1
|
Monteiro RP, Calhau IB, Gomes AC, Lopes AD, Da Silva JP, Gonçalves IS, Pillinger M. β-Cyclodextrin and cucurbit[7]uril as protective encapsulation agents of the CO-releasing molecule [CpMo(CO) 3Me]. Dalton Trans 2024. [PMID: 39526807 DOI: 10.1039/d4dt01863j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The CO releasing ability of the complex [CpMo(CO)3Me] (1) (Cp = η5-C5H5) has been assessed using a deoxymyoglobin-carbonmonoxymyoglobin assay. In the dark, CO release was shown to be promoted by the reducing agent sodium dithionite in a concentration-dependent manner. At lower dithionite concentrations, where dithionite-induced CO release was minimised, irradiation at 365 nm with a low-power UV lamp resulted in a strongly enhanced release of CO (half-life (t1/2) = 6.3 min), thus establishing complex 1 as a photochemically activated CO-releasing molecule. To modify the CO release behaviour of the tricarbonyl complex, the possibility of obtaining inclusion complexes between 1 and β-cyclodextrin (βCD) or cucurbit[7]uril (CB7) by liquid-liquid interfacial precipitation (1@βCD(IP)), liquid antisolvent precipitation (1@CB7), and mechanochemical ball-milling (1@βCD(BM)) was evaluated. All these methods led to the isolation of a true inclusion compound (albeit mixed with nonincluded 1 for 1@βCD(BM)), as evidenced by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), FT-IR and FT-Raman spectroscopies, and 13C{1H} magic angle spinning (MAS) NMR. PXRD showed that 1@βCD(IP) was microcrystalline with a channel-type crystal packing structure. High resolution mass spectrometry studies revealed the formation of aqueous phase 1 : 1 complexes between 1 and CB7. For 1@βCD(IP) and 1@CB7, the protective effects of the hosts led to a decrease in the CO release rates with respect to nonincluded 1. βCD had the strongest effect, with a ca. 10-fold increase in t1/4 for dithionite-induced CO release, and a ca. 2-fold increase in t1/2 for photoinduced CO release.
Collapse
Affiliation(s)
- Rodrigo P Monteiro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - André D Lopes
- Centre of Marine Sciences (CCMAR/CIMAR LA), and Department of Chemistry and Pharmacy, FCT, University of the Algarve, 8005-039 Faro, Portugal
| | - José P Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), and Department of Chemistry and Pharmacy, FCT, University of the Algarve, 8005-039 Faro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Mu Y, Yang X, Xie Y, Luo J, Wu S, Yang J, Zhao W, Chen J, Weng Y. Carbon monoxide-releasing Vehicle CO@TPyP-FeMOFs modulating macrophages phenotype in inflammatory wound healing. Nitric Oxide 2024; 149:49-59. [PMID: 38889652 DOI: 10.1016/j.niox.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024]
Abstract
Healing of chronic wounds has been critically limited by prolonged inflammation. Carbon monoxide (CO) is a biologically active molecule with high potential based on its efficacy in modulating inflammation, promoting wound healing and tissue remodeling. Strategies to use CO as a gaseous drug to chronic wounds have emerged, but controlling the sustained release of CO at the wound site remains a major challenge. In this work, a porphyrin-Fe based metal organic frameworks, TPyP-FeMOFs was prepared. The synthesized TPyP-FeMOFs was high-temperature vacuum activated (AcTPyP-FeMOFs) and AcTPyP-FeMOFs had a relatively high Fe (II) content. CO sorption isotherms showed that AcTPyP-FeMOFs chemisorbed CO and thus CO release was sustained and prolonged. In vitro evaluation results showed that CO@TPyP-FeMOFs reduced the inflammatory level of lipopolysaccharide (LPS) activated macrophages, polarized macrophages to M2 anti-inflammatory phenotype, and promoted the proliferation of fibroblasts by altering the pathological microenvironment. In vivo study confirmed CO@TPyP-FeMOFs promoted healing in a LPS model of delayed cutaneous wound repair and reduced macrophages and neutrophils recruitment. Both in vitro and in vivo studies verified that CO@TPyP-FeMOFs acted on macrophages by modulating phenotype and inflammatory factor expression. Thus, CO release targeting macrophages and pathological microenvironment modulation presented a promising strategy for wound healing.
