesley F Cohen
- The Blackett Laboratory , Imperial College London , South Kensington Campus , London , SW7 2AZ , UK .
| | - Colin J Lambert
- Physics Department , Lancaster University , Lancaster , LA1 4YB , UK . ;
| |
Collapse
|
42
|
Wang X, Bennett TLR, Ismael A, Wilkinson LA, Hamill J, White AJP, Grace IM, Kolosov OV, Albrecht T, Robinson BJ, Long NJ, Cohen LF, Lambert CJ. Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Films. J Am Chem Soc 2020; 142:8555-8560. [PMID: 32343894 PMCID: PMC7588028 DOI: 10.1021/jacs.9b13578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 01/25/2023]
Abstract
The realization of self-assembled molecular-electronic films, whose room-temperature transport properties are controlled by quantum interference (QI), is an essential step in the scale-up of QI effects from single molecules to parallel arrays of molecules. Recently, the effect of destructive QI (DQI) on the electrical conductance of self-assembled monolayers (SAMs) has been investigated. Here, through a combined experimental and theoretical investigation, we demonstrate chemical control of different forms of constructive QI (CQI) in cross-plane transport through SAMs and assess its influence on cross-plane thermoelectricity in SAMs. It is known that the electrical conductance of single molecules can be controlled in a deterministic manner, by chemically varying their connectivity to external electrodes. Here, by employing synthetic methodologies to vary the connectivity of terminal anchor groups around aromatic anthracene cores, and by forming SAMs of the resulting molecules, we clearly demonstrate that this signature of CQI can be translated into SAM-on-gold molecular films. We show that the conductance of vertical molecular junctions formed from anthracene-based molecules with two different connectivities differ by a factor of approximately 16, in agreement with theoretical predictions for their conductance ratio based on CQI effects within the core. We also demonstrate that for molecules with thioether anchor groups, the Seebeck coefficient of such films is connectivity dependent and with an appropriate choice of connectivity can be boosted by ∼50%. This demonstration of QI and its influence on thermoelectricity in SAMs represents a critical step toward functional ultra-thin-film devices for future thermoelectric and molecular-scale electronics applications.
Collapse
Affiliation(s)
- Xintai Wang
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- The
Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Troy L. R. Bennett
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Ali Ismael
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- Department
of Physics, College of Education for Pure Science, Tikrit University, Tikrit, Iraq
| | - Luke A. Wilkinson
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Joseph Hamill
- Department
of Chemistry, Birmingham University, Edgbaston, Birmingham B15 2TT, U.K.
| | - Andrew J. P. White
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Iain M. Grace
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Oleg V. Kolosov
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Tim Albrecht
- Department
of Chemistry, Birmingham University, Edgbaston, Birmingham B15 2TT, U.K.
| | | | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Lesley F. Cohen
- The
Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Colin J. Lambert
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| |
Collapse
|
43
|
Zhao S, Wu Q, Pi J, Liu J, Zheng J, Hou S, Wei J, Li R, Sadeghi H, Yang Y, Shi J, Chen Z, Xiao Z, Lambert C, Hong W. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. SCIENCE ADVANCES 2020; 6:eaba6714. [PMID: 32524003 PMCID: PMC7259930 DOI: 10.1126/sciadv.aba6714] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/31/2020] [Indexed: 06/01/2023]
Abstract
Two-dimensional van der Waals heterojunctions (2D-vdWHs) stacked from atomically thick 2D materials are predicted to be a diverse class of electronic materials with unique electronic properties. These properties can be further tuned by sandwiching monolayers of planar organic molecules between 2D materials to form molecular 2D-vdWHs (M-2D-vdWHs), in which electricity flows in a cross-plane way from one 2D layer to the other via a single molecular layer. Using a newly developed cross-plane break junction technique, combined with density functional theory calculations, we show that M-2D-vdWHs can be created and that cross-plane charge transport can be tuned by incorporating guest molecules. The M-2D-vdWHs exhibit distinct cross-plane charge transport signatures, which differ from those of molecules undergoing in-plane charge transport.
