1
|
Schrage BR, Ermilov E, Nemykin VN. Transient Absorption Spectra of Metal‐Free and Transition‐Metal 5,10,15,20‐Tetraferrocene Porphyrins: Influence of the Central Metal Ion, Solvent Polarity, and the Axial Ferrocene Ligand. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Briana R. Schrage
- University of Tennessee System: The University of Tennessee System Chemistry UNITED STATES
| | | | - Victor N. Nemykin
- University of Tennessee System: The University of Tennessee System Department of Chemistry 1420 Circle Drive 37996 Knoxville UNITED STATES
| |
Collapse
|
2
|
Vecchi A, Sabin JR, Sabuzi F, Conte V, Cicero DO, Floris B, Galloni P, Nemykin VN. Similar, Yet Different: Long-Range Metal-Metal Coupling and Electron-Transfer Processes in Metal-Free 5,10,15,20-Tetra(ruthenocenyl)porphyrin. Inorg Chem 2021; 60:8227-8241. [PMID: 34033715 DOI: 10.1021/acs.inorgchem.1c00908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structure, redox properties, and long-range metal-metal coupling in metal-free 5,10,15,20-tetra(ruthenocenyl)porphyrin (H2TRcP) were probed by spectroscopic (NMR, UV-vis, magnetic circular dichroism (MCD), and atmospheric pressure chemical ionization (APCI)), electrochemical (cyclic voltammetry, CV, and differential pulse voltammetry, DPV), spectroelectrochemical, and chemical oxidation methods, as well as theoretical (density functional theory, DFT, and time-dependent DFT, TDDFT) approaches. It was demonstrated that the spectroscopic properties of H2TRcP are significantly different from those in H2TFcP (metal-free 5,10,15,20-tetra(ferrocenyl)porphyrin). Ruthenocenyl fragments in H2TRcP have higher oxidation potentials than the ferrocene groups in the H2TFcP complex. Similar to H2TFcP, we were able to access and spectroscopically characterize the one- and two-electron oxidized mixed-valence states in the H2TRcP system. DFT predicts that the porphyrin π-system stabilizes the [H2TRcP]+ mixed-valence cation and prevents its dimerization, which is characteristic for ruthenocenyl systems. However, formation of the mixed-valence [H2TRcP]2+ is significantly less reproducible than the formation of [H2TRcP]+. DFT and TDDFT calculations suggest the ruthenocenyl fragment dominance in the highest occupied molecular orbital (HOMO) energy region and the presence of the low-energy MLCT (Rc → porphyrin (π*)) transitions in the visible region with energies higher than the predominantly porphyrin-centered Q-bands.
Collapse
Affiliation(s)
- Andrea Vecchi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 0133, Italy.,Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Jared R Sabin
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 0133, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 0133, Italy
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 0133, Italy
| | - Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 0133, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 0133, Italy
| | - Victor N Nemykin
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
3
|
