1
|
Yao S, Budde MS, Yang X, Xiong Y, Zhao L, Driess M. Disilicon-Mediated Carbon Monoxide Activation: From a 1,2,3-Trisila- to 1,3-Disilacyclopentadienes with Hypercoordinate λ 4Si-λ 3C Double Bonds. Angew Chem Int Ed Engl 2025; 64:e202414696. [PMID: 39305142 DOI: 10.1002/anie.202414696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 11/01/2024]
Abstract
The facile reaction of the SiPh2-bridged bis-silylene (LSi:)2SiPh2 (L=PhC(NBut)2) with diphenylacetylene affords the unprecedented 1,2,3-trisilacyclopentadiene (LSi)2(PhC)2SiPh2 1 with a hypercoordinate λ4Si-λ3Si double bond. Compound 1 is very oxophilic and consumes three molar equivalents of inert N2O to form the bicyclic oxygenation product 2 through O-atom insertion in the Si=Si and Si-Si bonds. Strikingly, 1 can completely split the C≡O bonds of carbon monoxide under ambient conditions (1 atm, room temperature), yielding the 1,3-disilacyclopentadiene 3, representing the first hypercoordinate example of a cyclosilene with a λ4Si-λ3C double bond. Likewise, reaction of Xyl-NC (Xyl=2,6-dimethylphenyl), an isocyanide isoelectronic with CO, with 1 furnishes the related 1,3-disilacyclopentadiene 4 but with an amidinato silylene pendent attached to the Si=C carbon ring atom.
Collapse
Affiliation(s)
- Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Markus Stefan Budde
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Xing Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yun Xiong
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Lili Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
2
|
Szych LS, Denker L, Feld J, Goicoechea JM. Trapping an Elusive Phosphanyl-Phosphaalumene. Chemistry 2024; 30:e202401326. [PMID: 38607965 DOI: 10.1002/chem.202401326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
We describe our efforts to access a compound with an Al=P double bond by reaction of Al(Nacnac) towards [H2CN(Dipp)]2P(PCO) (Nacnac=HC[C(Me)N(Dipp)]2; Dipp=2,6-iPr2C6H3). Our observations are consistent with the formation of a transient phosphanyl-phosphaalumene at low temperatures (-70 °C), however this species was found to readily undergo intramolecular C-H activation of the β-diketiminato ligand upon warming to room temperature. The reactivity of the transient complex toward small molecules including dihydrogen, carbon dioxide, phosphaketenes, amines and silanes could be explored at low temperatures, showcasing that the target compound can react as both a frustrated Lewis pair (via the pendant phosphanyl moiety) or in hydroelementation reactions of the Al=P bond. The elusive target molecule could be trapped by addition of a Lewis base (tetrahydrofuran) affording an isolable molecular species that reacts in an analogous fashion to the base-free compound.
Collapse
Affiliation(s)
- Lilian S Szych
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, OX1 3TA, Oxford, U.K
| | - Lars Denker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, OX1 3TA, Oxford, U.K
| | - Joey Feld
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, OX1 3TA, Oxford, U.K
| | - Jose M Goicoechea
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, 47405-7102, Bloomington, IN, U.S.A
| |
Collapse
|
3
|
Evans MJ, Anker MD, McMullin CL, Coles MP. Reductive Coupling of a Diazoalkane Derivative Promoted by a Potassium Aluminyl and Elimination of Dinitrogen to Generate a Reactive Aluminium Ketimide. Chemistry 2023; 29:e202302903. [PMID: 37786384 PMCID: PMC10946750 DOI: 10.1002/chem.202302903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
The reaction of 9-diazo-9H-fluorene (fluN2 ) with the potassium aluminyl K[Al(NON)] ([NON]2- =[O(SiMe2 NDipp)2 ]2- , Dipp=2,6-iPr2 C6 H3 ) affords K[Al(NON)(κN1 ,N3 -{(fluN2 )2 })] (1). Structural analysis shows a near planar 1,4-di(9H-fluoren-9-ylidene)tetraazadiide ligand that chelates to the aluminium. The thermally induced elimination of dinitrogen from 1 affords the neutral aluminium ketimide complex, Al(NON)(N=flu)(THF) (2) and the 1,2-di(9H-fluoren-9-yl)diazene dianion as the potassium salt, [K2 (THF)3 ][fluN=Nflu] (3). The reaction of 2 with N,N'-diisopropylcarbodiimide (iPrN=C=NiPr) affords the aluminium guanidinate complex, Al(NON){N(iPr)C(N=CMe2 )N(CHflu)} (4), showing a rare example of reactivity at a metal ketimide ligand. Density functional theory (DFT) calculations have been used to examine the bonding in the newly formed [(fluN2 )2 ]2- ligand in 1 and the ketimide bonding in 2. The mechanism leading to the formation of 4 has also been studied using this technique.
Collapse
Affiliation(s)
- Matthew J. Evans
- School of Chemical and Physical SciencesVictoria University of WellingtonP.O. Box 600Wellington6012New Zealand
| | - Mathew D. Anker
- School of Chemical and Physical SciencesVictoria University of WellingtonP.O. Box 600Wellington6012New Zealand
| | | | - Martyn P. Coles
- School of Chemical and Physical SciencesVictoria University of WellingtonP.O. Box 600Wellington6012New Zealand
| |
Collapse
|
4
|
Burnett S, Ferns R, Cordes DB, Slawin AMZ, van Mourik T, Stasch A. Low-Coordinate Magnesium Sulfide and Selenide Complexes. Inorg Chem 2023; 62:16443-16450. [PMID: 37747417 PMCID: PMC10565804 DOI: 10.1021/acs.inorgchem.3c02132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 09/26/2023]
Abstract
The reactions of [{(iPrDipNacNac)Mg}2] 1 (iPrDipnacnac = HC(iPrCNDip)2) with Ph3P═O at 100 °C afforded the phosphinate complex [(iPrDipNacNac)Mg(OPPh3)(OPPh2)] 3. Reactions of 1 with Ph3P═E (E = S, Se) proceeded rapidly at room temperature to low-coordinate chalcogenide complexes [{(iPrDipNacNac)Mg}2(μ-S)] 4 and [{(iPrDipNacNac)Mg}2(μ-Se)] 5, respectively. Similarly, reactions of RNHC═S ((MeCNR)2C═S with R = Me, Et, or iPr) with 1 afforded NHC adducts of magnesium sulfide complexes, [{(iPrDipNacNac)Mg(RNHC)}(μ-S){Mg(iPrDipNacNac)}] 6, that could alternatively be obtained by adding the appropriate RNHC to sulfide complex 4. Complex 4 reacted with 1-adamantylazide (AdN3) to give [{(iPrDipNacNac)Mg}2(μ-SN3Ad)] 7 and can form various simple donor adducts in solution, of which [(iPrDipNacNac)Mg(OAd)}2(μ-S)] 8a (OAd = 2-adamantanone) was structurally characterized. The nature of the ionic Mg-E-Mg unit is described by solution and solid-state studies of the complexes and by DFT computational investigations.
