1
|
Chowdhury R, Bhat IA, Sachan SK, Anantharaman G. Not so inert mer-tris-chelate cobalt(III) complex of a hydroxy-pyridine functionalized NHC ligand for cyclic carbonate synthesis. Dalton Trans 2024; 53:17157-17161. [PMID: 39431351 DOI: 10.1039/d4dt02767a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The homoleptic hydroxy-pyridine functionalized Co(III)-NHC complex (2) demonstrates extraordinary catalytic activity towards the CO2 cycloaddition under mild conditions. Using this catalyst and TBAB, the highest TON (666 667) and TOF (52 713 h-1) were achieved compared to previously reported cobalt catalysts.
Collapse
Affiliation(s)
- Rhitwika Chowdhury
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur-208016, Uttar Pradesh, India.
| | - Irshad Ahmad Bhat
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur-208016, Uttar Pradesh, India.
| | - Sharad Kumar Sachan
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur-208016, Uttar Pradesh, India.
| | - Ganapathi Anantharaman
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur-208016, Uttar Pradesh, India.
| |
Collapse
|
2
|
Brahma R, Singh AP, Baruah JB. Synthesis and characterization of cis and trans cobalt(II) nalidixate complexes having a 1-(4-chlorophenyl)-3-(pyridin-4-ylmethyl)urea ligand. Dalton Trans 2024; 53:14678-14691. [PMID: 39157957 DOI: 10.1039/d4dt01401d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The synthesis and characterization of specific cis- and trans-isomers of a cobalt(II) bis-nalidixate complex with a pyridine-based urea, 1-(4-chlorophenyl)-3-(pyridin-4-ylmethyl)urea (L), ligand are reported. The two isomers, cis-[Co(L)2(NALD)2]·0.5DMF·H2O and trans-[Co(L)2(NALD)2]·2DMF·2H2O (the nalidixate anion is abbreviated to NALD) were prepared by anion-guided synthesis. When cobalt(II) chloride was used as one of the reactants, the reaction yielded the trans-isomer under ambient reaction conditions. Whereas a reaction using cobalt(II) nitrate provided only the cis-isomer when the reaction was continued for a prolonged time. On the other hand, the cis-isomer was converted to the trans-isomer in solution upon treatment with chloride ions. The chloride-assisted formation of the trans-isomer was investigated by a UV-visible study, and it passed through a bond reorganization by forming a tetrahedral intermediate complex. A DFT calculation was carried out to show the difference in energy between the isomers as well as the energy of a plausible tetrahedral cobalt complex. The aggregation behavior of the cis-isomer in different solvents was investigated, and solvent-dependent aggregation and a solvent-dependent Cotton effect were observed.
Collapse
Affiliation(s)
- Rinki Brahma
- Department of Chemistry, Indian Institute of technology Guwahati, Guwahati-781039, Assam, India.
| | - Abhay Pratap Singh
- Department of Chemistry, Indian Institute of technology Guwahati, Guwahati-781039, Assam, India.
| | - Jubaraj Bikash Baruah
- Department of Chemistry, Indian Institute of technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
3
|
Kumar D, Unnikrishnan U, Kuram MR. Facile access to C-substituted piperazin-2-ones and mianserin derivative enabled by chemoselective carbene insertion and cyclization cascade. Chem Commun (Camb) 2024; 60:5691-5694. [PMID: 38726600 DOI: 10.1039/d4cc00959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The chemoselective N-H insertion of unsymmetrical diamines into carbene is a longstanding challenge. A simple copper-catalyzed strategy for synthesizing C-substituted piperazinones is described, employing easily accessible diazo compounds and 1,2-diamines. The reaction proceeded via chemo-selective carbene insertion at the comparatively less nucleophilic amine, followed by instantaneous cyclization. The protocol was further extended to access NH-free piperazinone, and the synthesis of a Mianserin derivative.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Urmila Unnikrishnan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Bai M, Qin L, Zeng XM, Wu M, Yao LY, Yang GY. Dithiocarbonate-Protected Au 25 Nanorods of a Chiral D5 Configuration and NIR-II Phosphorescence. J Am Chem Soc 2024; 146:12734-12742. [PMID: 38592928 DOI: 10.1021/jacs.4c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Innovative surface-protecting ligands are in constant demand due to their crucial role in shaping the configuration, property, and application of gold nanoclusters. Here, the unprecedented O-ethyl dithiocarbonate (DTX)-stabilized atomically precise gold nanoclusters, [Au25(PPh3)10(DTX)5Cl2]2+ (Au25DTX-Cl) and [Au25(PPh3)10(DTX)5Br2]2+ (Au25DTX-Br), were synthesized and structurally characterized. The introduction of bidentate DTX ligands not only endowed the gold nanocluster with unique staggered Au25 nanorod configurations but also generated the symmetry breaking from the D5d geometry of the Au25 kernels to the chiral D5 configuration of the Au25 molecules. The chirality of Au25 nanorods was notably revealed through single-crystal X-ray diffraction, and chiral separation was induced by employing chiral DTX ligands. The staggered configurations of Au25 nanorods, as opposed to eclipsed ones, were responsible for the large red shift in the emission wavelengths, giving rise to a promising near-infrared II (NIR-II, >1000 nm) phosphorescence. Furthermore, their performances in photocatalytic sulfide oxidation and electrocatalytic hydrogen evolution reactions have been examined, and it has been demonstrated that the outstanding catalytic activity of gold nanoclusters is highly related to their stability.
Collapse
Affiliation(s)
- Mengge Bai
- MOE Key Laboratory of Cluster Sciences, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Lin Qin
- MOE Key Laboratory of Cluster Sciences, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiang-Ming Zeng
- MOE Key Laboratory of Cluster Sciences, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Minjian Wu
- MOE Key Laboratory of Cluster Sciences, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Liao-Yuan Yao
- MOE Key Laboratory of Cluster Sciences, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Sciences, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
5
|
Donnelly PS, Harrowfield JM, Koutsantonis GA, Lengkeek NA, Ling I, Nealon GL, McInnes LE, Skelton BW, Sobolev AN, White AH, White JM. Inert Transition Metal Ion Complexes in Organic Synthesis: Protection and Activation. Chem Asian J 2023; 18:e202300556. [PMID: 37442812 DOI: 10.1002/asia.202300556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/15/2023]
Abstract
Single-crystal X-ray diffraction studies for a variety of metal ion complexes of functionalised sarcophagines (sarcophagine=sar=3,6,10,13,16,19-hexa-azabicyclo[6.6.6]icosane) have further confirmed not only that the form of the metal ion/sar unit is unique for each metal, albeit with a sensitivity of the conformation to the associated counter anions, but also that for any given metal and ligand substituent, the dimensions (bond lengths and angles) of the complex and the substituent at the secondary nitrogen centres do not differ significantly from those of the isolated components. Despite this, where the substituent contains reactive sites, the reactivity differs markedly from that of their form in an uncoordinated substrate. Rationalisations are offered for these differences, in part through the use of Hirshfeld surface analysis of the intermolecular interactions. The kinetic inertness of the complexes means that the metal ions can be considered to act as regioselective protecting groups.