Collapse
Affiliation(s)
- Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Jiuchan Pi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Junying Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Ruihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hatef Sadeghi
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Zhaobin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Colin Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
44
|
Jia C, Grace IM, Wang P, Almeshal A, Huang Z, Wang Y, Chen P, Wang L, Zhou J, Feng Z, Zhao Z, Huang Y, Lambert CJ, Duan X. Redox Control of Charge Transport in Vertical Ferrocene Molecular Tunnel Junctions. Chem 2020. [DOI: 10.1016/j.chempr.2020.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Sangtarash S, Sadeghi H. Radical enhancement of molecular thermoelectric efficiency. NANOSCALE ADVANCES 2020; 2:1031-1035. [PMID: 36133063 PMCID: PMC9418312 DOI: 10.1039/c9na00649d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/21/2020] [Indexed: 05/25/2023]
Abstract
There is a worldwide race to find materials with high thermoelectric efficiency to convert waste heat to useful energy in consumer electronics and server farms. Here, we propose a radically new method to enhance simultaneously the electrical conductance and thermopower and suppress heat transport through ultra-thin materials formed by single radical molecules. This leads to a significant enhancement of room temperature thermoelectric efficiency. The proposed strategy utilises the formation of transport resonances due to singly occupied spin orbitals in radical molecules. This enhances the electrical conductance by a couple of orders of magnitude in molecular junctions formed by nitroxide radicals compared to the non-radical counterpart. It also increases the Seebeck coefficient to high values of 200 μV K-1. Consequently, the power factor increases by more than two orders of magnitude. In addition, the asymmetry and destructive phonon interference that was induced by the stable organic radical side group significantly decreases the phonon thermal conductance. The enhanced power factor and suppressed thermal conductance in the nitroxide radical lead to the significant enhancement of room temperature ZT to values ca. 0.8. Our result confirms the great potential of stable organic radicals to form ultra-thin film thermoelectric materials with unprecedented thermoelectric efficiency.
Collapse
Affiliation(s)
- Sara Sangtarash
- Physics Department, Lancaster University Lancaster LA1 4YB UK
- School of Engineering, University of Warwick Coventry CV4 7AL UK
| | - Hatef Sadeghi
- School of Engineering, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
46
|
Droghetti A, Rungger I. Enhanced thermopower in covalent graphite-molecule contacts. Phys Chem Chem Phys 2020; 22:1466-1474. [PMID: 31867588 DOI: 10.1039/c9cp05474j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Seebeck effect is very attractive for technological applications as it leads to the direct conversion of heat into electricity. One of the key quantities determining the efficiency of such conversion is the thermopower S. In this paper we explore theoretically what electronic properties are responsible for the Seebeck effect in molecular junctions with graphite or graphene electrodes. We propose that S can be enhanced because of the combined effect of the dip in the density of states at the Fermi energy of these materials and the molecular resonance. Then to understand the impact of the covalent vs. non-covalent molecule-carbon bonding we calculate from first principles the electronic and transport properties of graphite/molecule/Au junctions, where both types of bonding have been reported experimentally. We ultimately predict that S is about 120 μV K-1 at room temperature for a 3,5-dimethyl-4-aminobenzene (DMAB) molecule covalently attached to the graphite electrode. This value is one order of magnitude larger than the typical values measured to date for molecular junctions and it is a signature of the direct C-C molecule-graphite bond. Finally we also demonstrate how one can control not just the absolute magnitude of S, but also its sign by designing the graphite-molecule contact. Our results lead the way towards the use of junctions with molecules covalently attached to a C-based substrate as possible new improved platforms for molecular thermoelectric devices.
Collapse
Affiliation(s)
- Andrea Droghetti
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Materials Physics Center, Universidad del Pais Vasco, Av. Tolosa 72, 20018 San Sebastian, Spain.
| | - Ivan Rungger
- National Physical Laboratory, Hampton Road, TW11 0LW, UK.
| |
Collapse
|
47
|
Perrin ML, Eelkema R, Thijssen J, Grozema FC, van der Zant HSJ. Single-molecule functionality in electronic components based on orbital resonances. Phys Chem Chem Phys 2020; 22:12849-12866. [DOI: 10.1039/d0cp01448f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gateable single-molecule diode and resonant tunneling diode are realized using molecular orbital engineering in multi-site molecules.