Collapse
Affiliation(s)
- Stuart Burnett
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Rochelle Ferns
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - David B. Cordes
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Alexandra M. Z. Slawin
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Tanja van Mourik
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Andreas Stasch
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| |
Collapse
|
5
|
Ludwig M, Franz D, Espinosa Ferao A, Bolte M, Hanusch F, Inoue S. Anions featuring an aluminium-silicon core with alumanyl silanide and aluminata-silene characteristics. Nat Chem 2023; 15:1452-1460. [PMID: 37400594 DOI: 10.1038/s41557-023-01265-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
Molecular species containing multiple bonds to aluminium have long been challenging synthetic targets. Despite recent landmark discoveries in this area, heterodinuclear Al-E multiple bonds (where E is a group-14 element) have remained rare and limited to highly polarized π-interactions (Al=E ↔ +Al-E-). Here we report the isolation of three alumanyl silanide anions that feature an Al-Si core stabilized by bulky substituents and a Si-Na interaction. Single-crystal X-ray diffraction studies, spectroscopic analysis and density functional theory calculations show that the Al-Si interaction possesses partial double bond character. Preliminary reactivity studies support this description of the compounds through two resonance structures: one that displays a predominant nucleophilic character of the sodium-coordinated silicon centre in the Al-Si core, as shown by silanide-like reactivity towards halosilane electrophiles and the CH-insertion of phenylacetylene. Moreover, we report an alumanyl silanide with a sequestered sodium cation. Cleavage of the Si-Na bond by [2.2.2]cryptand increases the double bond character of the Al-Si core to produce an anion with high aluminata-silene (-Al=Si) character.
Collapse
Affiliation(s)
- Moritz Ludwig
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Garching bei München, Germany
| | - Daniel Franz
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Garching bei München, Germany
| | - Arturo Espinosa Ferao
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Murcia, Spain
| | - Michael Bolte
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Franziska Hanusch
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Garching bei München, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
6
|
Zhang X, Liu LL. Crystalline Neutral Aluminum Selenide/Telluride: Isoelectronic Aluminum Analogues of Carbonyls. J Am Chem Soc 2023; 145:15729-15734. [PMID: 37459288 DOI: 10.1021/jacs.3c05954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Neutral aluminum chalcogenides (R-Al(L)═Ch; L = ligand, Ch = chalcogen), stabilized by a Lewis base ligand, represent isoelectronic counterparts to carbonyl compounds and have long been pursued for isolation. Herein, we present the synthesis of an aluminum selenide, [N]-Al(iPr2-bimy)═Se, and an aluminum telluride, [N]-Al(iPr2-bimy)═Te, under ambient conditions ([N] = 1,8-bis(3,5-di-tert-butylphenyl)-3,6-di-tert-butylcarbazolyl; iPr2-bimy = 1,3-diisoproplylbenzimidazole-2-ylidene). These compounds arise from the oxidation reaction of [N]-Al(iPr2-bimy) with Se and (nBu)3P═Te, respectively. One notable characteristic of the Al and Ch interaction is the presence of an Al-Ch σ bond, strengthened by the electrostatic attraction between the Al+ and Ch- centers as well as the donation of lone pairs from Ch into vacant orbitals at Al. This results in an Al-Ch multiple bond with an ambiphilic nature. Preliminary investigations into their reactivity unveil their remarkable propensity for facile (cyclo)addition reactions with diverse substrates, including PhCCH, PhCN, AdN3, MeI, PhSiH3, and C6F6, leading to the formation of unprecedented main group heterocycles and alumachalcogenides.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Abstract
Three-membered-ring scaffolds of carbocycles, namely, cyclopropanes and cyclopropenes, are ubiquitous in natural products and pharmaceutical molecules. These molecules exhibit a peculiar reactivity, and their applications as synthetic intermediates and versatile building blocks in organic synthesis have been extensively studied over the past century. The incorporation of heteroatoms into three-membered cyclic structures has attracted significant attention, reflecting fundamental differences in their electronic/geometric structures and reactivities compared to their carbon congeners and their associated potential for exploitation in applications. Recently, the chemistry of low-valent aluminum species, alumylenes, dialumenes, and aluminyl anions, has dramatically developed, which has allowed access to hitherto unprecedented aluminacycles. This Perspective focuses upon advances in the chemistry of three-membered aluminacycles, including their synthetic protocols, spectroscopic and structural properties, and reactivity toward various substrates and small molecules.
Collapse
Affiliation(s)
- Chenting Yan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore, Singapore
| | - Rei Kinjo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore, Singapore
| |
Collapse
|
8
|
Xu H, Kostenko A, Weetman C, Fujimori S, Inoue S. An Aluminum Telluride with a Terminal Al=Te Bond and its Conversion to an Aluminum Tellurocarbonate by CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202216021. [PMID: 36634258 DOI: 10.1002/anie.202216021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/13/2023]
Abstract
Facile access to dimeric heavier aluminum chalcogenides [(NHC)Al(Tipp)-μ-Ch]2 (NHC=IiPr (1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene, IMe4 (1,3,4,5-tetramethylimidazol-2-ylidene); Tipp=2,4,6-iPr3 C6 H2 ; Ch=Se, Te) by treatment of NHC-stabilized aluminum dihydrides with elemental Se and Te is reported. The higher affinity of IMe4 in comparison with IiPr toward the Al center in [(NHC)Al(Tipp)-μ-Ch]2 can be used for ligand exchange. Additionally, the presence of excess IMe4 allows for cleavage of the dimers to form a rare example of a neutral multiply bonded heavier aluminum chalcogenide in the form of a tetracoordinate aluminum complex, (IMe4 )2 (Tipp)Al=Te. This species reacts with three equivalents of CO2 across two Al-CNHC and the Al=Te bond affording a pentacoordinate aluminum complex containing a dianionic tellurocarbonate ligand [CO2 Te]2- , which is the first example of tellurium analogue of a carbonate [CO3 ]2- .