Amiri M, Martinez Perez O, Endean RT, Rasu L, Nepal P, Xu S, Bergens SH. Solid-phase synthesis and photoactivity of Ru-polypyridyl visible light chromophores bonded through carbon to semiconductor surfaces. Dalton Trans 2020; 49:10173-10184. [PMID: 32666974 DOI: 10.1039/d0dt01776k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,10-Phenanthroline (phen) was grafted to either indium tin oxide (ITO), fluorine-doped tin oxide (FTO), or titanium dioxide (TiO2) semiconductors (SC's) by electrochemical reduction of 5-diazo-phen. The phen ligand is bonded to the semiconductor at C5, and it can be handled in air. The semiconductor-phen (SC-phen) complexes displace both CH3CN ligands from either cis-[Ru(Mebipy)2(CH3CN)2]2+ (Mebipy = 4,4'-methyl-2,2'-bipyridine), cis-[Ru(tBubipy)2(CH3CN)2]2+ (tBubipy = 4,4'-tert-butyl-2,2'-bipyridine), or cis-[Ru(pheno)(bipy)(CH3CN)2]2+ (bipy = 2,2'-bipyridine; pheno = 1,10-phenanthroline-5,6-dione) dissolved in DCM/THF (4 h, 70 °C) to form the corresponding surface-bound SC-[(phen)Ru(bipyridyl)2]2+ chromophores. The identities of the SC-[(phen)Ru(Mebipy)2]2+, SC-[(phen)Ru(tBubipy)2]2+, and SC-[(phen)Ru(pheno)(bipy)]2+ (SC = ITO, FTO or TiO2) chromophores were confirmed by X-ray photoelectron spectroscopy (XPS); inductively coupled plasma mass spectrometry (ICP-MS); UV-vis and reflectance infrared spectroscopies; and cyclic voltammetry (CV). The data were compared to analogous Ru-polypyridyl control compounds dissolved in solution. A facile ketone-amine condensation solid-phase synthesis reaction between SC-[(phen)Ru(pheno)(bipy)]2+ and [Ru(1,10-phenthroline-5,6-diamine)(bipy)2]2+ in ethanol (80 °C, 1 h) formed the dinuclear, bound chromophore SC-[(phen)(bipy)Ru(tpphz)Ru(bipy)2]4+ (tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine). Photoelectrochemical oxidation of hydroquinone and triethylamine under acidic, neutral, or basic conditions showed that the SC-chromophore photoanodes are active, and that TiO2-[(phen)Ru(Mebipy)2]2+ is the most active and stable under basic- and neutral conditions. The dinuclear chromophore SC-[(phen)(bipy)Ru(tpphz)Ru(bipy)2]4+ was most active and stable under potentiostatic conditions in acid.
Collapse
Affiliation(s)
- Mona Amiri
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada.
| | | | | | | | | | | | | |
Collapse
|
4
|
Sabuzi F, Stefanelli M, Monti D, Conte V, Galloni P. Amphiphilic Porphyrin Aggregates: A DFT Investigation. MOLECULES (BASEL, SWITZERLAND) 2019; 25:molecules25010133. [PMID: 31905739 PMCID: PMC6982950 DOI: 10.3390/molecules25010133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/16/2019] [Accepted: 12/26/2019] [Indexed: 12/26/2022]
Abstract
Owing to the attractive potential applications of porphyrin assemblies in photocatalysis, sensors, and material science, studies presently concerning porphyrin aggregation are widely diffused. π–π stacking, H-bonding, metal coordination, hydrophobic effect, and electrostatic forces usually drive porphyrin interaction in solution. However, theoretical studies of such phenomena are still limited. Therefore, a computational examination of the different porphyrin aggregation approaches is proposed here, taking into account amphiphilic [5-{4-(3-trimethylammonium)propyloxyphenyl}-10,15,20-triphenylporphyrin] chloride, whose aggregation behavior has been previously experimentally investigated. Different functionals have been adopted to investigate the porphyrin dimeric species, considering long-range interactions. Geometry optimization has been performed, showing that for the compound under analysis, H-type and cation–π dimers are the most favored structures that likely co-exist in aqueous solution. Of note, frontier orbital delocalization showed an interesting interaction between the porphyrin units in the dimer at the supramolecular level.
Collapse
Affiliation(s)
- Federica Sabuzi
- Correspondence: (F.S.); (P.G.); Tel.: + 39-06-7259-4490 (F.S.); + 39-06-7259-4380 (P.G.)
| | | | | | | | - Pierluca Galloni
- Correspondence: (F.S.); (P.G.); Tel.: + 39-06-7259-4490 (F.S.); + 39-06-7259-4380 (P.G.)
