1
|
Liu N, Bartling S, Springer A, Kubis C, Bokareva OS, Salaya E, Sun J, Zhang Z, Wohlrab S, Abdel-Mageed AM, Liang HQ, Francke R. Heterogenized Molecular Electrocatalyst Based on a Hydroxo-Bridged Binuclear Copper(II) Phenanthroline Compound for Selective Reduction of CO 2 to Ethylene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309526. [PMID: 37983740 DOI: 10.1002/adma.202309526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Molecular copper catalysts have emerged as promising candidates for the electrochemical reduction of CO2 . Notable features of such systems include the ability of Cu to generate C2+ products and the well-defined active sites that allow for targeted structural tuning. However, the frequently observed in situ formation of Cu nanoclusters has undermined the advantages of the molecular frameworks. It is therefore desirable to develop Cu-based catalysts that retain their molecular structures during electrolysis. In this context, a heterogenized binuclear hydroxo-bridged phenanthroline Cu(II) compound with a short Cu···Cu distance is reported as a simple yet efficient catalyst for electrogeneration of ethylene and other C2 products. In an aqueous electrolyte, the catalyst demonstrates remarkable performance, with excellent Faradaic efficiency for C2 products (62%) and minimal H2 evolution (8%). Furthermore, it exhibits high stability, manifested by no observable degradation during 15 h of continuous electrolysis. The preservation of the atomic distribution of the active sites throughout electrolysis is substantiated through comprehensive characterizations, including X-ray photoelectron and absorption spectroscopy, scanning and transmission electron microscopy, UV-vis spectroscopy, as well as control experiments. These findings establish a solid foundation for further investigations into targeted structural tuning, opening new avenues for enhancing the catalytic performance of Cu-based molecular electrocatalysts.
Collapse
Affiliation(s)
- Na Liu
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Stephan Bartling
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Armin Springer
- Electron Microscopy Center, University Medicine Rostock, Strempelstr. 14, 18057, Rostock, Germany
| | - Christoph Kubis
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Olga S Bokareva
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Evaristo Salaya
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Jiameng Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Rd. 17923, Jinan, 250061, P. R. China
| | - Zhonghua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Rd. 17923, Jinan, 250061, P. R. China
| | - Sebastian Wohlrab
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Ali M Abdel-Mageed
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Hong-Qing Liang
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Rd. 866, Hangzhou, 310058, P. R. China
| | - Robert Francke
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| |
Collapse
|
2
|
Neugebauer H, Vuong HT, Weber JL, Friesner RA, Shee J, Hansen A. Toward Benchmark-Quality Ab Initio Predictions for 3d Transition Metal Electrocatalysts: A Comparison of CCSD(T) and ph-AFQMC. J Chem Theory Comput 2023; 19:6208-6225. [PMID: 37655473 DOI: 10.1021/acs.jctc.3c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Generating accurate ab initio ionization energies for transition metal complexes is an important step toward the accurate computational description of their electrocatalytic reactions. Benchmark-quality data is required for testing existing theoretical methods and developing new ones but is complicated to obtain for many transition metal compounds due to the potential presence of both strong dynamical and static electron correlation. In this regime, it is questionable whether the so-called gold standard, coupled cluster with singles, doubles, and perturbative triples (CCSD(T)), provides the desired level of accuracy─roughly 1-3 kcal/mol. In this work, we compiled a test set of 28 3d metal-containing molecules relevant to homogeneous electrocatalysis (termed 3dTMV) and computed their vertical ionization energies (ionization potentials) with CCSD(T) and phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) in the def2-SVP basis set. A substantial effort has been made to converge away the phaseless bias in the ph-AFQMC reference values. We assess a wide variety of multireference diagnostics and find that spin-symmetry breaking of the CCSD wave function and the PBE0 density functional correlate well with our analysis of multiconfigurational wave functions. We propose quantitative criteria based on symmetry breaking to delineate correlation regimes inside of which appropriately performed CCSD(T) can produce mean absolute deviations from the ph-AFQMC reference values of roughly 2 kcal/mol or less and outside of which CCSD(T) is expected to fail. We also present a preliminary assessment of density functional theory (DFT) functionals on the 3dTMV set.