Collapse
Affiliation(s)
- Huihui Xu
- School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Arseni Kostenko
- School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Catherine Weetman
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral St, Glasgow, G1 1XL, Scotland, UK
| | - Shiori Fujimori
- School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Shigeyoshi Inoue
- School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| |
Collapse
|
9
|
Abstract
The chemistry of low valent p-block metal complexes continues to elicit interest in the research community, demonstrating reactivity that replicates and in some cases exceeds that of their more widely studied d-block metal counterparts. The introduction of the first aluminyl anion, a complex containing a formally anionic Al(I) centre charge balanced by an alkali metal (AM) cation, has established a platform for a new area of chemical research. The chemistry displayed by aluminyl compounds is expanding rapidly, with examples of reactivity towards a diverse range of small molecules and functional groups now reported in the literature. Herein we present an account of the structure and reactivity of the growing family of aluminyl compounds. In this context we examine the structural relationships between the aluminyl anion and the AM cations, which now include examples of AM = Li, Na, K, Rb and Cs. We report on the ability of these compounds to engage in bond-breaking and bond-forming reactions, which is leading towards their application as useful reagents in chemical synthesis. Furthermore we discuss the chemistry of bimetallic complexes containing direct Al-M bonds (M = Li, Na, K, Mg, Ca, Cu, Ag, Au, Zn) and compounds with Al-E multiple bonds (E = NR, CR2, O, S, Se, Te), where both classes of compound are derived directly from aluminyl anions.
Collapse
Affiliation(s)
- Martyn P Coles
- School of Chemical of Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand.
| | - Matthew J Evans
- School of Chemistry, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Evans MJ, Anker MD, McMullin CL, Neale SE, Rajabi NA, Coles MP. Carbon-chalcogen bond formation initiated by [Al(NON Dipp)(E)] - anions containing Al-E{16} (E{16} = S, Se) multiple bonds. Chem Sci 2022; 13:4635-4646. [PMID: 35656129 PMCID: PMC9020183 DOI: 10.1039/d2sc01064j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/27/2022] [Indexed: 01/01/2023] Open
Abstract
Multiply-bonded main group metal compounds are of interest as a new class of reactive species able to activate and functionalize a wide range of substrates. The aluminium sulfido compound K[Al(NONDipp)(S)] (NONDipp = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3), completing the series of [Al(NONDipp)(E)]- anions containing Al-E{16} multiple bonds (E{16} = O, S, Se, Te), was accessed via desulfurisation of K[Al(NONDipp)(S4)] using triphenylphosphane. The crystal structure showed a tetrameric aggregate joined by multiple K⋯S and K⋯π(arene) interactions that were disrupted by the addition of 2.2.2-cryptand to form the separated ion pair, [K(2.2.2-crypt)][Al(NONDipp)(S)]. Analysis of the anion using density functional theory (DFT) confirmed multiple-bond character in the Al-S group. The reaction of the sulfido and selenido anions K[Al(NONDipp)(E)] (E = S, Se) with CO2 afforded K[Al(NONDipp)(κ2 E,O-EC{O}O)] containing the thio- and seleno-carbonate groups respectively, consistent with a [2 + 2]-cycloaddition reaction and C-E bond formation. An analogous cycloaddition reaction took place with benzophenone affording compounds containing the diphenylsulfido- and diphenylselenido-methanolate ligands, [κ2 E,O-EC{O}Ph2]2-. In contrast, when K[Al(NONDipp)(E)] (E = S, Se) was reacted with benzaldehyde, two equivalents of substrate were incorporated into the product accompanied by formation of a second C-E bond and complete cleavage of the Al-E{16} bonds. The products contained the hitherto unknown κ2 O,O-thio- and κ2 O,O-seleno-bis(phenylmethanolate) ligands, which were exclusively isolated as the cis-stereoisomers. The mechanisms of these cycloaddition reactions were investigated using DFT methods.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemical and Physical Sciences, Victoria University of Wellington P.O. Box 600 Wellington New Zealand
| | - Mathew D Anker
- School of Chemical and Physical Sciences, Victoria University of Wellington P.O. Box 600 Wellington New Zealand
| | | | - Samuel E Neale
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Nasir A Rajabi
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington P.O. Box 600 Wellington New Zealand
| |
Collapse
|
11
|
Grams S, Maurer J, Patel N, Langer J, Harder S. Formation and Reactivity of Non‐Stabilized Monomeric Alumoxane Intermediates. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samuel Grams
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany GERMANY
| | - Johannes Maurer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany GERMANY
| | - Neha Patel
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany GERMANY
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany GERMANY
| | - Sjoerd Harder
- University Erlangen-Nürnberg Chemistry Egerlandstrasse 1 91058 Erlangen GERMANY
| |
Collapse
|
12
|
Martínez JP, Trzaskowski B. Structural and Electronic Properties of Boranes Containing Boron‐Chalcogen Multiple Bonds and Stabilized by Amido Imidazoline‐2‐imine Ligands. Chemistry 2022; 28:e202103997. [DOI: 10.1002/chem.202103997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/09/2022]
|
13
|
Xu H, Weetman C, Hanusch F, Inoue S. Isolation of Cyclic Aluminium Polysulfides by Stepwise Sulfurization. Chemistry 2021; 28:e202104042. [PMID: 34850996 PMCID: PMC9305517 DOI: 10.1002/chem.202104042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Despite the notable progress in aluminium chalcogenides, their sulfur congeners have rarely been isolated under mild conditions owing to limited synthetic precursors and methods. Herein, facile isolation of diverse molecular aluminium sulfides is achievable, by the reaction of N‐heterocyclic carbene‐stabilized terphenyl dihydridoaluminium (1) with various thiation reagents. Different to the known dihydridoaluminium 1Tipp, 1 features balanced stability and reactivity at the Al center. It is this balance that enables the first monomeric aluminium hydride hydrogensulfide 2, the six‐membered cyclic aluminium polysulfide 4 and the five‐membered cyclic aluminium polysulfide 6 to be isolated, by reaction with various equivalents of elemental sulfur. Moreover, a rare aluminium heterocyclic sulfide with Al−S−P five‐membered ring (7) was obtained in a controlled manner. All new compounds were fully characterized by multinuclear NMR spectroscopy and elemental analysis. Their structures were confirmed by single‐crystal X‐ray diffraction studies.