Collapse
Affiliation(s)
- Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jack M Harrowfield
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, Strasbourg, 67083, France
| | - George A Koutsantonis
- School of Molecular Sciences, M310, University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Nigel A Lengkeek
- School of Molecular Sciences, M310, University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Irene Ling
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Gareth L Nealon
- School of Molecular Sciences, M310, University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Lachlan E McInnes
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Brian W Skelton
- School of Molecular Sciences, M310, University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Alexandre N Sobolev
- School of Molecular Sciences, M310, University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia
| | | | - Jonathan M White
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
6
|
Munshi MU, Berden G, Oomens J. Infrared Ion Spectroscopic Characterization of the Gaseous [Co(15-crown-5)(H 2O)] 2+ Complex. J Phys Chem A 2023; 127:7256-7263. [PMID: 37595154 PMCID: PMC10476210 DOI: 10.1021/acs.jpca.3c04241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/04/2023] [Indexed: 08/20/2023]
Abstract
We report fingerprint infrared multiple-photon dissociation spectra of the gaseous monohydrated coordination complex of cobalt(II) and the macrocycle 1,4,7,10,13-pentaoxacyclopentadecane (or 15-crown-5), [Co(15-crown-5)(H2O)]2+. The metal-ligand complexes are generated using electrospray ionization, and their IR action spectra are recorded in a quadrupole ion trap mass spectrometer using the free-electron laser FELIX. The electronic structure and chelation motif are derived from spectral comparison with computed vibrational spectra obtained at the density functional theory level. We focus here on the gas-phase structure, addressing the question of doublet versus quartet spin multiplicity and the chelation geometry. We conclude that the gas-phase complex adopts a quartet spin state, excluding contributions of doublet species, and that the chelation geometry is pseudo-octahedral with the six oxygen centers of 15-crown-5 and H2O coordinated to the metal ion. We also address the possible presence of higher-energy conformers based on the IR spectral evidence and calculated thermodynamics.
Collapse
Affiliation(s)
| | - Giel Berden
- FELIX
Laboratory, Radboud University, Institute
for Molecules and Materials, Toernooiveld 7, 6525
ED Nijmegen, The
Netherlands
| | - Jos Oomens
- FELIX
Laboratory, Radboud University, Institute
for Molecules and Materials, Toernooiveld 7, 6525
ED Nijmegen, The
Netherlands
- University
of Amsterdam, Science
Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
7
|
Highly sensitive Cu-ethylenediamine/PANI composite sensor for NH 3 detection at room temperature. Talanta 2023; 258:124418. [PMID: 36931059 DOI: 10.1016/j.talanta.2023.124418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Ammonia detection is needed in several sectors including environmental monitoring, automobile industry, and in medical diagnosis. Conducting polymers, such as polyaniline (PANI), have been utilized to develop NH3 sensors operating at room temperature. However, the performance of these sensors in terms of sensitivity and selectivity need improvement. Functionalization of conducting PANI with metal nanocomposites have shown improved sensor performance. In this work, we report a highly sensitive copper-based nanocomposite for NH3 detection. The novelty lies in utilization of copper-ethylenediamine (Cu-en) nanocomposite functionalized over PANI for gas sensing. Resistance of the 20 wt% Cu-en with PANI increased 3.8 times upon exposure to 100 ppm of NH3. The nanocomposite sensor detected NH3 concentrations as low as 2 ppm. Further, the sensing mechanism was studied by in-situ IV characteristics and impedance spectroscopy during NH3 exposure. NH3 showed ionic interaction with PANI, and Cu2+. The strong affinity of Cu2+ for the lone pair of NH3 enhanced the sensor response from 0.78 to 3.8 for 100 ppm of NH3 at 20 °C. The sensor response was completely recovered after heating at 75 °C, which indicates reusability of the sensor. The sensor showed selectivity for NH3 over ethanol and H2S. The response was reasonably stable after bending the flexible sensor for 1000 times at a radius of 5 mm.
Collapse
|
8
|
Sohtome Y, Komagawa S, Nakamura A, Hashizume D, Lectard S, Akakabe M, Hamashima Y, Uchiyama M, Sodeoka M. Experimental and Computational Investigation of Facial Selectivity Switching in Nickel-Diamine-Acetate-Catalyzed Michael Reactions. J Org Chem 2023. [PMID: 36813263 DOI: 10.1021/acs.joc.2c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chiral Ni complexes have revolutionized both asymmetric acid-base and redox catalysis. However, the coordination isomerism of Ni complexes and their open-shell property still often hinder the elucidation of the origin of their observed stereoselectivity. Here, we report our experimental and computational investigations to clarify the mechanism of β-nitrostyrene facial selectivity switching in Ni(II)-diamine-(OAc)2-catalyzed asymmetric Michael reactions. In the reaction with a dimethyl malonate, the Evans transition state (TS), in which the enolate binds in the same plane with the diamine ligand, is identified as the lowest-energy TS to promote C-C bond formation from the Si face in β-nitrostyrene. In contrast, a detailed survey of the multiple potential pathways in the reaction with α-keto esters points to a clear preference for our proposed C-C bond-forming TS, in which the enolate coordinates to the Ni(II) center in apical-equatorial positions relative to the diamine ligand, thereby promoting Re face addition in β-nitrostyrene. The N-H group plays a key orientational role in minimizing steric repulsion.
Collapse
Affiliation(s)
- Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinsuke Komagawa
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Ayako Nakamura
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Sylvain Lectard
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshitaka Hamashima
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Khromova OV, Emelyanov MA, Stoletova NV, Bodunova EE, Prima DO, Smol’yakov AF, Eremenko IL, Maleev VI, Larionov VA. Post-Modification of Octahedral Chiral-at-Metal Cobalt(III) Complexes by Suzuki–Miyaura Cross-Coupling and Evaluation of Their Catalytic Activity. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Olga V. Khromova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Mikhail A. Emelyanov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Nadezhda V. Stoletova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Ekaterina E. Bodunova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
- Higher Chemical College of the Russian Academy of Sciences, Miusskaya sq. 9, 125047 Moscow, Russian Federation
| | - Darya O. Prima
- Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander F. Smol’yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Igor L. Eremenko
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 31, 119991 Moscow, Russian Federation
| | - Victor I. Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Vladimir A. Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
10
|
Tejero AG, Carmona M, Rodríguez R, Viguri F, Lahoz FJ, García-Orduña P, Carmona D. Synthesis of chiral-at-metal rhodium complexes from achiral tripodal tetradentate ligands: resolution and application to enantioselective Diels-Alder and 1,3-dipolar cycloadditions. RSC Adv 2022; 12:34704-34714. [PMID: 36545596 PMCID: PMC9717581 DOI: 10.1039/d2ra06982b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
An improved synthesis of the racemic rhodium compound [RhCl2(κ4 C,N,N',P-L1)] (1) containing an achiral tripodal tetradentate ligand is reported. Their derived solvate complexes [Rh(κ4 C,N,N',P-L1)(Solv)2][SbF6]2 (Solv = NCMe, 2; H2O, 3) are resolved into their two enantiomers. Complexes 2 and 3 catalyze the Diels-Alder (DA) reaction between methacrolein and cyclopentadiene and the 1,3-dipolar cycloaddition reaction between methacrolein and the nitrone N-benzylidenphenylamine-N-oxide. When enantiopure (A Rh,R N)-2 was employed as the catalyst, enantiomeric ratios >99/1, in the R at C2 adduct, and up to 94/6, in the 3,5-endo isomer, were achieved in the DA reaction and in the 1,3-dipolar cycloaddition reaction, respectively. A plausible catalytic cycle that accounts for the origin of the observed enantioselectivity is proposed.