Collapse
Affiliation(s)
- Mickael L. Perrin
- Kavli Institute of Nanoscience
- Delft University of Technology
- 2628 CJ Delft
- The Netherlands
- Swiss Federal Laboratories for Materials Science and Technology
| | - Rienk Eelkema
- Department of Chemical Engineering
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| | - Jos Thijssen
- Kavli Institute of Nanoscience
- Delft University of Technology
- 2628 CJ Delft
- The Netherlands
| | - Ferdinand C. Grozema
- Department of Chemical Engineering
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| | | |
Collapse
|
48
|
Park S, Kang S, Yoon HJ. Power Factor of One Molecule Thick Films and Length Dependence. ACS CENTRAL SCIENCE 2019; 5:1975-1982. [PMID: 31893227 PMCID: PMC6936095 DOI: 10.1021/acscentsci.9b01042] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 06/07/2023]
Abstract
There is a rapidly increasing interest in organic thin film thermoelectrics. However, the power factor of one molecule thick organic film, the self-assembled monolayer (SAM), has not yet been determined. This study describes the experimental determination of the power factor in SAMs and its length dependence at an atomic level. As a proof-of-concept, SAMs composed of n-alkanethiolates and oligophenylenethiolates of different lengths are focused. These SAMs were electrically and thermoelectrically characterized on an identical junction platform using a liquid metal top-electrode, allowing the straightforward estimation of the power factor of the monolayers. The results show that the power factor of the alkyl SAMs ranged from 2.0 × 10-8 to 8.0 × 10-12 μW m-1 K-2 and exhibited significant negative length dependence, whereas the conductivity and thermopower of the conjugated SAMs are the two opposing factors that balance the power factor upon an increase in molecular length, exhibiting a maximum power factor of 3.6 × 10-8 μW m-1 K-2. Once correction factors about the ratio of effective contact area to geometrical contact area are considered, the values of power factors can be increased by several orders of magnitude. With a newly derived parametric semiempirical model describing the length dependence of the power factor, it is investigated that one molecule thick films thinner than 10 nm composed of thiophene units can yield power factors rivaling those of famed organic thermoelectric materials based on poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate (PEDOT/PSS) and polyaniline/graphene/double-walled carbon nanotube. Furthermore, how the transition of the transport regime from tunneling to hopping as molecules become long affects power factors is examined.
Collapse
|
49
|
Šebera J, Lindner M, Gasior J, Mészáros G, Fuhr O, Mayor M, Valášek M, Kolivoška V, Hromadová M. Tuning the contact conductance of anchoring groups in single molecule junctions by molecular design. NANOSCALE 2019; 11:12959-12964. [PMID: 31259338 DOI: 10.1039/c9nr04071d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A tetraphenylmethane tripod functionalized with three thiol moieties in the para position can serve as a supporting platform for functional molecular electronic elements. A combined experimental scanning tunneling microscopy break junction technique with theoretical approaches based on density functional theory and non-equilibrium Green's function formalism was used for detailed charge transport analysis to find configurations, geometries and charge transport pathways in the molecular junctions of single molecule oligo-1,4-phenylene conductors containing this tripodal anchoring group. The effect of molecular length (n = 1 to 4 repeating phenylene units) on the charge transport properties and junction configurations is addressed. The number of covalent attachments between the electrode and the tripodal platform changes with n affecting the contact conductance of the junction. The longest homologue n = 4 adopts an upright configuration with all three para thiolate moieties of the tripod attached to the gold electrode. The contact conductance of the tetraphenylmethane tripod substituted by thiols in the para position is higher than that substituted in the meta position. Such molecular arrangement is highly conducting and allows well-defined directional positioning of a variety of functional groups.
Collapse
Affiliation(s)
- Jakub Šebera
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Marcin Lindner
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, P. O. Box 3640, 76021 Karlsruhe, Germany.
| | - Jindřich Gasior
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Gábor Mészáros
- Research Centre for Natural Sciences, HAS, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Olaf Fuhr
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, P. O. Box 3640, 76021 Karlsruhe, Germany.
| | - Marcel Mayor
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, P. O. Box 3640, 76021 Karlsruhe, Germany. and Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Michal Valášek
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, P. O. Box 3640, 76021 Karlsruhe, Germany.
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Magdaléna Hromadová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| |
Collapse
|
50
|
Cui L, Hur S, Akbar ZA, Klöckner JC, Jeong W, Pauly F, Jang SY, Reddy P, Meyhofer E. Thermal conductance of single-molecule junctions. Nature 2019; 572:628-633. [DOI: 10.1038/s41586-019-1420-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
|