Collapse
Affiliation(s)
- Huihui Xu
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Catherine Weetman
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral St, G1 1XL, Glasgow, Scotland
| | - Franziska Hanusch
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| |
Collapse
|
14
|
Takahashi S, Ramos‐Enríquez MA, Bellan E, Baceiredo A, Saffon‐Merceron N, Nakata N, Hashizume D, Branchadell V, Kato T. Strained and Reactive Donor/Acceptor‐Supported Metallasilanone. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shintaro Takahashi
- Department of Chemistry Graduate School of Science and Engineering Saitama University, Shimo-okubo Sakura-ku Saitama 338-8570 Japan
| | - Manuel A. Ramos‐Enríquez
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse CNRS 118 route de Narbonne 31062 Toulouse France
| | - Ekaterina Bellan
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse CNRS 118 route de Narbonne 31062 Toulouse France
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse CNRS 118 route de Narbonne 31062 Toulouse France
| | - Nathalie Saffon‐Merceron
- Institut de Chimie de Toulouse (FR 2599) Université de Toulouse CNRS 118 route de Narbonne 31062 Toulouse France
| | - Norio Nakata
- Department of Chemistry Graduate School of Science and Engineering Saitama University, Shimo-okubo Sakura-ku Saitama 338-8570 Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Vicenç Branchadell
- Departament de Química Universitat Autònoma de Barcelona 08193 Bellaterra Spain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse CNRS 118 route de Narbonne 31062 Toulouse France
| |
Collapse
|
15
|
Takahashi S, Ramos-Enríquez MA, Bellan E, Baceiredo A, Saffon-Merceron N, Nakata N, Hashizume D, Branchadell V, Kato T. Strained and Reactive Donor/Acceptor-Supported Metallasilanone. Angew Chem Int Ed Engl 2021; 60:18489-18493. [PMID: 34159706 DOI: 10.1002/anie.202105526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 01/13/2023]
Abstract
A novel stable donor/acceptor-supported MnI -metallasilanone 3 was synthesized. The intramolecular silanone-MnI interaction induces a highly strained three-membered cyclic structure, leading to an exceptionally high reactivity of 3 as a donor/acceptor complex of silanone. Indeed, metallasilanone 3 readily reacts with various small molecules such as H2 or ethylene gas in mild conditions.
Collapse
Affiliation(s)
- Shintaro Takahashi
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Manuel A Ramos-Enríquez
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Ekaterina Bellan
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse (FR 2599), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Norio Nakata
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
16
|
Guo X, Lin Z. Mechanistic Insights into Activation of Carbon Monoxide, Carbon Dioxide, and Nitrous Oxide by Acyclic Silylene. Inorg Chem 2021; 60:8998-9007. [PMID: 34042432 DOI: 10.1021/acs.inorgchem.1c00903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to an empty p orbital and a lone pair of electrons on the Si center, silylene exhibits reactivity similar to a transition-metal system capable of activating H2/C-H bonds and small molecules. In this work, with the aid of density functional theory calculations, we systematically investigated the reactions of an acyclic silylene with CO, CO2, and N2O. The detailed mechanisms obtained lead to an in-depth understanding of the silylene single-site ambiphilic reactivity.
Collapse
Affiliation(s)
- Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| |
Collapse
|
17
|
Abstract
Main group carbonyl analogues (R2 E=O) derived from p-block elements (E=groups 13 to 15) have long been considered as elusive species. Previously, employment of chemical tricks such as acid- and base-stabilization protocols granted access to these transient species in their masked forms. However, electronic and steric effects inevitably perturb their chemical reactivity and distinguish them from classical carbonyl compounds. A new era was marked by the recent isolation of acid-base free main group carbonyl analogues, ranging from a lighter boracarbonyl to the heavier silacarbonyls, phosphacarbonyls and a germacarbonyl. Most importantly, their unperturbed nature elicits exciting new chemistry, spanning the vista from classical organic carbonyl-type reactions to transition metal-like oxide ion transfer chemistry. In this Review, we survey the strategies used for the isolation of such systems and document their emerging reactivity profiles, with a view to providing fundamental comparisons both with carbon and transition metal oxo species. This highlights the emerging opportunities for exciting "crossover" reactivity offered by these derivatives of the p-block elements.
Collapse
Affiliation(s)
- Ying Kai Loh
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
18
|
Fischer M, Nees S, Kupfer T, Goettel JT, Braunschweig H, Hering-Junghans C. Isolable Phospha- and Arsaalumenes. J Am Chem Soc 2021; 143:4106-4111. [DOI: 10.1021/jacs.1c00204] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Malte Fischer
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str.3a, 18059 Rostock, Germany
| | - Samuel Nees
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Kupfer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - James T. Goettel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | |
Collapse
|
19
|
Borthakur R, Chandrasekhar V. Boron-heteroelement (B–E; E = Al, C, Si, Ge, N, P, As, Bi, O, S, Se, Te) multiply bonded compounds: Recent advances. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Abstract
Since the discovery that the so-called "double-bond" rule could be broken, the field of molecular main group multiple bonds has expanded rapidly. With the majority of homodiatomic double and triple bonds realised within the p-block, along with many heterodiatomic combinations, this Minireview examines the reactivity of these compounds with a particular emphasis on small molecule activation. Furthermore, whilst their ability to act as transition metal mimics has been explored, their catalytic behaviour is somewhat limited. This Minireview aims to highlight the potential of these complexes towards catalytic application and their role as synthons in further functionalisations making them a versatile tool for the modern synthetic chemist.
Collapse
Affiliation(s)
- Catherine Weetman
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
21
|
Evans MJ, Anker MD, McMullin CL, Rajabi NA, Coles MP. Double insertion of CO2 into an Al–Te multiple bond. Chem Commun (Camb) 2021; 57:2673-2676. [DOI: 10.1039/d0cc07448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two equivalents of CO2 react with a terminal Al–Te bond to form the tellurodicarbonate ligand.