Collapse
Affiliation(s)
- Alvaro G Tejero
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - María Carmona
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Ricardo Rodríguez
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Fernando Viguri
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Fernando J Lahoz
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Pilar García-Orduña
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Daniel Carmona
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
11
|
Thuéry P, Harrowfield J. Anionic uranyl ion complexes with pyrazinetetracarboxylate: Influence of structure-directing cations. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Schmidt TA, Sparr C. Photocatalytic deracemisation of cobalt(III) complexes with fourfold stereogenicity. Chem Commun (Camb) 2022; 58:12172-12175. [PMID: 36254723 PMCID: PMC9623447 DOI: 10.1039/d2cc05196f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 08/25/2023]
Abstract
The deracemisation of fourfold stereogenic cobalt(III) diketonates with a chiral photocatalyst is described. With only 0.5 mol% menthyl Ru(bpy)32+ photocatalyst, an enantiomeric enrichment of up to 88 : 12 e.r. was obtained for the major meridional diastereomers. Moreover, a distribution of configurationally stable diastereomers distinct from the thermodynamic ratio was observed upon reaching the photostationary state.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel CH-4056, Switzerland.
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel CH-4056, Switzerland.
| |
Collapse
|
13
|
Carrillo U, Francés-Monerris A, Marri AR, Cebrián C, Gros PC. Substituent-Induced Control of fac/ mer Isomerism in Azine-NHC Fe(II) Complexes. ACS ORGANIC & INORGANIC AU 2022; 2:525-536. [PMID: 36855530 PMCID: PMC9955161 DOI: 10.1021/acsorginorgau.2c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
The stereoselective synthesis of geometrical iron(II) complexes bearing azine-NHC ligands is described. Facial and meridional selectivity is achieved as a function of the steric demand of the azine unit, with no remarkable influence of the carbene nature. More specifically, meridional complexes are obtained upon selecting bulky 5-mesityl-substituted pyridyl coordinating units. Unexpectedly, increase of the steric hindrance in the α position with respect to the N coordinating atom results in an exclusive facial configuration, which is in stark contrast to the meridional selectivity induced by other reported α-substituted bidentate ligands. Investigation of the structure and the optical and electrochemical properties of the here-described complexes has revealed the non-negligible effect of the fac/mer ligand configuration around the metal center.
Collapse
|
14
|
Spectrophotometric Determination of Formation Constants of Iron(III) Complexes with Several Ligands. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dye-sensitized solar cells transform solar light into electricity. One commonly used dye is a ruthenium complex. However, the use of ruthenium has been shown to have several disadvantages. In this study, via singular spectrum analysis using HypSpec software, we determined the formation constants and calculated individual electronic spectra of species of iron(III) with several ligands (1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 2,2′-bipyridyl, 5,5-dimethyl-2,2′-bipyridyl, 4,4′-di-tert-butyl-2,2′-bipyridyl, 1,10-phenanthroline, and 3,4,7,8-tetramethyl-1,10-phenanthroline) in methanol solution. We present a spectral comparison of the complexes reported here to the ruthenium complex: tris-(2,2′-bipyridyl)ruthenium(II).
Collapse
|
15
|
Wu Y, Bu X, Ke Y, Sun H, Li J, Chen L, Cui W, He Y, Wu L. Insight into the Stereocontrol of DNA Polymerase‐Catalysed Reaction by Chiral Cobalt Complexes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ya Wu
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Xinya Bu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yongqi Ke
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Huaming Sun
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710065 People's Republic of China
| | - Jingyao Li
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Lu Chen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Wei Cui
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yujian He
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Li Wu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 People's Republic of China
| |
Collapse
|
16
|
Enantiopure Cyclometalated Rh(III) and Ir(III) Complexes Displaying Rigid Configuration at Metal Center: Design, Structures, Chiroptical Properties and Role of the Iodide Ligand. CHEMISTRY 2022. [DOI: 10.3390/chemistry4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enantiopure N-heterocyclic carbene half-sandwich metal complexes of the general formula [Cp*M(C^C:)I] (M = Rh, Ir; C^C: = NI-NHC; NI-H = Naphthalimide; NHC = N-heterocyclic carbene) are reported. The rhodium compound was obtained as a single isomer displaying six membered metallacycle and was resolved on chiral column chromatography to the corresponding enantiomers (S)-[Cp*Rh(C^C:)I] (S)-2 and (R)-[Cp*Rh(C^C:)I] (R)-2. The iridium congener, however, furnishes a pair of regioisomers, which were resolved into (S)-[Cp*Ir(C^C:)I] (S)-3 and (R)-[Cp*Ir(C^C:)I] (R)-3 and (S)-[Cp*Ir(C^C:)I] (S)-4 and (R)-[Cp*Ir(C^C:)I] (R)-4. These regioisomers differ from each other, only by the size of the metallacycle; five-membered for 3 and six-membered for 4. The molecular structures of (S)-2 and (S)-4 are reported. Moreover, the chiroptical properties of these compounds are presented and discussed. These compounds display exceptional stable configurations at the metal center in solution with enantiomerization barrier ΔG≠ up to 124 kJ/mol. This is because the nature of the naphthalimide-NHC clamp ligand and the iodide ligand contribute to their configuration’s robustness. In contrast to related complexes reported in the literature, which are often labile in solution.
Collapse
|
17
|
Wegener AR, Ghosh SK, Bhuvanesh N, Reibenspies J, Gladysz JA. Rhodium(III) Werner Complexes with 1,2‐Diphenylethylenediamine Ligands: Syntheses, Structures, and Applications as Chiral Hydrogen Bond Donor Catalysts and Agents for Enantiomer Purity Determinations. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Aaron R Wegener
- Texas A&M University Chemistry P.O. Box 30012 77843 College Station UNITED STATES
| | - Subrata K. Ghosh
- Texas A&M University Chemistry P.O. Box 30012 77843 College Station UNITED STATES
| | - Nattamai Bhuvanesh
- Texas A&M University Chemistry P.O. Box 30012 77843 College Station UNITED STATES
| | - Joseph Reibenspies
- Texas A&M University Chemistry P.O. Box 30012 77843 College Station UNITED STATES
| | - John A. Gladysz
- Texas A&M University Department of Chemistry PO Box 30012 77842-3012 College Station UNITED STATES
| |
Collapse
|
18
|
Groué A, Montier-Sorkine E, Cheng Y, Rager MN, Jean M, Vanthuyne N, Crassous J, Lopez AC, Saavedra Moncada A, Barbieri A, Cooksy AL, Amouri H. Enantiopure, luminescent, cyclometalated Ir(III) complexes with N-heterocyclic carbene-naphthalimide chromophore: design, vibrational circular dichroism and TD-DFT calculations. Dalton Trans 2022; 51:2750-2759. [PMID: 35080558 DOI: 10.1039/d1dt04006e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of chiral cyclometalated iridium complexes of the type [Ir(C^N)2(C^C:)], {(C^N) = ppy (2); dfppy (3)} featuring a naphthalimide N-heterocyclic carbene ligand (C^C:) = (Naphthalimide-NHC) are described and fully characterized. The racemic complexes rac-2 and rac-3 were resolved via chiral column chromatography techniques into their corresponding enantiopure species Δ-2, Λ-2, Δ-3, Λ-3 as confirmed by their CD curves. This unique class of molecules containing organic and inorganic chromophores might be used as a platform to probe the stereochemical effect on the photophysical properties. Vibrational circular dichroism (VCD) was used as an important tool to assign successfully the stereochemistry of the enantiomers. TD-DFT calculations are also advanced to support the experimental studies and to rationalize the observed results.