Collapse
Affiliation(s)
- Yixian Mu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xinlei Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yinhong Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sui Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - JinMing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wei Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junying Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
3
|
Yi J, Liu L, Gao W, Zeng J, Chen Y, Pang E, Lan M, Yu C. Advances and perspectives in phototherapy-based combination therapy for cancer treatment. J Mater Chem B 2024; 12:6285-6304. [PMID: 38895829 DOI: 10.1039/d4tb00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), has the advantages of spatiotemporal selectivity, non-invasiveness, and negligible drug resistance. Phototherapy has been approved for treating superficial epidermal tumors. However, its therapeutic efficacy is limited by the hypoxic tumor microenvironment and the highly expressed heat shock protein. Moreover, poor tissue penetration and focused irradiation laser region in phototherapy make treating deep tissues and metastatic tumors challenging. Combination therapy strategies, which integrate the advantages of each treatment and overcome their disadvantages, can significantly improve the therapeutic efficacy. Recently, many combination therapy strategies have been reported. Our study summarizes the strategies used for combining phototherapy with other cancer treatments such as chemotherapy, immunotherapy, sonodynamic therapy, gas therapy, starvation therapy, and chemodynamic therapy. Some research cases were selected to analyze the combination therapy effect, delivery platform feature, and synergetic anticancer mechanisms. Moreover, additional research cases are summarized in the tables. This review provides strong evidence that phototherapy-based combination strategies can enhance the anticancer effect compared with phototherapy alone. Additionally, the challenges and future perspectives associated with these combinational therapies are discussed.
Collapse
Affiliation(s)
- Jianing Yi
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Luyao Liu
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Wenjie Gao
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Jie Zeng
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Yongzhi Chen
- Department of Hepatobiliary surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - E Pang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
4
|
Romão CC, Mendes SS, Rebelo C, Carvalho SM, Saraiva LM. Antimicrobial and anticancer properties of carbon monoxide releasing molecules of the fac-[Re(CO) 3(N-N)L] + family. Dalton Trans 2024; 53:11009-11020. [PMID: 38874948 DOI: 10.1039/d4dt00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The toxicity profile of fac-[Re(CO)3(N-N)L]+ complexes against microbial and tumoral cells has been extensively studied, primarily focusing on modifications to the bidentate diimine (N-N) ligand. However, less attention has been paid to modifications of the axial ligand L, which is perpendicular to the Re-N-N plane. This study reveals that the high toxicity of the fac-[Re(CO)3(bpy)(Ctz)]+ complex may be attributed to the structural effect of the trityl (CPh3) group present in clotrimazole, as removal of phenyl rings causes a significant decrease in the activity against Staphylococcus aureus (S. aureus). Moreover, substitution of the 1-tritylimidazole ligand by the structurally related ligands PPh3 and PCy3 maintains similarly high activity levels. These findings contribute to understanding the interactions of toxic complexes with bacterial membranes, suggesting that the ligand structures play a crucial role in inhibiting cell wall synthesis processes, potentially including Lipid II synthesis. Compounds with Ph3E (E = C-imidazole; P) groups also showed to be 10 times more toxic than cisplatin against three mammalian cell lines (IC50: 2-4 μM). In contrast, the analogue 1-benzylimidazole and 1-tert-butylimidazole derivatives were as toxic as cisplatin. We observed that the decomposition of the [Re(I)(CO)3] fragment inside mammalian cell lines liberates CO, which is expected to exert biological effects. Therefore, compounds of this family possessing the structural motif Ph3E seem to combine high antimicrobial and antitumoral activities, the latter being much higher than that of cisplatin.