Collapse
Affiliation(s)
- Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Hung T Vuong
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - James Shee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
3
|
Tresp DS, Neugebauer H, Grimme S, Hansen A, Prokopchuk DE. Electronic Effects of Aminoindenyl Ligands Coordinated to Manganese: Structures and Properties of a Mn 0 Metalloradical and Bimetallic Mn –I/Mn I Adduct. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David S. Tresp
- Department of Chemistry, Rutgers University−Newark, Newark, New Jersey 07102, United States
| | - Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Demyan E. Prokopchuk
- Department of Chemistry, Rutgers University−Newark, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Armstrong CG, Potter M, Malcomson T, Hogue RW, Armstrong SM, Kerridge A, Toghill KE. Exploring the Electrochemistry of Iron Dithiolene and Its Potential for Electrochemical Homogeneous Carbon Dioxide Reduction. ChemElectroChem 2022; 9:e202200610. [PMID: 36246849 PMCID: PMC9546257 DOI: 10.1002/celc.202200610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this work, the dithiolene complex iron(III) bis-maleonitriledithiolene [Fe(mnt)2] is characterised and evaluated as a homogeneous CO2 reduction catalyst. Electrochemically the Fe(mnt)2 is reduced twice to the trianionic Fe(mnt)2 3- state, which is correspondingly found to be active towards CO2. Interestingly, the first reduction event appears to comprise overlapping reversible couples, attributed to the presence of both a dimeric and monomeric form of the dithiolene complex. In acetonitrile Fe(mnt)2 demonstrates a catalytic response to CO2 yielding typical two-electron reduction products: H2, CO and CHOOH. The product distribution and yield were governed by the proton source. Operating with H2O as the proton source gave only H2 and CO as products, whereas using 2,2,2-trifluoroethanol gave 38 % CHOOH faradaic efficiency with H2 and CO as minor products.
Collapse
Affiliation(s)
- Craig G. Armstrong
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
| | - Mark Potter
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
| | - Thomas Malcomson
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterManchesterM13 9PLUnited Kingdom
| | - Ross W. Hogue
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
- Leiden Institute of ChemistryLIC/Energy & SustainabilityGorlaeus LaboratoriesEinsteinweg 552333 CCLeiden
| | | | - Andrew Kerridge
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
| | - Kathryn E. Toghill
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
| |
Collapse
|
5
|
Liang H, Beweries T, Francke R, Beller M. Molecular Catalysts for the Reductive Homocoupling of CO 2 towards C 2+ Compounds. Angew Chem Int Ed Engl 2022; 61:e202200723. [PMID: 35187799 PMCID: PMC9311439 DOI: 10.1002/anie.202200723] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/06/2022]
Abstract
The conversion of CO2 into multicarbon (C2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create "carbon-neutral" fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo- and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future.
Collapse
Affiliation(s)
- Hong‐Qing Liang
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Torsten Beweries
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Robert Francke
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| |
Collapse
|
6
|
Liang H, Beweries T, Francke R, Beller M. Molecular Catalysts for the Reductive Homocoupling of CO
2
towards C
2+
Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong‐Qing Liang
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Torsten Beweries
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Robert Francke
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
7
|
Fernández S, Cañellas S, Franco F, Luis JM, Pericàs MÀ, Lloret‐Fillol J. The Dual Effect of Coordinating −NH Groups and Light in the Electrochemical CO
2
Reduction with Pyridylamino Co Complexes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sergio Fernández
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Department de Química Física i Inorgànica Universitat Rovira i Virgili 43007 Tarragona Spain
| | - Santiago Cañellas
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Federico Franco
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Josep M. Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Campus Montilivi 17003 Girona Spain
| | - Miquel À. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona 08080 Barcelona Spain
| | - Julio Lloret‐Fillol
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
8
|
Akter M, Anbarasan P. (Cyclopentadienone)iron Complexes: Synthesis, Mechanism and Applications in Organic Synthesis. Chem Asian J 2021; 16:1703-1724. [PMID: 33999506 DOI: 10.1002/asia.202100400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Indexed: 12/22/2022]
Abstract
(Cyclopentadienone)iron tricarbonyl complexes are catalytically active, inexpensive, easily accessible and air-stable that are extensively studied as an active pre-catalyst in homogeneous catalysis. Its versatile catalytic activity arises exclusively due to the presence of a non-innocent ligand, which can trigger its unique redox properties effectively. These complexes have been employed widely in (transfer)hydrogenation (e. g., reduction of polar multiple bonds, Oppenauer-type oxidation of alcohols), C-C and C-N bond formation (e. g., reductive aminations, α-alkylation of ketones) and other synthetic transformations. In this review, we discuss the remarkable advancement of its various synthetic applications along with synthesis and mechanistic studies, until February 2021.