Collapse
Affiliation(s)
- Antoine Groué
- Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232, 4 place Jussieu, 75252 Paris cedex 05, France.
| | - Eve Montier-Sorkine
- Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232, 4 place Jussieu, 75252 Paris cedex 05, France.
| | - Yaping Cheng
- Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232, 4 place Jussieu, 75252 Paris cedex 05, France.
| | - Marie Noelle Rager
- Chimie ParisTech, PSL University, NMR Facility, 11, rue Pierre et Marie Curie, 75005 Paris, France
| | - Marion Jean
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes UMR 6226 Institut de Physique de Rennes, UMR 6251 CNRS Université de Rennes 1 Campus de Beaulieu, 35042 Rennes, France.
| | - Amalia C Lopez
- Department of Chemistry, San Diego State U., San Diego, CA 921821030, USA
| | - Alejandra Saavedra Moncada
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129 Bologna, Italy
| | - Andrea Barbieri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129 Bologna, Italy
| | - Andrew L Cooksy
- Department of Chemistry, San Diego State U., San Diego, CA 921821030, USA
| | - Hani Amouri
- Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232, 4 place Jussieu, 75252 Paris cedex 05, France.
| |
Collapse
|
19
|
Pantalon Juraj N, Kirin SI. Inorganic stereochemistry: Geometric isomerism in bis-tridentate ligand complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Thuéry P, Harrowfield J. Chain, Network and Framework Formation in Uranyl Ion Complexes with 1,1′‐Biphenyl‐3,3′,4,4′‐Tetracarboxylate. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Pierre Thuéry
- Université Paris-Saclay CEA, CNRS, NIMBE 91191 Gif-sur-Yvette France
| | - Jack Harrowfield
- ISIS Université de Strasbourg 8 allée Gaspard Monge 67083 Strasbourg France
| |
Collapse
|
21
|
Larionov VA, Feringa BL, Belokon YN. Enantioselective "organocatalysis in disguise" by the ligand sphere of chiral metal-templated complexes. Chem Soc Rev 2021; 50:9715-9740. [PMID: 34259242 DOI: 10.1039/d0cs00806k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Asymmetric catalysis holds a prominent position among the important developments in chemistry during the 20th century. This was acknowledged by the 2001 Nobel Prize in chemistry awarded to Knowles, Noyori, and Sharpless for their development of chiral metal catalysts for organic transformations. The key feature of the catalysts was the crucial role of the chiral ligand and the nature of the metal ions, which promoted the catalytic conversions of the substrates via direct coordination. Subsequently the development of asymmetric organic catalysis opened new avenues to the synthesis of enantiopure compounds, avoiding any use of metal ions. Recently, an alternative approach to asymmetric catalysis emerged that relied on the catalytic functions of the ligands themselves boosted by coordination to metal ions. In other words, in these hybrid chiral catalysts the substrates are activated not by the metal ions but by the ligands. The activation and enantioselective control occurred via well-orchestrated and custom-tailored non-covalent interactions of the substrates with the ligand sphere of chiral metal complexes. In these metal-templated catalysts, the metal served either as a template (a purely structural role), or it constituted the exclusive source of chirality (metal-centred chirality due to the spatial arrangement of achiral or chiral bi-/tridentate ligands around an octahedral metal centre), and/or it increased the Brønsted acidity of the ligands. Although the field is still in its infancy, it represents an inspiring combination of both metal and organic catalysis and holds major unexplored potential to push the frontiers of asymmetric catalysis. Here we present an overview of this emerging field discussing the principles, applications and perspectives on the catalytic use of chiral metal complexes that operate as "organocatalysts in disguise". It has been demonstrated that these chiral metal complexes are efficient and provide high stereoselective control in asymmetric hydrogen bonding catalysis, phase-transfer catalysis, Brønsted acid/base catalysis, enamine catalysis, nucleophilic catalysis, and photocatalysis as well as bifunctional catalysis. Also, many of the catalysts have been identified as highly effective catalysts at remarkably low catalyst loadings. These hybrid systems offer many opportunities in the synthesis of chiral compounds and represent promising alternatives to metal-based and organocatalytic asymmetric transformations.
Collapse
Affiliation(s)
- Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation.
| | | | | |
Collapse
|
22
|
Buchner MR, Müller M. Ethylenediamine complexes of the beryllium halides and pseudo-halides. Dalton Trans 2021; 50:7246-7255. [PMID: 33949519 DOI: 10.1039/d1dt01154e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The suitability of ethylenediamine (en) as an alternative solvent to liquid ammonia in beryllium chemistry was evaluated. Therefore, BeF2, BeCl2, BeBr2, BeI2, [Be(NH3)4](N3)2, [Be(NH3)4](CN)2 and [Be(NH3)4](SCN)2 were reacted with ethylenediamine and analysed via NMR and IR spectroscopy. Additionally single crystal structures of [BeF2(en)]n, [Be(en)3]Cl2, [Be(en)3]Br2, [Be(en)2]I2·en, [Be(en)2](N3)2·en, [Be(en)2]4(SCN)7Cl and [Be3(OH)3(en)3][C2H9N2](SCN)4 were obtained. The anions were found to have a distinct influence on the solubility as well as on the species present in solution and the solid state, while ethylenediamine can act as mono- and bidentate ligand or as a crystal solvent.
Collapse
Affiliation(s)
- Magnus R Buchner
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Matthias Müller
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| |
Collapse
|
23
|
Schmorl S, Naumov S, Abel B, Börner M, Pöppl A, Kersting B. Metalloligands based on Robson-type amino-thiophenolato macrocycles for assembly of heterotrimetallic complexes. Dalton Trans 2021; 50:5784-5788. [PMID: 33890608 DOI: 10.1039/d1dt00723h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of macrocyclic Co and Ni aminothiolate complexes to act as metalloligands towards cuprate ions was established. Adduct formation is enabled by a thiolate-to-Cu+ charge transfer (CT) interaction giving stable heterotrimetallics with magnetic properties.
