1
|
Wang C, Xiu Y, Zhang Y, Wang Y, Xu J, Yu W, Xing D. Recent advances in biotin-based therapeutic agents for cancer therapy. NANOSCALE 2025; 17:1812-1873. [PMID: 39676680 DOI: 10.1039/d4nr03729d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Biotin receptors, as biomarkers for cancer cells, are overexpressed in various tumor types. Compared to other vitamin receptors, such as folate receptors and vitamin B12 receptors, biotin receptor-based targeting strategies exhibit superior specificity and broader potential in treating aggressive cancers, including ovarian cancer, leukemia, colon cancer, breast cancer, kidney cancer, and lung cancer. These strategies promote biotin transport via receptor-mediated endocytosis, which is triggered upon ligand binding. Biotin, as the ligand of the biotin receptor, can be conjugated to anti-cancer drugs to form targeted therapies that bind to receptors overexpressed on tumor cells, thus increasing drug uptake. Despite these advantages, many candidate drugs have progressed slowly and remain in the preclinical stage, impeding clinical translation. This is mainly due to the effects of various conjugation methods and drug formulations on their functionality and efficacy. Therefore, developing novel biotin-based therapeutics is crucial. The innovation of this strategy lies in its multifunctionality-researchers can use different conjugation methods to design and synthesize these drugs, enabling precise targeting of various tumor types while minimizing toxicity to normal cells. These drugs include small-molecule-biotin conjugates (SMBCs) and nano-biotin conjugates (NBCs). This dual-platform approach represents a significant advancement in targeted therapy, offering unprecedented flexibility in drug design and delivery. Compared to chemotherapy drugs and traditional delivery systems, biotin-based drugs with tumor-specific targeting demonstrate enhanced targeting, improved efficacy, and reduced toxicity. This review examines strategies and applications for enhancing the delivery of chemotherapy drugs to cancer cells, highlighting the need for high-quality conjugates and strategies. It not only summarizes the latest progress but also provides key insights into how this emerging field could revolutionize personalized cancer treatment, especially in the context of precision medicine. Additionally, it offers perspectives on future research directions in this field.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Yutao Xiu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Wanpeng Yu
- Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Wu Y, Lloveras V, Morgado A, Perez-Inestrosa E, Babaliari E, Psilodimitrakopoulos S, Vida Y, Vidal-Gancedo J. Water-Soluble Bimodal Magnetic-Fluorescent Radical Dendrimers as Potential MRI-FI Imaging Probes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65295-65306. [PMID: 39542431 PMCID: PMC11615848 DOI: 10.1021/acsami.4c13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 11/17/2024]
Abstract
Dual or multimodal imaging probes have become potent tools for enhancing detection sensitivity and accuracy in disease diagnosis. In this context, we present a bimodal imaging dendrimer-based structure that integrates magnetic and fluorescent imaging probes for potential applications in magnetic resonance imaging and fluorescence imaging. It stands out as one of the rare examples where bimodal imaging probes use organic radicals as the magnetic source, despite their tendency to entirely quench fluorophore fluorescence. Opting for organic radicals over metal-based contrast agents like gadolinium (Gd3+)-chelates is crucial to mitigate associated toxicity concerns. We utilized an amino-terminated polyamide dendrimer containing a 1,8-naphthalimide (Naft) fluorescent group, amino acid derivatives as linkers to enhance water solubility, and TEMPO organic radicals as terminal groups. The same dendrimer structure, featuring an equivalent number of branches but lacking the fluorophore group, was also functionalized with amino acid and terminal radicals to serve as a reference. Remarkably, we achieved a fully water-soluble dendrimer-based structure exhibiting both magnetic and fluorescent properties simultaneously. The fluorescence of the Naft group in the final structure is somewhat quenched by the organic radicals, likely due to photoinduced electron transfer with the nitroxyl radical acting as an electron acceptor, which has been supported by density functional theory calculations. Molecular dynamics simulations are employed to investigate how the dendrimers' structure influences the electron paramagnetic resonance characteristics, relaxivity, and fluorescence. In summary, despite the influence of the radicals-fluorophore interactions on fluorescence, this bimodal dendrimer demonstrates significant fluorescent properties and effective r1 relaxivity of 1.3 mM-1 s-1. These properties have proven effective in staining the live mesenchymal stem cells without affecting the cell nucleus.