| |
Collapse
|
5
|
Tiravia M, Sabuzi F, Cirulli M, Pezzola S, Di Carmine G, Cicero DO, Floris B, Conte V, Galloni P. 3,7-Bis(N
-methyl-N
-phenylamino)phenothiazinium Salt: Improved Synthesis and Aggregation Behavior in Solution. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martina Tiravia
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Martina Cirulli
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road E1 4NS London United Kingdom
| | - Silvia Pezzola
- BT-InnoVaChem srl; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Graziano Di Carmine
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari 4 44121 Ferrara Italy
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Barbara Floris
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| |
Collapse
|
6
|
Sabuzi F, Coletti A, Pomarico G, Floris B, Galloni P, Conte V. Modulating electron transfer in ferrocene-naphthoquinone dyads: New insights in parameters influencing ET efficiency. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Wang C, Amiri M, Endean RT, Martinez Perez O, Varley S, Rennie B, Rasu L, Bergens SH. Modular Construction of Photoanodes with Covalently Bonded Ru- and Ir-Polypyridyl Visible Light Chromophores. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24533-24542. [PMID: 29969554 DOI: 10.1021/acsami.8b06605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
1,10-phenanthroline is grafted to indium tin oxide (ITO) and titanium dioxide nanoparticle (TiO2) semiconductors by electroreduction of 5-diazo-1,10-phenanthroline in 0.1 M H2SO4. The lower and upper potential limits (-0.20 and 0.15 VSCE, respectively) were set to avoid reduction and oxidation of the 1,10-phenanthroline (phen) covalently grafted at C5 to the semiconductor. The resulting semiconductor-phen ligand (ITO-phen or TiO2-phen) was air stable, and was bonded to Ru- or Ir- by reaction with cis-[Ru(bpy)2(CH3CN)2]2+ (bpy = 2,2'-bipyridine) or cis-[Ir(ppy)2(CH3CN)2]+ (ppy = ortho-Cphenyl metalated 2-phenylpyridine) in CH2Cl2 and THF solvent at 50 °C. Cyclic voltammetry, X-ray photoelectron spectroscopy, solid-state UV-vis, and inductively coupled plasma-mass spectrometry all confirmed that the chromophores SC-[(phen)Ru(bpy)2]2+ and SC-[(phen)Ir(ppy)2]+ (SC = ITO or TiO2) formed in near quantitative yields by these reactions. The resulting photoanodes were active and relatively stable to photoelectrochemical oxidation of hydroquinone and triethylamine under neutral and basic conditions.
Collapse
Affiliation(s)
- Chao Wang
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Mona Amiri
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Riley T Endean
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Octavio Martinez Perez
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Samuel Varley
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Ben Rennie
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Loorthuraja Rasu
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Steven H Bergens
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
8
|
Possanza F, Vecchi A, Conte V, Floris B, Galloni P. 5,10,15,20-Tetrakis(1′-acetylferrocenyl)porphyrin: Electronic and structural effects of acetyl group on TFcP. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Synthesis of tetrasubstituted-tetraferrocenylporphyrins containing an acetyl functional group on all ferrocenyl moiety has been performed, allowing the analysis of the effects of these groups in terms of geometry and electronic distribution. TFcPs exhibit interesting electrochemical properties, mostly due to electronic communication between the ferrocenyl substituents and the porphyrin core and the presence of four acetyl substituents do not affect significantly these properties. Nevertheless the functionalization leads to a more defined electronic transition, in particular in the Q region and a more stable TFcP in terms of chemical oxidation. This can openinig the way to modulate and/or improve the performance of TFcP in various applications.
Collapse
Affiliation(s)
- Fabio Possanza
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, via Della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Andrea Vecchi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, via Della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Valeria Conte
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, via Della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Barbara Floris
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, via Della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Pierluca Galloni
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, via Della Ricerca Scientifica snc, 00133 Rome, Italy
| |
Collapse
|
9
|
Erickson NR, Holstrom CD, Rhoda HM, Rohde GT, Zatsikha YV, Galloni P, Nemykin VN. Tuning Electron-Transfer Properties in 5,10,15,20-Tetra(1′-hexanoylferrocenyl)porphyrins as Prospective Systems for Quantum Cellular Automata and Platforms for Four-Bit Information Storage. Inorg Chem 2017; 56:4717-4728. [DOI: 10.1021/acs.inorgchem.7b00397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathan R. Erickson
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Cole D. Holstrom
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Hannah M. Rhoda
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Gregory T. Rohde
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Yuriy V. Zatsikha
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
- Department
of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Pierluca Galloni
- Dipartimento
di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Victor N. Nemykin
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
- Department
of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|