Collapse
Affiliation(s)
- Sara Schmorl
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| | - Sergej Naumov
- Leibniz-Institut für Oberflächenmodifizierung (IOM), Abteilung Funktionale Oberflächen, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Bernd Abel
- Leibniz-Institut für Oberflächenmodifizierung (IOM), Abteilung Funktionale Oberflächen, Permoserstr. 15, D-04318 Leipzig, Germany and Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, D-04103 Leipzig, Germany
| | - Martin Börner
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany. and Leibniz-Institut für Oberflächenmodifizierung (IOM), Abteilung Funktionale Oberflächen, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Andreas Pöppl
- Fakultät für Physik und Geowissenschaften, Linnestr.3, D-04103 Leipzig, Germany
| | - Berthold Kersting
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
24
|
Campanella AJ, Nguyen MT, Zhang J, Ngendahimana T, Antholine WE, Eaton GR, Eaton SS, Glezakou VA, Zadrozny JM. Ligand control of low-frequency electron paramagnetic resonance linewidth in Cr(III) complexes. Dalton Trans 2021; 50:5342-5350. [PMID: 33881070 PMCID: PMC8173706 DOI: 10.1039/d1dt00066g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding how the ligand shell controls low-frequency electron paramagnetic resonance (EPR) spectroscopic properties of metal ions is essential if they are to be used in EPR-based bioimaging schemes. In this work, we probe how specific variations in the ligand structure impact L-band (ca. 1.3 GHz) EPR spectroscopic linewidths in the trichloride salts of five Cr(iii) complexes: [Cr(RR-dphen)3]3+ (RR-dphen = (1R,2R)-(+)-diphenylethylenediamine, 1), [Cr(en)3]3+ (en = ethylenediamine, 2), [Cr(me-en)3]3+ (me-en = 1,2-diaminopropane, 3), [Cr(tn)3]3+ (tn = 1,3-diaminopropane, 4) [Cr(trans-chxn)3]3+ (trans-chxn = trans-(±)-1,2-diaminocyclohexane, 5). Spectral broadening varies in a nonintuitive manner across the series, showing the sharpest peaks for 1 and broadest for 5. Molecular dynamics simulations provide evidence that the broadening is correlated to rigidity in the inner coordination sphere and reflected in ligand-dependent distribution of Cr-N bond distances that can be found in frozen solution.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Manh-Thuong Nguyen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Jun Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - William E Antholine
- National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | | | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
25
|
Puig E, Gontard G, Noelle Rager M, Amouri H. Optically active Pt-terpyridyl coordination assemblies derived from planar chiral metallothioligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Thuéry P, Harrowfield J. Cavity Formation in Uranyl Ion Complexes with Kemp's Tricarboxylate: Grooved Diperiodic Nets and Polynuclear Cages. Inorg Chem 2021; 60:1683-1697. [PMID: 33435670 DOI: 10.1021/acs.inorgchem.0c03205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Kemp's triacid (cis,cis-1,3,5-trimethylcyclohexane-1,3,5-tricarboxylic acid, H3kta) was reacted with uranyl nitrate under solvo-hydrothermal conditions in the presence of diverse counterions or additional metal cations to give eight zero- or diperiodic complexes. All the coordination polymers in the series, [PPh3Me][UO2(kta)]·0.5H2O (1), [PPh4][UO2(kta)] (2), [C(NH2)3][UO2(kta)] (3), [Cd(bipy)3][UO2(kta)]2 (4), and [Zn(phen)3][UO2(kta)]2·2H2O (5) (bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline) crystallize as networks with the hcb topology, the ligand being in the chair conformation with the three carboxylate groups equatorial, except in 3, in which the axial/diequatorial boat conformation is present. Various degrees of corrugation and different arrangements of neighboring layers are observed depending on the counterion, with complexes 4 and 5, in particular, displaying cavities containing the bulky cations. [Co(en)3]2[(UO2)2(kta)(Hkta)2]2·2NMP·10H2O (6) (en = 1,2-ethanediamine; NMP = N-methyl-2-pyrrolidone) contains a metallatricyclic, tetranuclear anionic species, displaying two clefts in which the cations are held by extensive hydrogen bonding, and with the ligands in both triaxial chair and axial/diequatorial boat conformations. [(UO2)3Pb(kta)2(Hkta)(H2O)]2·1.5THF (7) (THF = tetrahydrofuran) and [(UO2)2Pb2(kta)2(Hkta)(NMP)]2 (8) are two heterometallic cage compounds containing only the convergent, triaxial chair form of the ligand, which have the same topology in spite of the different U/Pb ratio. These complexes are compared to previous ones also involving Kemp's triacid anions, and the roles of ligand conformation and of counterions in the formation of cavities, either in cage-like species or as grooves in diperiodic networks, is discussed.
Collapse
Affiliation(s)
- Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, 67083 Strasbourg, France
| |
Collapse
|
27
|
Wu H, He X, Yang B, Li CC, Zhao L. Assembly-Induced Strong Circularly Polarized Luminescence of Spirocyclic Chiral Silver(I) Clusters. Angew Chem Int Ed Engl 2021; 60:1535-1539. [PMID: 32959488 DOI: 10.1002/anie.202008765] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/19/2020] [Indexed: 12/15/2022]
Abstract
Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl diide-centered metal rings. Such core-peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand-based fluorescence emission in a diluted solution of the clusters, a solvent polarity-caused assembly gives rise to new cluster-based phosphorous luminescence owing to radiative mode switching and aggregation-induced emission. Assembly of cluster enantiomers leads to micrometer-long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16).
Collapse
Affiliation(s)
- Han Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xin He
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Biao Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Cui-Cui Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
28
|
Stevanović N, Apostolović D, Milčić M, Lolić A, van Hage M, Veličković TĆ, Baošić R. Interaction, binding capacity and anticancer properties of N, N′-bis(acetylacetone)-propylenediimine-copper( ii) on colorectal cancer cell line Caco-2. NEW J CHEM 2021. [DOI: 10.1039/d1nj00040c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The binding capacity and interaction of N,N′-bis(acetylacetone)propylenediimine-copper(ii) with HSA were systemically investigated in vitro and in silico.
Collapse
Affiliation(s)
| | - Danijela Apostolović
- Immunology and Allergy Divison
- Department of Medicine Solna
- Karolinska Institutet
- Stockholm
- Sweden
| | - Miloš Milčić
- University of Belgrade – Faculty of Chemistry
- Belgrade
- Serbia
| | | | - Marianne van Hage
- Immunology and Allergy Divison
- Department of Medicine Solna
- Karolinska Institutet
- Stockholm
- Sweden
| | - Tanja Ćirković Veličković
- University of Belgrade – Faculty of Chemistry
- Belgrade
- Serbia
- Serbian Academy of Science and Art
- Belgrade
| | - Rada Baošić
- University of Belgrade – Faculty of Chemistry
- Belgrade
- Serbia
| |
Collapse
|
29
|
Miao LP, Qi Q, Han XB, Zhang W. DCM self-trapping by the host deformation in flexible host–guest molecules. CrystEngComm 2021. [DOI: 10.1039/d1ce00301a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The desolvated structure can self-trap the DCM molecules to return to the 1·DCM state via ligand deformation even under weak host–guest interactions. The capture behavior of DCM is mostly due to the flexibility of the ligand.