Collapse
Affiliation(s)
- Yufei Wu
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
| | - Vega Lloveras
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine (CIBER-BBN), Campus UAB, E-08193 Bellaterra, Spain
| | - Anjara Morgado
- Departamento
de Química Orgánica, Universidad
de Málaga, Campus Teatinos S/n, 29071 Málaga, Spain
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina–IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Ezequiel Perez-Inestrosa
- Departamento
de Química Orgánica, Universidad
de Málaga, Campus Teatinos S/n, 29071 Málaga, Spain
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina–IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Eleftheria Babaliari
- Foundation
for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | - Sotiris Psilodimitrakopoulos
- Foundation
for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | - Yolanda Vida
- Departamento
de Química Orgánica, Universidad
de Málaga, Campus Teatinos S/n, 29071 Málaga, Spain
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina–IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - José Vidal-Gancedo
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine (CIBER-BBN), Campus UAB, E-08193 Bellaterra, Spain
| |
Collapse
|
3
|
Meng Q, Wu M, Shang Z, Zhang Z, Zhang R. Responsive gadolinium(III) complex-based small molecule magnetic resonance imaging probes: Design, mechanism and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Shapoval O, Sulimenko V, Klebanovych A, Rabyk M, Shapoval P, Kaman O, Rydvalová E, Filipová M, Dráberová E, Dráber P, Horák D. Multimodal fluorescently labeled polymer-coated GdF 3 nanoparticles inhibit degranulation in mast cells. NANOSCALE 2021; 13:19023-19037. [PMID: 34755752 DOI: 10.1039/d1nr06127e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multimodal gadolinium fluoride nanoparticles belong to potential contrast agents useful for bimodal optical fluorescence and magnetic resonance imaging. However, the metallic nature of the nanoparticles, similarly to some paramagnetic iron oxides, might induce allergic and anaphylactic reactions in patients after administration. A reduction of these adverse side effects is a priority for the safe application of the nanoparticles. Herein, we prepared paramagnetic poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA)-stabilized GdF3 nanoparticles with surface modified by Atto 488-labeled poly(styrene-grad-2-dimethylaminoethyl acrylate)-block-poly(2-dimethylaminoethyl acrylate) (PSDA-A488) with reactive amino groups for introduction of an additional imaging (luminescence) modality and possible targeting of anticancer drugs. The saturation magnetization of GdF3@PSSMA particles according to SQUID magnetometry reached 157 Am2 kg-1 at 2 K and magnetic field of 7 T. GdF3@PSSMA-PSDA-A488 nanoparticles were well tolerated by human cervical adenocarcinoma (HeLa), mouse bone marrow-derived mast cells (BMMC), and rat basophilic mast cells (RBL-2H3); the particles also affected cell morphology and protein tyrosine phosphorylation in mast cells. Moreover, the nanoparticles interfered with the activation of mast cells by multivalent antigens and inhibited calcium mobilization and cell degranulation. These findings show that the new multimodal GdF3-based nanoparticles possess properties useful for various imaging methods and might minimize mast cell degranulation incurred after future nanoparticle diagnostic administration.
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Vadym Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Anastasiya Klebanovych
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Mariia Rabyk
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Pavlo Shapoval
- Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, Sv. Yura Sq. 9, 79013 Lviv, Ukraine
| | - Ondřej Kaman
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 112/10, 162 00 Prague 6, Czech Republic
| | - Eliška Rydvalová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Eduarda Dráberová
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Dráber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
5
|
Arooj M, Zahra M, Islam M, Ahmed N, Waseem A, Shafiq Z. Coumarin based thiosemicarbazones as effective chemosensors for fluoride ion detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120011. [PMID: 34126392 DOI: 10.1016/j.saa.2021.120011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Anion sensing have attained immense importance as these charged ions are prevailing in agriculture industry and in heavy industry and therefore in the environment around us, chemosensors are commencing to claim several applications as their role is being better perceived day by day. In the current study, coumarin based thiosemicarbazone R-1 (phenyl moiety) and R-2 (benzyl moiety) were synthesized. It was observed that there were variations in the sensing patterns of compound bearing benzyl group, as compared to the simple phenyl group bearing receptor. Different techniques were used to confirm the interaction of coumarin based receptors with anions. These techniques included naked-eye test, UV-visible, 1H NMR, and fluorescence spectroscopic techniques. The synthesized receptors showed selectivity for fluoride ions. Benesi-Hildebrand equation was employed for determining the detection limits and binding constants values. The synthesized receptors were employed as efficient chemosensors in real life samples and satisfactory results were obtained.