Collapse
Affiliation(s)
- Monalisa Akter
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
9
|
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective. SUSTAINABILITY 2021. [DOI: 10.3390/su13126962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy, which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO, formic acid, and hydrogen. By contrast, a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand, biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts, which significantly governs the reactivity and selectivity of CO2R. However, in biotic CO2R, operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Collapse
|
10
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
11
|
Moreno JJ, Hooe SL, Machan CW. DFT Study on the Electrocatalytic Reduction of CO 2 to CO by a Molecular Chromium Complex. Inorg Chem 2021; 60:3635-3650. [PMID: 33657314 DOI: 10.1021/acs.inorgchem.0c03136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A variety of molecular transition metal-based electrocatalysts for the reduction of carbon dioxide (CO2) have been developed to explore the viability of utilization strategies for addressing its rising atmospheric concentrations and the corresponding effects of global warming. Concomitantly, this approach could also meet steadily increasing global energy demands for value-added carbon-based chemical feedstocks as nonrenewable petrochemical resources are consumed. Reports on the molecular electrocatalytic reduction of CO2 mediated by chromium (Cr) complexes are scarce relative to other earth-abundant transition metals. Recently, our group reported a Cr complex that can efficiently catalyze the reduction of CO2 to carbon monoxide (CO) at low overpotentials. Here, we present new mechanistic insight through a computational (density functional theory) study, exploring the origin of kinetic selectivity, relative energetic positioning of the intermediates, speciation with respect to solvent coordination and spin state, as well as the role of the redox-active bipyridine moiety. Importantly, these studies suggest that under certain reducing conditions, the formation of bicarbonate could become a competitive reaction pathway, informing new areas of interest for future experimental studies.
Collapse
Affiliation(s)
- Juan J Moreno
- Department of Chemistry, University of Virginia, McCormick Road PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Shelby L Hooe
- Department of Chemistry, University of Virginia, McCormick Road PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, McCormick Road PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
12
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
13
|
Gonell S, Lloret-Fillol J, Miller AJM. An Iron Pyridyl-Carbene Electrocatalyst for Low Overpotential CO2 Reduction to CO. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergio Gonell
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans, 16, 43007 Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010 Barcelona, Spain
| | - Alexander J. M. Miller
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
14
|
Zhang YQ, Chen JY, Siegbahn PEM, Liao RZ. Harnessing Noninnocent Porphyrin Ligand to Circumvent Fe-Hydride Formation in the Selective Fe-Catalyzed CO2 Reduction in Aqueous Solution. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00559] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ya-Qiong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm 10691, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Cometto C, Chen L, Mendoza D, Lassalle-Kaiser B, Lau TC, Robert M. An Iron Quaterpyridine Complex as Precursor for the Electrocatalytic Reduction of CO 2 to Methane. CHEMSUSCHEM 2019; 12:4500-4505. [PMID: 31432616 DOI: 10.1002/cssc.201902040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/20/2019] [Indexed: 06/10/2023]
Abstract
A Fe quaterpyridine complex was used as a molecular precursor for the electrochemical reduction of CO2 to CH4 in acetonitrile in the presence of triethanolamine. CH4 was produced with a faradaic yield of approximately 2.1 % at 25 °C and 1 atm pressure of CO2 as reactant. Controlled potential electrolysis coupled to ex situ X-ray photoelectron spectroscopy and X-ray absorption spectroscopy of the electrode surface revealed the formation of metallic iron covered by iron oxides as species responsible for catalysis.