Collapse
Affiliation(s)
- Matthew J. Evans
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- P.O. Box 600
- Wellington
- New Zealand
| | - Mathew D. Anker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- P.O. Box 600
- Wellington
- New Zealand
| | | | | | - Martyn P. Coles
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- P.O. Box 600
- Wellington
- New Zealand
| |
Collapse
|
22
|
Chen C, Daniliuc CG, Mück-Lichtenfeld C, Kehr G, Erker G. A BH Borenium-Derived Thioxoborane, Its Persulfide, and Their Li +-Induced Reactions with Alkynes and with Carbon Dioxide. J Am Chem Soc 2020; 142:19763-19771. [PMID: 33166151 DOI: 10.1021/jacs.0c10078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insertion of sulfur into the B-H bond of the BH borenium salt [IMes(C6F5)BH]+ followed by deprotonation gave the thioxoborane IMes(C6F5)B═S. Subsequent treatment with additional sulfur gave the corresponding boron persulfide, a NHC-stabilized boradithiirane. The B═S compound reacted with carbon dioxide in the presence of the lithium salt Li[B(C6F5)4] by formal [2+2] cycloaddition to give a boron thiocarbonate-type product. The boron persulfide formally inserted phenyl acetylene into the B-S bond in the presence of Li[B(C6F5)4] to give the respective five-membered heterocycle.
Collapse
Affiliation(s)
- Chaohuang Chen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
23
|
Affiliation(s)
- Ying Kai Loh
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
24
|
Baeza Cinco MÁ, Wu G, Kaltsoyannis N, Hayton TW. Synthesis of a "Masked" Terminal Zinc Sulfide and Its Reactivity with Brønsted and Lewis Acids. Angew Chem Int Ed Engl 2020; 59:8947-8951. [PMID: 32196886 DOI: 10.1002/anie.202002364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 11/05/2022]
Abstract
The "masked" terminal Zn sulfide, [K(2.2.2-cryptand)][Me LZn(S)] (2) (Me L={(2,6-i Pr2 C6 H3 )NC(Me)}2 CH), was isolated via reaction of [Me LZnSCPh3 ] (1) with 2.3 equivalents of KC8 in THF, in the presence of 2.2.2-cryptand, at -78 °C. Complex 2 reacts readily with PhCCH and N2 O to form [K(2.2.2-cryptand)][Me LZn(SH)(CCPh)] (4) and [K(2.2.2-cryptand)][Me LZn(SNNO)] (5), respectively, displaying both Brønsted and Lewis basicity. In addition, the electronic structure of 2 was examined computationally and compared with the previously reported Ni congener, [K(2.2.2-cryptand)][tBu LNi(S)] (tBu L={(2,6-i Pr2 C6 H3 )NC(t Bu)}2 CH).
Collapse
Affiliation(s)
- Miguel Á Baeza Cinco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93016, USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93016, USA
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93016, USA
| |
Collapse
|
25
|
Baeza Cinco MÁ, Wu G, Kaltsoyannis N, Hayton TW. Synthesis of a “Masked” Terminal Zinc Sulfide and Its Reactivity with Brønsted and Lewis Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miguel Á. Baeza Cinco
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93016 USA
| | - Guang Wu
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93016 USA
| | - Nikolas Kaltsoyannis
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93016 USA
| |
Collapse
|
26
|
Taylor JW, Harman WH. CO scission and reductive coupling of organic carbonyls by a redox-active diboraanthracene. Chem Commun (Camb) 2020; 56:4480-4483. [PMID: 32201869 DOI: 10.1039/d0cc01142h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A gold-stabilized diboraanthracene mediates reductive transformations of carbonyls, including C–O and C–C bond formation, and deoxygenation of acetone to propene and hydroxide.
Collapse
Affiliation(s)
| | - W. Hill Harman
- Department of Chemistry
- University of California
- Riverside
- USA
| |
Collapse
|
27
|
Anker MD, Schwamm RJ, Coles MP. Synthesis and reactivity of a terminal aluminium–imide bond. Chem Commun (Camb) 2020; 56:2288-2291. [DOI: 10.1039/c9cc09214e] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Al–Nimide bond in a new anionic aluminium imide complex reacts via a [2+2] cycloaddition with CO2 to afford the dianionic carbamate ligand.
Collapse
Affiliation(s)
- Mathew D. Anker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6012
- New Zealand
| | - Ryan J. Schwamm
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6012
- New Zealand
| | - Martyn P. Coles
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6012
- New Zealand
| |
Collapse
|
28
|
Anker MD, Coles MP. Aluminium‐Mediated Carbon Dioxide Reduction by an Isolated Monoalumoxane Anion. Angew Chem Int Ed Engl 2019; 58:18261-18265. [DOI: 10.1002/anie.201911550] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Mathew D. Anker
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 Wellington 6012 New Zealand
| | - Martyn P. Coles
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 Wellington 6012 New Zealand
| |
Collapse
|
29
|
Aluminium‐Mediated Carbon Dioxide Reduction by an Isolated Monoalumoxane Anion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911550] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Guo R, Huang X, Zhao M, Lei Y, Ke Z, Kong L. Bifurcated Hydrogen-Bond-Stabilized Boron Analogues of Carboxylic Acids. Inorg Chem 2019; 58:13370-13375. [PMID: 31553578 DOI: 10.1021/acs.inorgchem.9b02257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reactivity of a bulky m-terphenylboronic acid, DmpB(OH)2 [1; Dmp = 2,6-bis(2,4,6-trimethylphenyl)phenyl], toward three different N-heterocyclic carbenes has been examined. The reaction of 1 with 1 equiv of bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) leads to the formation of a hydrogen-bonded carbene boronic acid adduct, 2, featuring strong O-H···C contacts. In contrast, more basic 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (IPr2Me2) and 1,3-di-tert-butylimidazol-2-ylidene (ItBu) deprotonate 1 smoothly to afford the rare anionic boranuidacarboxylic acids 3 and 4, respectively. Structural determination reveals that 3 and 4 bear unprecedented bifurcated hydrogen bonds with a BO- unit as a double hydrogen-bond acceptor, which contribute significantly to stabilization of the highly reactive B═O double bond. Quantum-mechanical calculations were conducted to disclose the unique electronic properties of the multiple bonds, as well as the important hydrogen bonds in these compounds.