Collapse
Affiliation(s)
- Maleeha Arooj
- Department of Chemistry, Quaid-i-Azam University, Islmabad-45320, Pakistan
| | - Manzar Zahra
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Islam
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan; Jadeed Group of Companies, 53-C, Satellite Town, Chandni Chowk, Murree Road, Rawalpindi, Pakistan
| | - Nadeem Ahmed
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islmabad-45320, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan
| |
Collapse
|
6
|
Tian L, Feng H, Dai Z, Zhang R. Resorufin-based responsive probes for fluorescence and colorimetric analysis. J Mater Chem B 2020; 9:53-79. [PMID: 33226060 DOI: 10.1039/d0tb01628d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fluorescence imaging technique has attracted increasing attention in the detection of various biological molecules in situ and in real-time owing to its inherent advantages including high selectivity and sensitivity, outstanding spatiotemporal resolution and fast feedback. In the past few decades, a number of fluorescent probes have been developed for bioassays and imaging by exploiting different fluorophores. Among various fluorophores, resorufin exhibits a high fluorescence quantum yield, long excitation/emission wavelength and pronounced ability in both fluorescence and colorimetric analysis. This fluorophore has been widely utilized in the design of responsive probes specific for various bioactive species. In this review, we summarize the advances in the development of resorufin-based fluorescent probes for detecting various analytes, such as cations, anions, reactive (redox-active) sulfur species, small molecules and biological macromolecules. The chemical structures of probes, response mechanisms, detection limits and practical applications are investigated, which is followed by the discussion of recent challenges and future research perspectives. This review article is expected to promote the further development of resorufin-based responsive fluorescent probes and their biological applications.
Collapse
Affiliation(s)
- Lu Tian
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | | | | | | |
Collapse
|
7
|
Yang QY, Cao QQ, Zhang YL, Xu XF, Deng CX, Kumar R, Zhu XM, Wang XJ, Liang H, Chen ZF. Synthesis, structural characterization and antitumor activity of six rare earth metal complexes with 8-hydroxyquinoline derivatives. J Inorg Biochem 2020; 211:111175. [DOI: 10.1016/j.jinorgbio.2020.111175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
|
8
|
Recent advances in the development of responsive probes for selective detection of cysteine. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213182] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Dhiman S, Ahmad M, Singla N, Kumar G, Singh P, Luxami V, Kaur N, Kumar S. Chemodosimeters for optical detection of fluoride anion. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213138] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Florès O, Pliquett J, Abad Galan L, Lescure R, Denat F, Maury O, Pallier A, Bellaye PS, Collin B, Même S, Bonnet CS, Bodio E, Goze C. Aza-BODIPY Platform: Toward an Efficient Water-Soluble Bimodal Imaging Probe for MRI and Near-Infrared Fluorescence. Inorg Chem 2020; 59:1306-1314. [DOI: 10.1021/acs.inorgchem.9b03017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Océane Florès
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Jacques Pliquett
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Laura Abad Galan
- Université Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, UMR 5182, F-69342 Lyon, France
| | - Robin Lescure
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Franck Denat
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Olivier Maury
- Université Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, UMR 5182, F-69342 Lyon, France
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS, Université d’Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Pierre-Simon Bellaye
- Centre Georges François Leclerc, Service de Médecine Nucléaire (Plateforme d’Imagerie et de Radiothérapie Précliniques), 1 rue Professeur Marion, BP77980, 21079 Dijon Cedex, France
| | - Bertrand Collin
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS, Université d’Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Célia S. Bonnet
- Centre de Biophysique Moléculaire, CNRS, Université d’Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Ewen Bodio
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Christine Goze
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| |
Collapse
|
11
|
Singh A, Mohan M, R.Trivedi D. Chemosensor Based on Hydrazinyl Pyridine for Selective Detection of F̄ Ion in Organic Media and CO
3
2−