Collapse
Affiliation(s)
- Claudio Cometto
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université de Paris, 75013, Paris, France
| | - Lingjing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Guangdong, 523808, P.R. China
| | - Daniela Mendoza
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université de Paris, 75013, Paris, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192, Gif-sur-Yvette, France
| | | | - Tai-Chu Lau
- Department of Chemistry, Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P.R. China
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université de Paris, 75013, Paris, France
| |
Collapse
|
16
|
Synthesis and Catalytic Application of Knölker-Type Iron Complexes with a Novel Asymmetric Cyclopentadienone Ligand Design. Catalysts 2019. [DOI: 10.3390/catal9100790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Asymmetric catalysis is an essential tool in modern chemistry, but increasing environmental concerns demand the development of new catalysts based on cheap, abundant, and less toxic iron. As a result, Knölker-type catalysts have emerged as a promising class of iron catalysts for various chemical transformations, notably the hydrogenation of carbonyls and imines, while asymmetric versions are still under exploration to achieve optimal enantio-selectivities. In this work, we report a novel asymmetric design of a Knölker-type catalyst, in which the C2-rotational symmetric cyclopentadienone ligand possesses chiral substituents on the 2- and 5-positions near the active site. Four examples of the highly modular catalyst design were synthesized via standard organic procedures, and their structures were confirmed with NMR, IR, MS, and polarimetry analysis. Density functional theory (DFT) calculations were conducted to elucidate the spatial conformation of the catalysts, and therewith to rationalize the influence of structural alterations. Transfer- and H2-mediated hydrogenations were successfully established, leading to appreciable enantiomeric excesses (ee) values up to 70%. Amongst all reported Knölker-type catalysts, our catalyst design achieves one of the highest ee values for hydrogenation of acetophenone and related compounds.
Collapse
|
17
|
Steinlechner C, Roesel AF, Oberem E, Päpcke A, Rockstroh N, Gloaguen F, Lochbrunner S, Ludwig R, Spannenberg A, Junge H, Francke R, Beller M. Selective Earth-Abundant System for CO2 Reduction: Comparing Photo- and Electrocatalytic Processes. ACS Catal 2019. [DOI: 10.1021/acscatal.8b03548] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Christoph Steinlechner
- Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Arend F. Roesel
- Institute of Chemistry, Rostock University, Albert-Einstein-Staße 3a, 18059 Rostock, Germany
- Department Life, Light & Matter, Rostock University, Albert-Einstein-Straße 25, 18051 Rostock, Germany
| | - Elisabeth Oberem
- Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Institute of Chemistry, Rostock University, Albert-Einstein-Staße 3a, 18059 Rostock, Germany
- Department Life, Light & Matter, Rostock University, Albert-Einstein-Straße 25, 18051 Rostock, Germany
| | - Ayla Päpcke
- Institute of Physics, Rostock University, Albert-Einstein-Staße 23-24, 18059 Rostock, Germany
- Department Life, Light & Matter, Rostock University, Albert-Einstein-Straße 25, 18051 Rostock, Germany
| | - Nils Rockstroh
- Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Frédéric Gloaguen
- UMR 6521, CNRS, Université de Bretagne Occidentale, CS 93837, 29238 Brest, France,
| | - Stefan Lochbrunner
- Institute of Physics, Rostock University, Albert-Einstein-Staße 23-24, 18059 Rostock, Germany
- Department Life, Light & Matter, Rostock University, Albert-Einstein-Straße 25, 18051 Rostock, Germany
| | - Ralf Ludwig
- Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Institute of Chemistry, Rostock University, Albert-Einstein-Staße 3a, 18059 Rostock, Germany
- Department Life, Light & Matter, Rostock University, Albert-Einstein-Straße 25, 18051 Rostock, Germany
| | - Anke Spannenberg
- Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Henrik Junge
- Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Robert Francke
- Institute of Chemistry, Rostock University, Albert-Einstein-Staße 3a, 18059 Rostock, Germany
- Department Life, Light & Matter, Rostock University, Albert-Einstein-Straße 25, 18051 Rostock, Germany
| | - Matthias Beller
- Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
18
|
Iffland L, Khedkar A, Petuker A, Lieb M, Wittkamp F, van Gastel M, Roemelt M, Apfel UP. Solvent-Controlled CO2 Reduction by a Triphos–Iron Hydride Complex. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linda Iffland