Collapse
Affiliation(s)
- Rui Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , 27 Shanda Nanlu , Jinan 250100 , P. R. China
| | - Xiao Huang
- School of Materials Science & Engineering, PCFM Laboratory , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Meihua Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , 27 Shanda Nanlu , Jinan 250100 , P. R. China
| | - Yusheng Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , 27 Shanda Nanlu , Jinan 250100 , P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Laboratory , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , 27 Shanda Nanlu , Jinan 250100 , P. R. China.,State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
31
|
Anker MD, Coles MP. Isoelectronic Aluminium Analogues of Carbonyl and Dioxirane Moieties. Angew Chem Int Ed Engl 2019; 58:13452-13455. [DOI: 10.1002/anie.201907884] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Mathew D. Anker
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 Wellington 6012 New Zealand
| | - Martyn P. Coles
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 Wellington 6012 New Zealand
| |
Collapse
|
32
|
Anker MD, Coles MP. Isoelectronic Aluminium Analogues of Carbonyl and Dioxirane Moieties. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907884] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mathew D. Anker
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 Wellington 6012 New Zealand
| | - Martyn P. Coles
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 Wellington 6012 New Zealand
| |
Collapse
|
33
|
Maar RR, Hoffman NA, Staroverov VN, Gilroy JB. Oxoborane Formation Turns on Formazanate‐Based Photoluminescence. Chemistry 2019; 25:11015-11019. [DOI: 10.1002/chem.201902419] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London, Ontario N6A 5B7 Canada
| | - Nicholas A. Hoffman
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London, Ontario N6A 5B7 Canada
| | - Viktor N. Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London, Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London, Ontario N6A 5B7 Canada
| |
Collapse
|
34
|
Hofmann A, Légaré MA, Wüst L, Braunschweig H. Heterodiatomic Multiple Bonding in Group 13: A Complex with a Boron-Aluminum π Bond Reduces CO 2. Angew Chem Int Ed Engl 2019; 58:9776-9781. [PMID: 30985966 DOI: 10.1002/anie.201902655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 11/08/2022]
Abstract
Heterodiatomic multiple bonds have never been observed within Group 13. Herein, we disclose a method that generates [(CAAC)PhB=AlCp3t ] (1), a complex featuring π bonding between boron and aluminum through the association of singlet fragments. We present the properties of this multiple bond as well as the reactivity of the complex with carbon dioxide, which yields a boron CO complex via an unusual metathesis reaction.
Collapse
Affiliation(s)
- Alexander Hofmann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marc-André Légaré
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Leonie Wüst
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
35
|
Hofmann A, Légaré M, Wüst L, Braunschweig H. Heterodiatomare Mehrfachbindung zwischen Elementen der Gruppe 13: Ein Komplex mit B‐Al‐π‐Bindung reduziert CO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Hofmann
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Marc‐André Légaré
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Leonie Wüst
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
36
|
Loh YK, Porteous K, Fuentes MÁ, Do DCH, Hicks J, Aldridge S. An Acid-Free Anionic Oxoborane Isoelectronic with Carbonyl: Facile Access and Transfer of a Terminal B═O Double Bond. J Am Chem Soc 2019; 141:8073-8077. [PMID: 31046264 DOI: 10.1021/jacs.9b03600] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We disclose the synthesis and structural characterization of the first acid-free anionic oxoborane, [K(2.2.2-crypt)][(HCDippN)2BO] (1) (Dipp = 2,6- iPr2C6H3), which is isoelectronic with classical carbonyl compounds. 1 can readily be accessed from its borinic acid by a simple deprotonation/sequestration sequence. Crystallographic and density functional theory (DFT) analyses support the presence of a polarized terminal B═O double bond. Subsequent π bond metathesis converts the B═O bond to a heavier B═S containing system, affording the first anionic thioxoborane [K(2.2.2-crypt)][(HCDippN)2BS] (2), isoelectronic with thiocarbonyls. Facile B═O bond cleavage can also be achieved to access B-H and B-Cl bonds and, via a remarkable oxide (O2-) ion abstraction, to generate a borenium cation [(HCDippN)2B(NC5H5)][OTf] (4). By extension, 1 can act as an oxide transfer agent to organic substrates, a synthetic role traditionally associated with transition-metal compounds. Hence we show that B-O linkages, which are often considered to be thermodynamic sinks, can be activated under mild conditions toward bond cleavage and transfer, by exploiting the higher reactivity inherent in the B═O double bond.
Collapse
Affiliation(s)
- Ying Kai Loh
- Inorganic Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QR , U.K
| | - Kieran Porteous
- Inorganic Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QR , U.K
| | - M Ángeles Fuentes
- Inorganic Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QR , U.K
| | - Dinh Cao Huan Do
- Inorganic Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QR , U.K
| | - Jamie Hicks
- Inorganic Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QR , U.K
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QR , U.K
| |
Collapse
|
37
|
Liu J, Yu J, Meng Y, Jin L, Sun W, Hou L, Chen S, Zeng F, Li A, Wang W. An Anionic β‐Diketiminato Oxoborane with a B–O Double Bond. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University 710127 Xi'an P. R. China
| | - Jiaxiu Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University 710127 Xi'an P. R. China
| | - Yinfeng Meng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University 710127 Xi'an P. R. China
| | - Lijie Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University 710127 Xi'an P. R. China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University 710127 Xi'an P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University 710127 Xi'an P. R. China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University 710127 Xi'an P. R. China
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University 710127 Xi'an P. R. China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University 710127 Xi'an P. R. China
| | - Wenyuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University 710127 Xi'an P. R. China
| |
Collapse
|
38
|
Loh YK, Ying L, Ángeles Fuentes M, Do DCH, Aldridge S. An N-Heterocyclic Boryloxy Ligand Isoelectronic with N-Heterocyclic Imines: Access to an Acyclic Dioxysilylene and its Heavier Congeners. Angew Chem Int Ed Engl 2019; 58:4847-4851. [PMID: 30677206 DOI: 10.1002/anie.201812058] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/23/2019] [Indexed: 01/30/2023]
Abstract
Introduced here is a new type of strongly donating N-heterocyclic boryloxy (NHBO) ligand, [(HCDippN)2 BO]- (Dipp=2,6-diisopropylphenyl), which is isoelectronic with the well-known N-heterocyclic iminato (NHI) donor class. This 1,3,2-diazaborole functionalized oxy ligand has been used to stabilize the first acyclic two-coordinate dioxysilylene and its Ge, Sn, and Pb congeners, thereby presenting the first complete series of heavier group 14 dioxycarbene analogues. All four compounds have been characterized by X-ray crystallography and density-functional theory, enabling analysis of periodic trends: the potential for the [(HCDippN)2 BO]- ligand to subtly vary its electronic-donor capabilities is revealed by snapshots showing the gradual evolution of arene π coordination on going from Si to Pb.