Ions in Aqueous Media: Design, Synthesis, Characterization and Practical Application. ChemistrySelect 2019. [DOI: 10.1002/slct.201903670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Archana Singh
- Supramolecular Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology Karnataka (NITK) Surathkal Srinivasnagar - 575 025, Karnataka India
| | - Makesh Mohan
- Department of PhysicsNational Institute of Technology Karnataka (NITK), Surathkal India
| | - Darshak R.Trivedi
- Supramolecular Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology Karnataka (NITK) Surathkal Srinivasnagar - 575 025, Karnataka India
| |
Collapse
|
12
|
Wei LF, Chen CY, Lai CK, Thirumalaivasan N, Wu SP. A nano-molar fluorescent turn-on probe for copper(II) detection in living cells. Methods 2019; 168:18-23. [DOI: 10.1016/j.ymeth.2019.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023] Open
|
13
|
Kaviarasi S, Shalini Devi KS, Vinoth P, Sridharan V, Yuba E, Harada A, Krishnan UM. Synthesis, Characterization, and Biomedical Applications of an Alkylated Quercetin-Gadolinium Complex. ACS Biomater Sci Eng 2019; 5:1215-1227. [PMID: 33405641 DOI: 10.1021/acsbiomaterials.8b01254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Flavonoids and their derivatives have been extensively studied for their pharmaceutical applications due to their antioxidant and anti-inflammatory properties. The coordination complexes of several flavonoids have demonstrated DNA binding ability that can confer anticancer properties. The structure of the flavonoid has a pronounced influence on its pharmacological properties. Herein we report the synthesis and characterization of alkylated quercetin and its complex with gadolinium. The structure of the complex was confirmed using spectroscopic techniques. The ability of the gadolinium-alkylated quercetin complex to serve as a magnetic contrast agent was compared with gadolinium-quercetin complex. The quercetin-gadolinium complex was found to exhibit better contrast property with a relaxivity of 0.2952 μg mL-1 s-1 when compared to the gadolinium complex of alkylated quercetin. This difference primarily arises due to the greater hydrophobicity of the alkylated quercetin complex that restricts access of water. However, the alkylated quercetin was found to exhibit better enzyme mimic activity as the metal ion served as a redox center that enabled quantification of hydrogen peroxide in the concentration range 50-450 μM within 5 s with a sensitivity of 64 nA/μM and limit of detection of 7.3 μM. The better sensing performance of the alkylated quercetin-gadolinium complex, reported here for the first time, when compared to quercetin-gadolinium complex can be attributed to the enhanced electroactive area on the working electrode.
Collapse
Affiliation(s)
- Sathyasivam Kaviarasi
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613401, India.,School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - K S Shalini Devi
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613401, India.,School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Perumal Vinoth
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Jammu 181143, India
| | - Eiji Yuba
- Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613401, India.,School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
14
|
Islam M, Hameed A, Ayub K, Naseer MM, Hussain J, Alharthy RD, Asari A, Ludwig R, Rashida MA, Shafiq Z. Receptor‐Spacer‐Fluorophore Based Coumarin‐Thiosemicarbazones as Anion Chemosensors with
“Turn on”
Response: Spectroscopic and Computational (DFT) Studies. ChemistrySelect 2018. [DOI: 10.1002/slct.201801035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Muhammad Islam
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| | - Abdul Hameed
- H. E. J. Research Institute of ChemistryInternational Center for Chemical and Biological SciencesUniversity of Karachi Karachi-75270 Pakistan
| | - Khurshid Ayub
- Department of ChemistryCOMSATS University, Abbottabad Campus, Abbotabad, KPK Pakistan 22060
| | | | - Javid Hussain
- Department of Biological Sciences & ChemistryCollege of Arts and SciencesUniversity of Nizwa Sultanate of Oman
| | - Rima D. Alharthy
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz University, Jeddah Saudi Arabia
| | - Asnuzilawati Asari
- School of Fundamental ScienceUniversiti Malaysia Terengganu 21030 Kuala Nerus Malaysia
| | - Ralf Ludwig
- Leibniz-Institut für Katalyse e. V.an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock Germany
- Department of Physical ChemistryUniversity of Rostock Dr.-Lorenz-Weg 1 18059 Rostock Germany
| | - Mariya al‐ Rashida
- Department of ChemistryForman Christian College (A Chartered University) Ferozepur Road-54600, Lahore Pakistan
| | - Zahid Shafiq
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| |
Collapse
|
15
|