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Abhishek Khedkar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Anette Petuker
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Max Lieb
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Florian Wittkamp
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Maurice van Gastel
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Michael Roemelt
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ulf-Peter Apfel
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany
| |
Collapse
|
19
|
Wang X, Ma H, Meng C, Chen D, Huang F. A rational design of manganese electrocatalysts for Lewis acid-assisted carbon dioxide reduction. Phys Chem Chem Phys 2019; 21:8849-8855. [PMID: 30977486 DOI: 10.1039/c9cp00514e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, the mechanisms of Brønsted acid- and Lewis acid-assisted CO2 electroreduction by Mn(mesbpy)(CO)3Br (1) were investigated by density functional theory calculations. Our results indicate that for the Lewis acid-assisted cycle, an energy sink (13) is present owing to the interaction between Mg(OTf)2 and activated CO2, which is disadvantageous to the apparent activation energy (ΔG≠). Moreover, a series of substituted 13 counterparts were investigated to reduce the energy sink and decrease ΔG≠. Based on our study on the substituent effect, an excellent linear relationship was found between 2e reduction potentials and LUMO energies of substituted 1, and a moderate linear relationship was observed between ΔG of substituted 13 and the 2e reduction potential of substituted 1 counterparts. Moreover, for the CO2 reduction assisted by a Lewis acid, the formyl-substituted complex R8 has been predicted to be a more effective catalyst with lower overpotential and higher catalytic activity than its parent complex 1.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | | | | | | | | |
Collapse
|
20
|
Cheng M, Yu Y, Zhou X, Luo Y, Wang M. Chemical Versatility of [FeFe]-Hydrogenase Models: Distinctive Activity of [μ-C6H4-1,2-(κ2-S)2][Fe2(CO)6] for Electrocatalytic CO2 Reduction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Minglun Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xin Zhou
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
21
|
Oberem E, Roesel AF, Rosas-Hernández A, Kull T, Fischer S, Spannenberg A, Junge H, Beller M, Ludwig R, Roemelt M, Francke R. Mechanistic Insights into the Electrochemical Reduction of CO2 Catalyzed by Iron Cyclopentadienone Complexes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elisabeth Oberem
- LL&M Department, Rostock University, Albert-Einstein-Straße 25, 18059 Rostock, Germany
- Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Arend F. Roesel
- Institute of Chemistry, Rostock University, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
| | | | - Tobias Kull
- Chair for Theoretical Chemistry, Ruhr-University Bochum, 44780 Bochum, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Steffen Fischer
- LL&M Department, Rostock University, Albert-Einstein-Straße 25, 18059 Rostock, Germany
- Institute of Chemistry, Rostock University, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
| | - Anke Spannenberg
- Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Henrik Junge
- Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Matthias Beller
- Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Ralf Ludwig
- LL&M Department, Rostock University, Albert-Einstein-Straße 25, 18059 Rostock, Germany
- Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Michael Roemelt
- Chair for Theoretical Chemistry, Ruhr-University Bochum, 44780 Bochum, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Robert Francke
- Institute of Chemistry, Rostock University, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
| |
Collapse
|
22
|
Yuan J, Zhi WY, Liu L, Yang MP, Wang H, Lu JX. Electrochemical reduction of CO2 at metal-free N-functionalized graphene oxide electrodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Affiliation(s)
- Gregory S. Sauer