Collapse
Affiliation(s)
- Ying Kai Loh
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Lu Ying
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - M Ángeles Fuentes
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Dinh Cao Huan Do
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
39
|
Loh YK, Ying L, Ángeles Fuentes M, Do DCH, Aldridge S. An N‐Heterocyclic Boryloxy Ligand Isoelectronic with N‐Heterocyclic Imines: Access to an Acyclic Dioxysilylene and its Heavier Congeners. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ying Kai Loh
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | - Lu Ying
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | - M. Ángeles Fuentes
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | - Dinh Cao Huan Do
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
40
|
Liu X, Zhong R, Zhang M, Wu S, Geng Y, Su Z. BeBe triple bond in Be2X4Y2 clusters (X = Li, Na and Y = Li, Na, K) and a perfect classical BeBe triple bond presented in Be2Na4K2. Dalton Trans 2019; 48:14590-14594. [DOI: 10.1039/c9dt03321a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trans-bent Be2X4Y2 structures are explained through ESP of Be2X4 and a perfect BeBe triple bond is confirmed in D4h-Be2Na4K2.
Collapse
Affiliation(s)
- Xingman Liu
- Institute of Functional Material Chemistry
- Faculty of Chemistry & National & Local United Engineering Laboratory for Power Battery
- Northeast Normal University
- Changchun 130024
- P.R. China
| | - Ronglin Zhong
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- P.R. China
| | - Min Zhang
- Institute of Functional Material Chemistry
- Faculty of Chemistry & National & Local United Engineering Laboratory for Power Battery
- Northeast Normal University
- Changchun 130024
- P.R. China
| | - Shuixing Wu
- College of Chemistry & Chemical Engineering
- Hainan Normal University
- Haikou 571158
- P.R. China
| | - Yun Geng
- Institute of Functional Material Chemistry
- Faculty of Chemistry & National & Local United Engineering Laboratory for Power Battery
- Northeast Normal University
- Changchun 130024
- P.R. China
| | - Zhongmin Su
- Institute of Functional Material Chemistry
- Faculty of Chemistry & National & Local United Engineering Laboratory for Power Battery
- Northeast Normal University
- Changchun 130024
- P.R. China
| |
Collapse
|
41
|
Franz D, Inoue S. Cationic Complexes of Boron and Aluminum: An Early 21st Century Viewpoint. Chemistry 2018; 25:2898-2926. [PMID: 30113744 DOI: 10.1002/chem.201803370] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 01/03/2023]
Abstract
Boron and aluminum are lighter Group 13 elements, found in daily life commodities, and considered environmentally benign. Nevertheless, they markedly differ in their elemental properties (e.g., metal character, atomic radius). The use of Lewis acidic complexes of boron and aluminum for methods of bond activation and catalysis (e.g., hydrogenation of unsaturated substrates, polymerization of olefins and epoxides) is quickly expanding. The introduction of cationic charge may boost the metalloid-centered Lewis acidity and allow for its fine-tuning particularly with regard to preference for "hard" or "soft" Lewis bases (i.e., substrates). Especially the isolation of low-coordinate cations (number of ligand atoms smaller than four) demands elaborate techniques of thermodynamic and kinetic stabilization (i.e., electronic saturation and steric shielding) by a ligand system. Furthermore, the properties of the solvent and the counteranion must be considered with care. Here, selected examples of boron and aluminum cations are described.
Collapse
Affiliation(s)
- Daniel Franz
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| |
Collapse
|
42
|
Zhao J, Wang Q, Yu W, Huang T, Wang X. M-S Multiple Bond in HMSH, H 2MS, and HMS Molecules (M = B, Al, Ga): Matrix Infrared Spectra and Theoretical Calculations. J Phys Chem A 2018; 122:8626-8635. [PMID: 30335387 DOI: 10.1021/acs.jpca.8b08266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction products of B, Al, and Ga atoms with H2S have been identified in solid argon using matrix isolation infrared absorption spectroscopy. The results show that the ground state B atom reaction with H2S gives the H2BS molecule while for the Al atom the HAlSH molecule forms first, which then further isomerizes to H2AlS upon >500 nm irradiation. The reaction of the Ga atom with H2S only takes place upon photolysis to produce HGaSH in the matrix. The assignments of the major modes for these products were confirmed by appropriate 10B, 11B, D2S, and H234S isotopic shifts and theoretical frequency calculations. Topological analysis of the electron density suggests that both HBSH and H2BS molecules possess covalent B-S bond with significant double bond character, while the M-S bond in the heavier group 13 homologues (Al, Ga) was characterized as a polar covalent strong interaction.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou China.,School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Qiang Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry , Chinese Academy of Sciences , Taiyuan 030001 , Shanxi China
| | - Wenjie Yu
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Tengfei Huang
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Xuefeng Wang
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| |
Collapse
|
43
|
Bag P, Weetman C, Inoue S. Isolierung schwer fassbarer Komplexe mit einer Aluminium-Element-Mehrfachbindung: Am Horizont zeichnet sich eine neue Aluminiumchemie ab. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803900] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Prasenjit Bag
- Department Chemie; WACKER-Institute of Silicon Chemistry and Catalysis Research Center; Technische Universität München (TUM); Lichtenbergstraße 4 85748 Garching bei München Deutschland
| | - Catherine Weetman
- Department Chemie; WACKER-Institute of Silicon Chemistry and Catalysis Research Center; Technische Universität München (TUM); Lichtenbergstraße 4 85748 Garching bei München Deutschland
| | - Shigeyoshi Inoue
- Department Chemie; WACKER-Institute of Silicon Chemistry and Catalysis Research Center; Technische Universität München (TUM); Lichtenbergstraße 4 85748 Garching bei München Deutschland
| |
Collapse
|
44
|
Bag P, Weetman C, Inoue S. Experimental Realisation of Elusive Multiple-Bonded Aluminium Compounds: A New Horizon in Aluminium Chemistry. Angew Chem Int Ed Engl 2018; 57:14394-14413. [DOI: 10.1002/anie.201803900] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Prasenjit Bag