Collapse
Affiliation(s)
- Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Sofia S Mendes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Cátia Rebelo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Sandra M Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| |
Collapse
|
5
|
Ning X, Zhu X, Wang Y, Yang J. Recent advances in carbon monoxide-releasing nanomaterials. Bioact Mater 2024; 37:30-50. [PMID: 38515608 PMCID: PMC10955104 DOI: 10.1016/j.bioactmat.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
As an endogenous signaling molecule, carbon monoxide (CO) has emerged as an increasingly promising option regarding as gas therapy due to its positive pharmacological effects in various diseases. Owing to the gaseous nature and potential toxicity, it is particularly important to modulate the CO release dosages and targeted locations to elucidate the biological mechanisms of CO and facilitate its clinical applications. Based on these, diverse CO-releasing molecules (CORMs) have been developed for controlled release of CO in biological systems. However, practical applications of these CORMs are limited by several disadvantages including low stability, poor solubility, weak releasing controllability, random diffusion, and potential toxicity. In light of rapid developments and diverse advantages of nanomedicine, abundant nanomaterials releasing CO in controlled ways have been developed for therapeutic purposes across various diseases. Due to their nanoscale sizes, diversified compositions and modified surfaces, vast CO-releasing nanomaterials (CORNMs) have been constructed and exhibited controlled CO release in specific locations under various stimuli with better pharmacokinetics and pharmacodynamics. In this review, we present the recent progress in CORNMs according to their compositions. Following a concise introduction to CO therapy, CORMs and CORNMs, the representative research progress of CORNMs constructed from organic nanostructures, hybrid nanomaterials, inorganic nanomaterials, and nanocomposites is elaborated. The basic properties of these CORNMs, such as active components, CO releasing mechanisms, detection methods, and therapeutic applications, are discussed in detail and listed in a table. Finally, we explore and discuss the prospects and challenges associated with utilizing nanomaterials for biological CO release.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinghui Yang
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
6
|
Mansour AM, Khaled RM, Ferraro G, Shehab OR, Merlino A. Metal-based carbon monoxide releasing molecules with promising cytotoxic properties. Dalton Trans 2024; 53:9612-9656. [PMID: 38808485 DOI: 10.1039/d4dt00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Carbon monoxide, the "silent killer" gas, is increasingly recognised as an important signalling molecule in human physiology, which has beneficial biological properties. A particular way of achieving controlled CO administration is based on the use of biocompatible molecules that only release CO when triggered by internal or external factors. These approaches include the development of pharmacologically effective prodrugs known as CO releasing molecules (CORMs), which can supply biological systems with CO in well-regulated doses. An overview of transition metal-based CORMs with cytotoxic properties is here reported. The mechanisms at the basis of the biological activities of these molecules and their potential therapeutical applications with respect to their stability and CO releasing properties have been discussed. The activation of metal-based CORMs is determined by the type of metal and by the nature and features of the auxiliary ligands, which affect the metal core electronic density and therefore the prodrug resistance towards oxidation and CO release ability. A major role in regulating the cytotoxic properties of these CORMs is played by CO and/or CO-depleted species. However, several mysteries concerning the cytotoxicity of CORMs remain as intriguing questions for scientists.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
7
|
Gandra UR, Jana B, Hammer P, Mohideen MIH, Neugebauer U, Schiller A. Lysosome targeted visible light-induced photo-CORM for simultaneous CO-release and singlet oxygen generation. Chem Commun (Camb) 2024; 60:2098-2101. [PMID: 38295368 DOI: 10.1039/d4cc00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
We report a specific lysosome targeted light-responsive CO-releasing molecule (Lyso-CORM). Lyso-CORM is very stable under dark conditions. CO and singlet oxygen (1O2) generation was effectively triggered under one photon and two photon excitation (800 nm) conditions. The cytotoxicity results demonstrated that Lyso-CORM showed good phototoxicity due to the synergistic effect of CO and 1O2 release, and its good biocompatibility, negligible dark toxicity and specific lysosome targeting make Lyso-CORM a potent candidate for phototherapeutic applications.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany.