Collapse
Affiliation(s)
- Le-Ping Miao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Qi Qi
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|
30
|
Wu H, He X, Yang B, Li C, Zhao L. Assembly‐Induced Strong Circularly Polarized Luminescence of Spirocyclic Chiral Silver(I) Clusters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Han Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xin He
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Biao Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Cui‐Cui Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
31
|
Spitsyna N, Ovanesyan N, Blagov M, Krapivin V, Lobach A, Dmitriev A, Simonov S, Zorina L, Pilia L, Deplano P, Vasiliev A, Maximova O, Yagubskii E. Multi‐Magnetic Properties of a Novel SCO [Fe(3‐OMe‐Sal
2
trien)][Fe(tdas)
2
]·CH
3
CN Salt. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Nataliya Spitsyna
- Institute of Problems of Chemical Physics, RAS 142432 Chernogolovka MD Russia
| | - Nikolay Ovanesyan
- Institute of Problems of Chemical Physics, RAS 142432 Chernogolovka MD Russia
| | - Maxim Blagov
- Institute of Problems of Chemical Physics, RAS 142432 Chernogolovka MD Russia
- Lomonosov Moscow State University 119991 Moscow Russia
| | - Vladimir Krapivin
- Institute of Problems of Chemical Physics, RAS 142432 Chernogolovka MD Russia
| | - Anatolii Lobach
- Institute of Problems of Chemical Physics, RAS 142432 Chernogolovka MD Russia
| | - Alexei Dmitriev
- Institute of Problems of Chemical Physics, RAS 142432 Chernogolovka MD Russia
| | - Sergey Simonov
- Institute of Solid State Physics, RAS 142432 Chernogolovka MD Russia
| | - Leokadiya Zorina
- Institute of Solid State Physics, RAS 142432 Chernogolovka MD Russia
| | - Luca Pilia
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali Università di Cagliari via Marengo 2, I 09123 Cagliari Italy
| | - Paola Deplano
- Dipartimento di Fisica INSTM Research Unit University of Cagliari Monserrato 09042 Cagliari Italy
| | - Alexander Vasiliev
- Lomonosov Moscow State University 119991 Moscow Russia
- National Research South Ural State University 454080 Chelyabinsk Russia
| | - Olga Maximova
- Lomonosov Moscow State University 119991 Moscow Russia
- National University of Science and Technology "MISIS" 119991 Moscow Russia
| | - Eduard Yagubskii
- Institute of Problems of Chemical Physics, RAS 142432 Chernogolovka MD Russia
| |
Collapse
|
32
|
Wegener AR, Kabes CQ, Gladysz JA. Launching Werner Complexes into the Modern Era of Catalytic Enantioselective Organic Synthesis. Acc Chem Res 2020; 53:2299-2313. [PMID: 32886471 DOI: 10.1021/acs.accounts.0c00410] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reactions catalyzed by transition metal complexes almost always entail binding of one or more reactants to the metal center, and nearly every corner of the "chiral pool" has been picked over in efforts to develop enantioselective catalysts. As reported by Alfred Werner in 1911-1912, salts of the formally D3-symmetric [Co(en)3]3+ trication (en = ethylenediamine) were among the first chiral inorganic compounds to be resolved into enantiomers. These air- and water-stable complexes are substitution-inert, so for 100 years they languished without application in organic synthesis. We then showed that when they are rendered soluble in organic media by lipophilic anions such as fluorinated tetraarylborates BArf-, they become potent catalysts for a variety of carbon-carbon and carbon-heteroatom bond forming reactions.These involve substrate activation by hydrogen bonding to the coordinated NH2 units (pKa ca. 15), a "second coordination sphere" mechanism. Only modest enantioselectivities are obtained with [Co(en)3]3+ 3BArf- or related chromium, rhodium, iridium, and platinum salts. However, high enantioselectivities are achieved when the three en ligands are replaced by the 1,2-diphenyl analogues (S,S)- or (R,R)-H2NCHPhCHPhNH2. Here only one BArf- anion is required to solubilize the trication, so a number of mixed-salt catalysts (2X-BArf-) have been evaluated. Alternatively, a dimethylamino group can be tethered to the backbone of one en ligand, providing bifunctional catalysts that obviate any need for an external base. Interestingly, the counteranions modulate the enantioselectivities somewhat. However, catalysts with chiral anions do not significantly outperform benchmark catalysts with achiral anions. Cagelike chiral hexaaminecobalt(III) complexes known as sepulchrates and sarcophagines, which feature secondary NH donor atoms, can also serve as catalysts, but the enantioselectivities are very low.In a spinoff application, certain salts are found to be superb "chiral solvating agents", leading to distinct sets of NMR signals for enantiomers of chiral analytes with Lewis basic functional groups. Loadings of 10-25 mol % generally suffice, providing the best way of assaying the enantiomeric purities of a host of compounds. Also, mixtures of several chiral compounds can be simultaneously analyzed. It is not surprising that complexes that perform well in chiral recognition phenomena also excel as enantioselective catalysts.In this Account, the stereochemical properties of the preceding complexes are treated, as well as arcana generally known only to specialists in the field. These include the use of charcoal for equilibrating configurations of the cobalt stereocenter and Sephadex for separating enantiomers and diastereomers. Other types of metal-containing hydrogen-bond-donor catalysts are briefly surveyed (noncoordinating NH units can also be effective), including several developed by other groups. However, the mechanisms of enantioselection in all of these transformations remain obscure. The optimum diastereomer and anion set varies from reaction to reaction, suggesting a "phenotypic plasticity" that allows adaption to a variety of processes.
Collapse
Affiliation(s)
- Aaron R. Wegener
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Connor Q. Kabes
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
33
|
Parker A, Lamata P, Viguri F, Rodríguez R, López JA, Lahoz FJ, García-Orduña P, Carmona D. Half-sandwich complexes of osmium containing guanidine-derived ligands. Dalton Trans 2020; 49:13601-13617. [PMID: 32975256 DOI: 10.1039/d0dt02713h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pyridinyl- and phosphano-guanidino complexes of formula [(η6-p-cymene)OsCl(H2L)][SbF6] (cymene = MeC6H4iPr; H2L = N,N'-bis(p-Tolyl)-N''-(2-pyridinylmethyl)guanidine, H2L1 (1) and N,N'-bis(p-Tolyl)-N''-(2-diphenylphosphanoethyl)guanidine, H2L2 (2)) have been prepared from the dimer [{(η6-p-cymene)OsCl}2(μ-Cl)2] and H2L in the presence of NaSbF6. Treatment of complex 2 with HCl renders the phosphano-guanidinium complex [(η6-p-cymene)OsCl2(H3L2)][SbF6] (3). Compounds 1 and 2 react with AgSbF6 rendering the cationic aqua complexes [(η6-p-cymene)Os(H2L)(OH2)][SbF6]2 (H2L = H2L1 (4), H2L2 (5)). Addition of monodentate ligands L to compound 4 affords complexes of formula [(η6-p-cymene)Os(H2L1)L][SbF6]2 (L = py (6), 4-(NHMe)py (7), CO (8), P(OMe)3 (9)). Treatment of complexes 4 and 5 with NaHCO3 renders the monocationic complexes [(η6-p-cymene)Os(κ3N,N',N''-HL1)][SbF6] (10) and [(η6-p-cymene)Os(κ3N,N',P-HL2)][SbF6] (11), respectively, in which the HL ligand adopts a fac-κ3 coordination mode. The new complexes have been characterised by analytical and spectroscopic means, including the determination of the crystal structures of the compounds 1-4, 6, 8, and 11, by X-ray diffractometric methods. The phosphano-guanidino complexes 2 and 5 exhibit a temperature dependent fluxional process in solution. The new 18 electron complexes 1, 2, 6, and 8-10 are active catalysts for the Friedel-Crafts reaction between trans-β-nitrostyrene and N-methyl-2-methylindole. Conversions greater than 90% were obtained. Proton NMR studies support a mechanism involving the Brønsted-acid activation of trans-β-nitrostyrene through the NH functionalities of the coordinated guanidine ligands.