- Department of Chemistry; WACKER-Institute of Silicon Chemistry and Catalysis Research Center; Technische Universität München (TUM); Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Catherine Weetman
- Department of Chemistry; WACKER-Institute of Silicon Chemistry and Catalysis Research Center; Technische Universität München (TUM); Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Shigeyoshi Inoue
- Department of Chemistry; WACKER-Institute of Silicon Chemistry and Catalysis Research Center; Technische Universität München (TUM); Lichtenbergstraße 4 85748 Garching bei München Germany
| |
Collapse
|
45
|
Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S. NHCs in Main Group Chemistry. Chem Rev 2018; 118:9678-9842. [PMID: 29969239 DOI: 10.1021/acs.chemrev.8b00079] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the discovery of the first stable N-heterocyclic carbene (NHC) in the beginning of the 1990s, these divalent carbon species have become a common and available class of compounds, which have found numerous applications in academic and industrial research. Their important role as two-electron donor ligands, especially in transition metal chemistry and catalysis, is difficult to overestimate. In the past decade, there has been tremendous research attention given to the chemistry of low-coordinate main group element compounds. Significant progress has been achieved in stabilization and isolation of such species as Lewis acid/base adducts with highly tunable NHC ligands. This has allowed investigation of numerous novel types of compounds with unique electronic structures and opened new opportunities in the rational design of novel organic catalysts and materials. This Review gives a general overview of this research, basic synthetic approaches, key features of NHC-main group element adducts, and might be useful for the broad research community.
Collapse
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Dominik Reiter
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Prasenjit Bag
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Philipp Frisch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Richard Holzner
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Amelie Porzelt
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| |
Collapse
|
46
|
Franz D, Szilvási T, Pöthig A, Deiser F, Inoue S. Three-Coordinate Boron(III) and Diboron(II) Dications. Chemistry 2018; 24:4283-4288. [DOI: 10.1002/chem.201800609] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Franz
- Department of Chemistry, Catalysis Research Center; Institute of Silicon Chemistry; Technische Universität München; Lichtenbergstr. 4 85748 Garching bei München Germany
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering; University of Wisconsin-Madison; 1415 Engineering Drive Madison WI 53706-1607 USA
| | - Alexander Pöthig
- Department of Chemistry, Catalysis Research Center; Institute of Silicon Chemistry; Technische Universität München; Lichtenbergstr. 4 85748 Garching bei München Germany
| | - Franziska Deiser
- Department of Chemistry, Catalysis Research Center; Institute of Silicon Chemistry; Technische Universität München; Lichtenbergstr. 4 85748 Garching bei München Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, Catalysis Research Center; Institute of Silicon Chemistry; Technische Universität München; Lichtenbergstr. 4 85748 Garching bei München Germany
| |
Collapse
|
47
|
Mahmoudi G, Zaręba JK, Bauzá A, Kubicki M, Bartyzel A, Keramidas AD, Butusov L, Mirosław B, Frontera A. Recurrent supramolecular motifs in discrete complexes and coordination polymers based on mercury halides: prevalence of chelate ring stacking and substituent effects. CrystEngComm 2018. [DOI: 10.1039/c7ce02166f] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the synthesis, X-ray characterization and DFT study of five Hg(ii) complexes with Schiff bases containing a nicotinohydrazide core to explore the formation of chelate-ring π-stacking interactions.
Collapse
Affiliation(s)
- Ghodrat Mahmoudi
- Department of Chemistry
- Faculty of Science
- University of Maragheh
- Maragheh
- Iran
| | - Jan K. Zaręba
- Advanced Materials Engineering and Modelling Group
- Wroclaw University of Science and Technology
- Wrocław
- Poland
| | - Antonio Bauzá
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Maciej Kubicki
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan
- 61-614 Poznań
- Poland
| | - Agata Bartyzel
- Department of General and Coordination Chemistry
- Maria Curie-Skłodowska University
- 20-031 Lublin
- Poland
| | | | | | - Barbara Mirosław
- Department of Crystallography
- Faculty of Chemistry
- Maria Curie-Sklodowska University
- 20-031 Lublin
- Poland
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| |
Collapse
|
48
|
Chen CH, Gabbaï FP. Exploiting the Strong Hydrogen Bond Donor Properties of a Borinic Acid Functionality for Fluoride Anion Recognition. Angew Chem Int Ed Engl 2017; 57:521-525. [DOI: 10.1002/anie.201709494] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Chang-Hong Chen
- Department of Chemistry; Texas A&M University; College Station TX 77843 USA
| | - François P. Gabbaï
- Department of Chemistry; Texas A&M University; College Station TX 77843 USA
| |
Collapse
|
49
|
Chen CH, Gabbaï FP. Exploiting the Strong Hydrogen Bond Donor Properties of a Borinic Acid Functionality for Fluoride Anion Recognition. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chang-Hong Chen
- Department of Chemistry; Texas A&M University; College Station TX 77843 USA
| | - François P. Gabbaï
- Department of Chemistry; Texas A&M University; College Station TX 77843 USA
| |
Collapse
|
50
|
Ochiai T, Inoue S. Synthesis of a cyclopentadienyl(imino)stannylene and its direct conversion into halo(imino)stannylenes. RSC Adv 2017. [DOI: 10.1039/c6ra27697k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report the synthesis and structure of a dimeric Cp-substituted iminostannylene as well as its unusual reactivity towards haloalkanes, resulting in the formation of halogen-substituted iminostannylenes.
Collapse
Affiliation(s)
- Tatsumi Ochiai
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Shigeyoshi Inoue
- Department of Chemistry
- Catalysis Research Center
- Institute of Silicon Chemistry
- Technische Universität München
- 85748 Garching bei München
| |
Collapse
|