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Batakrishna Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Patrick Hammer
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - M Infas H Mohideen
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Centre (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, D-07745 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Alexander Schiller
- Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany.
| |
Collapse
|
8
|
Zrilić SS, Živković JM, Zarić SD. Computational and crystallographic study of hydrogen bonds in the second coordination sphere of chelated amino acids with a free water molecule: Influence of complex charge and metal ion. J Inorg Biochem 2024; 251:112442. [PMID: 38100904 DOI: 10.1016/j.jinorgbio.2023.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Hydrogen bonds of glycine complexes were calculated using quantum chemistry calculations at M06L-GD3/def2-TZVPP level and by analyzing the crystal structures from the Cambridge Structural Database (CSD). One hydrogen bond where amino acid plays the role of the H-donor (NH/O), and two where it plays the role of the H-acceptor (O1/HO, O1 is a coordinated oxygen atom, and, O2/HO, O2 is a non-coordinated oxygen atom) were investigated. The calculations were done on octahedral nickel(II), square pyramidal copper(II), square planar copper(II), palladium(II), and platinum(II) glycine complexes with different charges adjusted using water(s) and/or chlorine ion(s) as the remaining ligands. For NH/O hydrogen bond, interaction energies of neutral complexes are the weakest, from -5.2 to -7.2 kcal/mol for neutral, stronger for singly positive, from -8.3 to -12.1 kcal/mol, and the strongest for doubly positive complex, -16.9 kcal/mol. For O1/HO and O2/HO interactions, neutral complexes have weaker interaction energies (from -2.2 to -5.1 kcal/mol for O1/HO, and from -3.7 to -5.0 kcal/mol for O2/HO), than for singly negative complexes (from -6.9 to -8.2 kcal/mol for O1/HO, and from -8.0 to -9.0 kcal/mol for O2/HO). Additionally to the complex charge, metal oxidation number, coordination number, and metal atomic number also influence the hydrogen bond strength, however, the influence is smaller.
Collapse
Affiliation(s)
- Sonja S Zrilić
- Innovation Center of the Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia
| | - Jelena M Živković
- Innovation Center of the Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia
| | - Snežana D Zarić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
9
|
Opoku-Damoah Y, Zhang R, Ta HT, Xu ZP. Simultaneous Light-Triggered Release of Nitric Oxide and Carbon Monoxide from a Lipid-Coated Upconversion Nanosystem Inhibits Colon Tumor Growth. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038959 DOI: 10.1021/acsami.3c13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Gas therapy has gained noteworthy attention in biomedical research, with the rise of gas-releasing molecules enhancing their therapeutic potential, especially when integrated into nano-based drug delivery systems. Herein, we present a lipid-coated gas delivery system to simultaneously shuttle two gas-releasing molecules carrying nitric oxide (NO) and carbon monoxide (CO), respectively. Upconversion nanoparticles (UCNPs) are designed to generate photons at 360 nm upon 808 nm of near-infrared (NIR) irradiation. These in situ-generated UV photons trigger simultaneous NO and CO release from S-nitrosoglutathione (GSNO) and the CO-releasing molecule (CORM), respectively, which are coloaded into lipid-coated UCNP/GSNO/CORM/FA nanoparticles (LUGCF). LUGCF with a GSNO/CORM mass ratio of 2:1 is determined to be optimal in terms of synergistically instigating apoptosis in HCT116 and CT26 colon cancer cells, where both NO/CO are released and subsequent production of ROS are detected. This CO/NO combination nanoplatform exhibits a very effective inhibition of colon tumor growth in vivo at relatively low doses upon a mild 808 nm irradiation. Overall, we effectively integrated two therapeutic gas-releasing molecules in one NIR-responsive nanosystem, presenting a promising therapeutic strategy for future biomedical applications in dual-gas cancer therapy.
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Trallero J, Camacho M, Marín-García M, Álvarez-Marimon E, Benseny-Cases N, Barnadas-Rodríguez R. Properties and cellular uptake of photo-triggered mixed metallosurfactant vesicles intended for controlled CO delivery in gas therapy. Colloids Surf B Biointerfaces 2023; 228:113422. [PMID: 37356136 DOI: 10.1016/j.colsurfb.2023.113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The scientific relevance of carbon monoxide has increased since it was discovered that it is a gasotransmitter involved in several biological processes. This fact stimulated research to find a secure and targeted delivery and lead to the synthesis of CO-releasing molecules. In this paper we present a vesicular CO delivery system triggered by light composed of a synthetized metallosurfactant (TCOL10) with two long carbon chains and a molybdenum-carbonyl complex. We studied the characteristics of mixed TCOL10/phosphatidylcholine metallosomes of different sizes. Vesicles from 80 to 800 nm in diameter are mainly unilamellar, do not disaggregate upon dilution, in the dark are physically and chemically stable at 4 °C for at least one month, and exhibit a lag phase of about 4 days before they show a spontaneous CO release at 37 °C. Internalization of metallosomes by cells was studied as function of the incubation time, and vesicle concentration and size. Results show that large vesicles are more efficiently internalized than the smaller ones in terms of the percentage of cells that show TCOL10 and the amount of drug that they take up. On balance, TCOL10 metallosomes constitute a promising and viable approach for efficient delivery of CO to biological systems.