Ezhumalai D, Mathivanan I, Chinnadurai A. Turn on macrocyclic chemosensor for Al 3+ ion with facile synthesis and application in live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:209-219. [PMID: 29605785 DOI: 10.1016/j.saa.2018.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
An effort of a new Schiff base macrocyclic chemosensor, 14‑methyl‑2,6,8,12,14,18‑hexaaza‑1,7,13(1,2),4,10,16(1,4)‑hexabenzenacyclooctadecaphane‑2,5,8,11,14,17‑hexaene (me1) and 14,74‑dimethyl‑2,6,8,12,14,18‑hexaaza‑1,7,13(1,2),4,10,16(1,4)‑hexabenzenacyclooctadecadecaphane‑2,5,8,11,14,17‑hexaene (dm2), which enables selective sensing of Al3+ in aqueous DMF were synthesized by a simplistic one-step condensation reaction of macrocyclic compounds. The probe me1 and dm2 characterized by elemental analysis, FT-IR, 1H and 13C NMR, LC-MS spectral techniques. The compounds as mentioned above subjected to FE-SEM with EDS and elemental color mapping. On addition of Al3+, the fluorescent probe me1 and dm2 induces turn-on responses in both absorption and sensing spectra by a PET mechanism. The receptor me1 and dm2 serve highly selective, sensitive and turn-on detection of Al3+. Further, they did not interfere with other cations present in biological or environmental samples. The detection limit is found to be 3μM and 5μM. From the view of cytotoxic activity, the ability of these compounds me1 and dm2 to inhibit the growth of KB cell lines examined. The chelating functionality of compounds me1 and dm2 examined for their inhibitory properties of KB cell, live cell images. The compounds me1 and dm2 subjected to theoretical studies by DFT-B3LYP invoking the 6-31G level of theory. The energy of the HOMO and LUMO has been established.
Collapse
Affiliation(s)
| | - Iyappan Mathivanan
- Department of Chemistry, Annamalai University, Annamalainagar 608 002, India
| | | |
Collapse
|
16
|
Zhao J, Chen J, Ma S, Liu Q, Huang L, Chen X, Lou K, Wang W. Recent developments in multimodality fluorescence imaging probes. Acta Pharm Sin B 2018; 8:320-338. [PMID: 29881672 PMCID: PMC5989919 DOI: 10.1016/j.apsb.2018.03.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI) probe integration with other imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and photoacoustic imaging (PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy.
Collapse
Affiliation(s)
- Jianhong Zhao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Junwei Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Shengnan Ma
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Qianqian Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Lixian Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Xiani Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
17
|
Lilley LM, Du K, Krzyaniak MD, Parigi G, Luchinat C, Harris TD, Meade TJ. Effect of Magnetic Coupling on Water Proton Relaxivity in a Series of Transition Metal Gd III Complexes. Inorg Chem 2018; 57:5810-5819. [PMID: 29714477 DOI: 10.1021/acs.inorgchem.8b00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A fundamental challenge in the design of bioresponsive (or bioactivated) GdIII-based magnetic resonance (MR) imaging probes is the considerable background signal present in the "preactivated" state that arises from outer-sphere relaxation processes. When sufficient concentrations of a bioresponsive agent are present (i.e., a detectable signal in the image), the inner- and outer-sphere contributions to r1 may be misinterpreted to conclude that the agent has been activated, when it has not. Of the several parameters that determine the observed MR signal of an agent, only the electron relaxation time ( T1e) impacts both the inner- and outer-sphere relaxation. Therefore, strategies to minimize this background signal must be developed to create a near zero-background (or truly "off" state) of the agent. Here, we demonstrate that intramolecular magnetic exchange coupling when GdIII is coupled to a paramagnetic transition metal provides a means to overcome the contribution of second- and outer-sphere contributions to the observed relaxivity. We have prepared a series of complexes with the general formula LMLn(μ-O2CCH3)(O2CCH3)2 (M = Co, Cu, Zn). Solid-state magnetic susceptibility measurements reveal significant magnetic coupling between GdIII and the transition metal ion. Nuclear magnetic relaxation dispersion (NMRD) analysis confirms that the observed differences in relaxivity are associated with the modulation of T1e at GdIII. These results clearly demonstrate that magnetic exchange coupling between GdIII and a transition metal ion can provide a significant decrease in T1e (and therefore the relaxivity of GdIII). This design strategy is being exploited to prepare new generations of preclinical bioresponsive MR imaging probes with near zero-background.