Collapse
Affiliation(s)
- Amie Parker
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Pilar Lamata
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Fernando Viguri
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Ricardo Rodríguez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - José A López
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Fernando J Lahoz
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Pilar García-Orduña
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Daniel Carmona
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
34
|
Guyon H, Castanet AS, Boussonnière A. Computational Insight into 1,2-Diamine, -Diether, and -Amino Ether Chiral Ligand-Mediated Carbolithiation: A Case of Enantioinduction Reversal. J Org Chem 2020; 85:8933-8943. [PMID: 32597647 DOI: 10.1021/acs.joc.0c00832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
trans-1,2-Cyclohexanediamine, -diether, and -amino ether were compared as chiral inducers in the asymmetric intramolecular carbolithiation of olefinic aryllithiums. Switching from diamine to ethereal ligands inverts the sense of asymmetric induction. This reversal of stereoselectivity was investigated through density functional theory calculations. High enantioselectivities observed with diether and amino ether ligands arise from favorable weak interactions between the ligand and the substrate. The relative efficiency of the three ligands and sense of stereoinduction for the most efficient diether and amino ether ligands prove to be foreseeable by modeling the reaction with the parent achiral 1,2-bidentate additives and comparing the diastereomeric transition states stemming from the two half-chair conformations of their lithium chelate.
Collapse
Affiliation(s)
- Hélène Guyon
- Institut des Molécules et Matériaux du Mans (IMMM)-UMR 6283 CNRS-Le Mans Université, Avenue Olivier Messiaen, Le Mans 72085, France
| | - Anne-Sophie Castanet
- Institut des Molécules et Matériaux du Mans (IMMM)-UMR 6283 CNRS-Le Mans Université, Avenue Olivier Messiaen, Le Mans 72085, France
| | - Anne Boussonnière
- Institut des Molécules et Matériaux du Mans (IMMM)-UMR 6283 CNRS-Le Mans Université, Avenue Olivier Messiaen, Le Mans 72085, France
| |
Collapse
|
35
|
Luu QH, Gladysz JA. An Air‐ and Water‐Stable Hydrogen‐Bond‐Donor Catalyst for the Enantioselective Generation of Quaternary Carbon Stereocenters by Additions of Substituted Cyanoacetate Esters to Acetylenic Esters. Chemistry 2020; 26:10230-10239. [DOI: 10.1002/chem.202001639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/12/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Quang H. Luu
- Department of Chemistry Texas A&M University P.O. Box 30012 College Station Texas 77842-3012 USA
| | - John A. Gladysz
- Department of Chemistry Texas A&M University P.O. Box 30012 College Station Texas 77842-3012 USA
| |
Collapse
|
36
|
Alimohammadi M, Hasaninejad A, Luu QH, Gladysz JA. Λ-[Co((S,S)-dpen)3]3+ 2I–B(C6F5)4–: A Second Generation Air- and Water-Stable Chiral Solvating Agent for Chirality Sensing (dpen = NH2CHPhCHPhNH2). J Org Chem 2020; 85:11250-11257. [DOI: 10.1021/acs.joc.0c01332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Motahareh Alimohammadi
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Alireza Hasaninejad
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Quang H. Luu
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
37
|
Gataullina AR, Gataullin RR. Axial Chiral Metal Complexes, Carbo- and Heterocycles: Modern
Synthesis Strategies and Examples of the Effect of Atropoisomerism on the Structure of
Reaction Products. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220070130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Mukherjee T, Ghosh SK, Wititsuwannakul T, Bhuvanesh N, Gladysz JA. Chiral-at-Metal Ruthenium Complexes with Guanidinobenzimidazole and Pentaphenylcyclopentadienyl Ligands: Synthesis, Resolution, and Preliminary Screening as Enantioselective Second Coordination Sphere Hydrogen Bond Donor Catalysts. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tathagata Mukherjee
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - Subrata K. Ghosh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - Taveechai Wititsuwannakul
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| |
Collapse
|
39
|
Wititsuwannakul T, Mukherjee T, Hall MB, Gladysz JA. Computational Investigations of Enantioselection in Carbon–Carbon Bond Forming Reactions of Ruthenium Guanidinobenzimidazole Second Coordination Sphere Hydrogen Bond Donor Catalysts. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00072] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Taveechai Wititsuwannakul
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - Tathagata Mukherjee
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| |
Collapse
|
40
|
Maximuck WJ, Ganzmann C, Alvi S, Hooda KR, Gladysz JA. Rendering classical hydrophilic enantiopure Werner salts [M(en) 3] n+nX - lipophilic (M/n = Cr/3, Co/3, Rh/3, Ir/3, Pt/4); new chiral hydrogen bond donor catalysts and enantioselectivities as a function of metal and charge. Dalton Trans 2020; 49:3680-3691. [PMID: 32124905 DOI: 10.1039/d0dt00523a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Known hydrophilic halide salts of the title compounds are converted to new lipophilic BArf- (B(3,5-C6H3(CF3)2)4-) salts. These are isolated as hydrates (Λ- or Δ-[M(en)3]n+nBArf-·zH2O; z = 17-9) and characterized by NMR (acetone-d6) and microanalyses. Thermal stabilities are probed by capillary thermolyses and TGA and DSC measurements (onset of dehydration 71-151 °C). In the presence of tertiary amines, they are effective catalysts for enantioselective Michael type carbon-carbon or carbon-nitrogen bond forming additions of 1,3-dicarbonyl compounds (acceptors: trans-β-nitrostyrene, di-tert-butylazodicarboxylate, 2-cyclopenten-1-one; average ee = 33%, 52%, 17%). Effects of the metal and charge upon enantioselectivities are analyzed. A number of properties appear to correlate to the NH Brønsted acidity order ([Pt(en)3]4+ > [Cr(en)3]3+ > [Co(en)3]3+ > [Rh(en)3]3+ > [Ir(en)3]3+).
Collapse
Affiliation(s)
- William J Maximuck
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| | - Carola Ganzmann
- Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
| | - Scheherzad Alvi
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| | - Karan R Hooda
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| | - John A Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| |
Collapse
|
41
|
Kabes CQ, Maximuck WJ, Ghosh SK, Kumar A, Bhuvanesh N, Gladysz JA. Chiral Tricationic Tris(1,2-diphenylethylenediamine) Cobalt(III) Hydrogen Bond Donor Catalysts with Defined Carbon/Metal Configurations; Matched/Mismatched Effects upon Enantioselectivities with Enantiomeric Chiral Counter Anions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05496] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Connor Q. Kabes
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - William J. Maximuck
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Subrata K. Ghosh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Anil Kumar
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
42
|
Simultaneous CO 2 capture and metal purification from waste streams using triple-level dynamic combinatorial chemistry. Nat Chem 2020; 12:202-212. [PMID: 31932661 DOI: 10.1038/s41557-019-0388-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/07/2019] [Indexed: 11/08/2022]
Abstract
A reduction in CO2 emissions is required to mitigate global warming. Post-combustion carbon capture is one of the most developed technologies that has the potential to meet this goal, but its cost prevents its widespread use. A different approach would be to use CO2 directly as it is captured, before it is stored. Here we explore spontaneous CO2 fixation by industrial polyamines as a strategy to generate dynamic libraries of ligands for metal separation and recovery. We identify the CO2 loadings and solvents promoting the optimal precipitation of each metal from the dynamic libraries of complexes. We demonstrate the separation of lanthanum and nickel using the exhaust gas of an internal combustion engine vehicle, and show that the three metal constituents of the La2Ni9Co alloys used to manufacture the batteries of electric vehicles can be separated and recovered by successive CO2-induced selective precipitations. Beyond the concept of CO2-sourced multi-level dynamic coordination chemistry, this study provides a potential framework for integrated CO2 capture and use through sustainable processes.