Collapse
Affiliation(s)
- Jan Trallero
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Mercedes Camacho
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau - Centre CERCA, Genomics of Complex Diseases, Barcelona, Spain
| | - Maribel Marín-García
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Elena Álvarez-Marimon
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Núria Benseny-Cases
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain; Consorcio para la Construcción Equipamiento y Explotacion del Laboratorio de Luz Sincrotron, ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Catalonia, Spain.
| | - Ramon Barnadas-Rodríguez
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
11
|
Silva AF, Calhau IB, Gomes AC, Valente AA, Gonçalves IS, Pillinger M. Tricarbonyl-Pyrazine-Molybdenum(0) Metal-Organic Frameworks for the Storage and Delivery of Biologically Active Carbon Monoxide. ACS Biomater Sci Eng 2023; 9:1909-1918. [PMID: 36996427 PMCID: PMC10091354 DOI: 10.1021/acsbiomaterials.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Metal-organic frameworks (MOFs) have high potential as nanoplatforms for the storage and delivery of therapeutic gasotransmitters or gas-releasing molecules. The aim of the present study was to open an investigation into the viability of tricarbonyl-pyrazine-molybdenum(0) MOFs as carbon monoxide-releasing materials (CORMAs). A previous investigation found that the reaction of Mo(CO)6 with excess pyrazine (pyz) in a sealed ampoule gave a mixture comprising a major triclinic phase with pyz-occupied hexagonal channels, formulated as fac-Mo(CO)3(pyz)3/2·1/2pyz (Mo-hex), and a minor dense cubic phase, formulated as fac-Mo(CO)3(pyz)3/2 (Mo-cub). In the present work, an open reflux method in toluene has been optimized for the large-scale synthesis of the pure Mo-cub phase. The crystalline solids Mo-hex and Mo-cub were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), FT-IR and FT-Raman spectroscopies, and 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy. The release of CO from the MOFs was studied by the deoxy-myoglobin (deoxy-Mb)/carbonmonoxy-myoglobin (MbCO) UV-vis assay. Mo-hex and Mo-cub release CO upon contact with a physiological buffer in the dark, delivering 0.35 and 0.22 equiv (based on Mo), respectively, after 24 h, with half-lives of 3-4 h. Both materials display high photostability such that the CO-releasing kinetics is not affected by irradiation of the materials with UV light. These materials are attractive as potential CORMAs due to the slow release of a high CO payload. In the solid-state and under open air, Mo-cub underwent almost complete decarbonylation over a period of 4 days, corresponding to a theoretical CO release of 10 mmol per gram of material.