Collapse
Affiliation(s)
| | | | | | - Giacomo Parigi
- Department of Chemistry and Magnetic Resonance Center (CERM) , University of Florence , Via L. Sacconi 6 , 50019 Sesto Fiorentino , Italy
| | - Claudio Luchinat
- Department of Chemistry and Magnetic Resonance Center (CERM) , University of Florence , Via L. Sacconi 6 , 50019 Sesto Fiorentino , Italy
| | | | | |
Collapse
|
18
|
Zhu W, Fang H, He JX, Jia WH, Yao H, Wei TB, Lin Q, Zhang YM. Novel 2-(hydroxy)-naphthyl imino functionalized pillar[5]arene: a highly efficient supramolecular sensor for tandem fluorescence detection of Fe3+ and F− and the facile separation of Fe3+. NEW J CHEM 2018. [DOI: 10.1039/c8nj01335g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel pillar[5]arene-based supramolecular sensor (AP5N) for tandem fluorescence detection of Fe3+ and F− was successfully prepared. Interestingly, the sensor AP5N shows excellent facile separation property for Fe3+.
Collapse
Affiliation(s)
- Wei Zhu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hu Fang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jun-Xia He
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Wen-Hua Jia
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
19
|
Benet M, Villabona M, Llavina C, Mena S, Hernando J, Al-Kaysi RO, Guirado G. Fluorescent "Turn-Off" Detection of Fluoride and Cyanide Ions Using Zwitterionic Spirocyclic Meisenheimer Compounds. Molecules 2017; 22:E1842. [PMID: 29077037 PMCID: PMC6150180 DOI: 10.3390/molecules22111842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 01/10/2023] Open
Abstract
Stable zwitterionic spirocyclic Meisenheimer compounds were synthesized using a one-step reaction between picric acid and diisopropyl (ZW1) or dicyclohexyl (ZW3) carbodiimide. A solution of these compounds displays intense orange fluorescence upon UV or visible light excitation, which can be quenched or "turned-off" by adding a mole equivalent amount of F- or CN- ions in acetonitrile. Fluorescence is not quenched in the presence of other ions such as Cl-, Br-, I-, NO₂-, NO₃-, or H₂PO₄-. These compounds can therefore be utilized as practical colorimetric and fluorescent probes for monitoring the presence of F- or CN- anions.
Collapse
Affiliation(s)
- Marina Benet
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Bellaterra, 08193 Barcelona, Spain.
| | - Marc Villabona
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Bellaterra, 08193 Barcelona, Spain.
| | - Carles Llavina
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Bellaterra, 08193 Barcelona, Spain.
| | - Silvia Mena
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Bellaterra, 08193 Barcelona, Spain.
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Bellaterra, 08193 Barcelona, Spain.
| | - Rabih O Al-Kaysi
- College of Science and Health Professions-3124, King Saud bin Abdulaziz University for Health Sciences/King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, 11426 Riyadh, Saudi Arabia.
| | - Gonzalo Guirado
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
20
|
Wang Y, Wang X, Meng Q, Jia H, Zhang R, Zhu P, Song R, Feng H, Zhang Z. A gadolinium(III)-coumarin complex based MRI/Fluorescence bimodal probe for the detection of fluoride ion in aqueous medium. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Feng H, Wang Y, Jia H, Zhang R, Han Q, Meng Q, Zhang Z. Selective detection of inorganic phosphates in live cells based on a responsive fluorescence probe. NEW J CHEM 2017. [DOI: 10.1039/c7nj01983a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new activatable fluorescence probe has been designed and synthesized for inorganic phosphate detection in buffer and live cells.
Collapse
Affiliation(s)
- Huan Feng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Yue Wang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Hongmin Jia
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Run Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
- Australian Institute for Bioengineering and Nanotechnology
| | - Qian Han
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Qingtao Meng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| |
Collapse
|
22
|
Wang Y, Song R, Feng H, Guo K, Meng Q, Chi H, Zhang R, Zhang Z. Visualization of Fluoride Ions In Vivo Using a Gadolinium(III)-Coumarin Complex-Based Fluorescence/MRI Dual-Modal Probe. SENSORS (BASEL, SWITZERLAND) 2016; 16:E2165. [PMID: 27999298 PMCID: PMC5191144 DOI: 10.3390/s16122165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022]
Abstract
A new Gadolinium(III)-coumarin complex, DO3A-Gd-CA, was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F-) in aqueous media and mice. DO3A-Gd-CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid (CA) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd-CA, the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity (r₁). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3σ/slope. The desirable features of the proposed DO3A-Gd-CA, such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd-CA could be potentially used in biomedical diagnosis fields.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Renfeng Song
- Ansteel Mining Engineering Corporation, Anshan 114002, China.
| | - Huan Feng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Ke Guo
- Ansteel Mining Engineering Corporation, Anshan 114002, China.
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Haijun Chi
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Run Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|