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat Catal 2018. [DOI: 10.1038/s41929-018-0051-3] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Iron catalyzed hydrogenation and electrochemical reduction of CO 2 : The role of functional ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Zhu CY, Huang YC, Hu JC, Li QK, Tan H, Gui MX, Deng SF, Wang F. Cis-[CoII(MPCA)X2] (X = Cl or Br) complexes as catalyst exhibiting different activity for visible light induced photocatalytic CO2-to-CO conversion. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Francke R, Schille B, Roemelt M. Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts. Chem Rev 2018; 118:4631-4701. [PMID: 29319300 DOI: 10.1021/acs.chemrev.7b00459] [Citation(s) in RCA: 598] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The utilization of CO2 via electrochemical reduction constitutes a promising approach toward production of value-added chemicals or fuels using intermittent renewable energy sources. For this purpose, molecular electrocatalysts are frequently studied and the recent progress both in tuning of the catalytic properties and in mechanistic understanding is truly remarkable. While in earlier years research efforts were focused on complexes with rare metal centers such as Re, Ru, and Pd, the focus has recently shifted toward earth-abundant transition metals such as Mn, Fe, Co, and Ni. By application of appropriate ligands, these metals have been rendered more than competitive for CO2 reduction compared to the heavier homologues. In addition, the important roles of the second and outer coordination spheres in the catalytic processes have become apparent, and metal-ligand cooperativity has recently become a well-established tool for further tuning of the catalytic behavior. Surprising advances have also been made with very simple organocatalysts, although the mechanisms behind their reactivity are not yet entirely understood. Herein, the developments of the last three decades in electrocatalytic CO2 reduction with homogeneous catalysts are reviewed. A discussion of the underlying mechanistic principles is included along with a treatment of the experimental and computational techniques for mechanistic studies and catalyst benchmarking. Important catalyst families are discussed in detail with regard to mechanistic aspects, and recent advances in the field are highlighted.
Collapse
Affiliation(s)
- Robert Francke
- Institute of Chemistry , Rostock University , Albert-Einstein-Strasse 3a , 18059 Rostock , Germany
| | - Benjamin Schille
- Institute of Chemistry , Rostock University , Albert-Einstein-Strasse 3a , 18059 Rostock , Germany
| | - Michael Roemelt
- Lehrstuhl für Theoretische Chemie , Ruhr-University Bochum , 44780 Bochum , Germany.,Max-Planck Institut für Kohlenforschung , Kaiser-Wilhelm Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
28
|
Gonell S, Miller AJ. Carbon Dioxide Electroreduction Catalyzed by Organometallic Complexes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2018. [DOI: 10.1016/bs.adomc.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Del Grosso A, Chamberlain AE, Clarkson GJ, Wills M. Synthesis and applications to catalysis of novel cyclopentadienone iron tricarbonyl complexes. Dalton Trans 2018; 47:1451-1470. [DOI: 10.1039/c7dt03250a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New approaches to enantiomerically-pure cyclopentadienone iron complexes, and their applications to ketone reductions reactions, are described.
Collapse
Affiliation(s)
| | | | | | - Martin Wills
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| |
Collapse
|
30
|
Raghuvanshi A, Singh AK, Mobin SM, Mathur P. Fe(CO)5Catalyzed [2+2+1] Cycloaddition of Alkyne, Carbodiimide and CO for the Synthesis of 5-Iminopyrrolones. ChemistrySelect 2017. [DOI: 10.1002/slct.201701625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abhinav Raghuvanshi
- Discipline of Chemistry; Indian Institute of Technology; Khandwa road, Simrol Indore- 453552, M.P. India
| | - Amrendra K. Singh
- Discipline of Chemistry; Indian Institute of Technology; Khandwa road, Simrol Indore- 453552, M.P. India
| | - Shaikh M. Mobin
- Discipline of Chemistry; Indian Institute of Technology; Khandwa road, Simrol Indore- 453552, M.P. India
- Sophisticated Instrument Centre; Indian Institute of Technology; Khandwa road, Simrol Indore- 453552, M.P. India
| | - Pradeep Mathur
- Discipline of Chemistry; Indian Institute of Technology; Khandwa road, Simrol Indore- 453552, M.P. India
| |
Collapse
|
31
|
Brown TJ, Cumbes M, Diorazio LJ, Clarkson GJ, Wills M. Use of (Cyclopentadienone)iron Tricarbonyl Complexes for C–N Bond Formation Reactions between Amines and Alcohols. J Org Chem 2017; 82:10489-10503. [DOI: 10.1021/acs.joc.7b01990] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas J. Brown
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Madeleine Cumbes
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Louis J. Diorazio
- Pharmaceutical
Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, U.K
| | - Guy J. Clarkson
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Martin Wills
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|