Collapse
|
43
|
A Missing Structural Link in the Werner Series of Cobalt(III) Complexes: The Crystal Structure of Δ-(-) 589
-Tris(ethylenediamine)cobalt(III) Iodide Monohydrate. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Maximuck WJ, Gladysz JA. Lipophilic chiral cobalt (III) complexes of hexaamine ligands: Efficacies as enantioselective hydrogen bond donor catalysts. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
On the Reactivity of N-tert-Butyl-1,2-Diaminoethane: Synthesis of 1-tert-Butyl-2-Imidazoline, Formation of an Intramolecular Carbamate Salt from the Reaction with CO2, and Generation of a Hydroxyalkyl-Substituted Imidazolinium Salt. HETEROATOM CHEMISTRY 2019. [DOI: 10.1155/2019/1094173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
N-tert-Butyl-1,2-diaminoethane was shown to react rapidly with atmospheric carbon dioxide to generate the zwitterionic ammonium carbamate salt CO2N(H)C2H4N(H)2tBu (1). Reaction of N-tert-butyl-1,2-diaminoethane with triethylorthoformate gave 1-tert-butyl-2-imidazoline (2) in 24% yield after fractional distillation, and the hydroxyalkyl-tethered imidazolinium salt [HOC(Me)2CH2NC2H4N(CH)tBu][Cl] (3) was synthesised from the sequential reaction of N-tert-butyl-1,2-diaminoethane with isobutylene epoxide, HCl, and triethylorthoformate.
Collapse
|
46
|
Konovalov B, Živković MD, Milovanović JZ, Djordjević DB, Arsenijević AN, Vasić IR, Janjić GV, Franich A, Manojlović D, Skrivanj S, Milovanović MZ, Djuran MI, Rajković S. Synthesis, cytotoxic activity and DNA interaction studies of new dinuclear platinum(ii) complexes with an aromatic 1,5-naphthyridine bridging ligand: DNA binding mode of polynuclear platinum(ii) complexes in relation to the complex structure. Dalton Trans 2019; 47:15091-15102. [PMID: 30303498 DOI: 10.1039/c8dt01946k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, spectroscopic characterization, cytotoxic activity and DNA binding evaluation of seven new dinuclear platinum(ii) complexes Pt1-Pt7, with the general formula [{Pt(L)Cl}2(μ-1,5-nphe)](ClO4)2 (1,5-nphe is 1,5-naphthyridine; while L is two ammines (Pt1) or one bidentate coordinated diamine: ethylenediamine (Pt2), (±)-1,2-propylenediamine (Pt3), trans-(±)-1,2-diaminocyclohexane (Pt4), 1,3-propylenediamine (Pt5), 2,2-dimethyl-1,3-propylenediamine (Pt6), and 1,3-pentanediamine (Pt7)), were reported. In vitro cytotoxic activity of these complexes was evaluated against three tumor cell lines, murine colon carcinoma (CT26), murine mammary carcinoma (4T1) and murine lung cancer (LLC1) and two normal cell lines, murine mesenchymal stem cells (MSC) and human fibroblast (MRC-5) cells. The results of the MTT assay indicate that all investigated complexes have almost no cytotoxic effects on 4T1 and very low cytotoxicity toward LLC1 cell lines. In contrast to the effects on LLC1 and 4T1 cells, complexes Pt1 and Pt2 had significant cytotoxic activity toward CT26 cells. Complex Pt1 had a much lower IC50 value for activity on CT26 cells compared with cisplatin. In comparison with cisplatin, all dinuclear Pt1-Pt7 complexes showed lower cytotoxicity toward normal MSC and MRC-5 cells. In order to measure the amount of platinum(ii) complexes taken up by the cells, we quantified the cellular platinum content using inductively coupled plasma mass spectrometry (ICP-QMS). Molecular docking studies performed to evaluate the potential binding mode of dinuclear platinum(ii) complexes Pt1-Pt7 and their aqua derivatives W1-W7, respectively, at the double stranded DNA showed that groove spanning and backbone tracking are the most stable binding modes.
Collapse
Affiliation(s)
- Bata Konovalov
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
De los Santos ZA, Lynch CC, Wolf C. Optische Chiralitätssensorik mit ligandenfreien, weit verbreiteten Cobaltsalzen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeus A. De los Santos
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Ciarán C. Lynch
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| |
Collapse
|
48
|
De los Santos ZA, Lynch CC, Wolf C. Optical Chirality Sensing with an Auxiliary‐Free Earth‐Abundant Cobalt Probe. Angew Chem Int Ed Engl 2018; 58:1198-1202. [DOI: 10.1002/anie.201811761] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/20/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Zeus A. De los Santos
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Ciarán C. Lynch
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| |
Collapse
|
49
|
Cruchter T, Larionov VA. Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Luu QH, Lewis KG, Banerjee A, Bhuvanesh N, Gladysz JA. The robust, readily available cobalt(iii) trication [Co(NH 2CHPhCHPhNH 2) 3] 3+ is a progenitor of broadly applicable chirality and prochirality sensing agents. Chem Sci 2018; 9:5087-5099. [PMID: 29938040 PMCID: PMC5994889 DOI: 10.1039/c8sc01510d] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022] Open
Abstract
When NMR spectra of chiral racemic organic molecules containing a Lewis basic functional group are recorded in the presence of air and water stable salts of the cobalt(iii) trication [Co((S,S)-NH2CHPhCHPhNH2)3]3+ (23+), separate signals are usually observed for the enantiomers (28 diverse examples, >12 functional groups). Several chiral molecules can be simultaneously analyzed, and enantiotopic groups in prochiral molecules differentiated (16 examples). Particularly effective are the mixed bis(halide)/tetraarylborate salts Λ-23+ 2X-BArf- (X = Cl, I; BArf = B(3,5-C6H3(CF3)2)4), which are applied in CD2Cl2 or CDCl3 at 1-100 mol% (avg 34 and 14 mol%). Job plots establish 1 : 1 binding for Λ-23+ 2Cl-BArf- and 1-phenylethyl acetate (4) or 1-phenylethanol (10), and ca. 1 : 2 binding with DMSO (CD2Cl2). Selected binding constants are determined, which range from 7.60-2.73 M-1 for the enantiomers of 10 to 28.1-22.6 M-1 for the enantiomers of 4. The NH moieties of the C2 faces of the trication are believed to hydrogen bond to the Lewis basic functional groups, as seen in the crystal structure of a hexakis(DMSO) solvate of Λ-23+ 3I-. These salts rank with the most broadly applicable chirality sensing agents discovered to date.
Collapse
Affiliation(s)
- Quang H Luu
- Department of Chemistry , Texas A&M University , P.O. Box 30012 , College Station , Texas 77842-3012 , USA .
| | - Kyle G Lewis
- Department of Chemistry , Texas A&M University , P.O. Box 30012 , College Station , Texas 77842-3012 , USA .
| | - Anik Banerjee
- Department of Chemistry , Texas A&M University , P.O. Box 30012 , College Station , Texas 77842-3012 , USA .
| | - Nattamai Bhuvanesh
- Department of Chemistry , Texas A&M University , P.O. Box 30012 , College Station , Texas 77842-3012 , USA .
| | - John A Gladysz
- Department of Chemistry , Texas A&M University , P.O. Box 30012 , College Station , Texas 77842-3012 , USA .
| |
Collapse
|