Collapse
Affiliation(s)
- Andreia F Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anabela A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Potential effects of carbon monoxide donor and its nanoparticles on experimentally induced gastric ulcer in rats. Inflammopharmacology 2023; 31:1495-1510. [PMID: 36882659 DOI: 10.1007/s10787-023-01166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
The prevalence of gastric ulcers is increasing worldwide, especially those brought on by non-steroidal anti-inflammatory drugs (NSAIDS), so prevention is extremely crucial. The protective potential of carbon monoxide (CO) in several inflammatory disorders has been clarified. The goal of the current study was to investigate the gastroprotective effect of CO produced by its pharmacological donor (CORM2) and its nanoparticles (NPs) against indomethacin (INDO)-induced ulcers. Investigations on CORM2's dose-dependent effects were also conducted. For induction of gastric ulcer, 100 mg kg-1 of INDO was given orally. Before ulcer induction, CORM2 (5, 10, and 15 mg kg-1), CORM2 nanoparticles (5 mg kg-1), or ranitidine (30 mg kg-1) were given intraperitoneally for 7 days. Ulcer score, gastric acidity, gastric contents of malondialdehyde (MDA), nitric oxide (NO), heme oxygenase-1 (HO-1), and carboxyhemoglobin (COHb) blood content were estimated. Additionally, gene expression of nuclear factor erythroid 2-related factor 2 (NRF2) and immunohistochemical staining of cyclooxygenase-1 (COX-1) as well as cyclooxygenase-2 (COX-2) were analyzed. Results demonstrated a substantial dose-dependent decrease in ulcer score, pro-inflammatory indicators, and oxidative stress markers with CORM2 and its NPs. Furthermore, CORM2 and its NPs markedly increased NRF2, COX-1, and HO-1, but CORM2 NPs outperformed CORM2 in this regard. In conclusion, the CO released by CORM2 can protect against INDO-induced gastric ulcers dose dependently, and the highest used dose had no effect on COHb concentration.
Collapse
|
13
|
Sakla R, Ghosh A, Kumar V, Kanika, Das P, Sharma PK, Khan R, Jose DA. Light activated simultaneous release and recognition of biological signaling molecule carbon monoxide (CO). Methods 2023; 210:44-51. [PMID: 36642393 DOI: 10.1016/j.ymeth.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The therapeutic action of carbon monoxide (CO) is very well known and has been studied on various types of tissues and animals. However, real-time spatial and temporal tracking and release of CO is still a challenging task. This paper reported an amphiphilic CO sensing probe NP and phospholipid 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) based nanoscale vesicular sensing system Ves-NP consisting of NP. The liposomal sensing system (Ves-NP) showed good selectivity and sensitivity for CO without any interference from other relevant biological analytes. Detection of CO is monitored by fluorescence OFF-ON signal. Ves-NP displayed LOD of 5.94 µM for CO detection with a response time of 5 min. Further, in a novel attempt, Ves-NP is co-embedded with the amphiphilic CO-releasing molecule 1-Mn(CO)3 to make an analyte replacement probe Ves-NP-CO. Having a both CO releasing and sensing moiety at the surface of the same liposomal system Ves-NP-CO play a dual role. Ves-NP-CO is used for the simultaneous release and recognition of CO that can be controlled by light. Thus, in this novel approach, for the first time we have attached both the release and recognition units of CO in the vesicular surface, both release and recognition simultaneously monitored by the change in fluorescent OFF-ON signal.
Collapse
Affiliation(s)
- Rahul Sakla
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India; Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Amrita Ghosh
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Vinod Kumar
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Tamil Nadu, India
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - D Amilan Jose
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India.
| |
Collapse
|
14
|
Shah S, Naithani N, Sahoo SC, Neelakandan PP, Tyagi N. Multifunctional BODIPY embedded non-woven fabric for CO release and singlet oxygen generation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112631. [PMID: 36630766 DOI: 10.1016/j.jphotobiol.2022.112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Materials that can simultaneously release CO and generate singlet oxygen upon visible light irradiation under ambient conditions are highly desirable for therapeutic applications. Furthermore, materials that can sequester the undesirable side products into the matrix without affecting the release of CO and singlet oxygen generation would allow them to be used for practical applications. Focussing on these aspects, we prepared two dipicolylamine appended BODIPY‑manganese(I) tricarbonyl complexes wherein the metal core was systematically tethered at 5- and 8- positions of the BODIPY core. The complexes were embedded into a polymer matrix via electrospinning and the resulting non-woven fabrics showed CO release as well as singlet oxygen generation upon irradiation. While the hybrid materials were non-toxic in dark, they were strongly photocytotoxic to c6 cancer cells when exposed to light. Rapid CO release alongside significant singlet oxygen generation, indefinite dark stability, good biocompatibility and negligible dark toxicity makes these fabrics a potent candidate for phototherapeutic applications.
Collapse
Affiliation(s)
- Sanchita Shah
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Neeraj Naithani
- Semi-Conductor Laboratory, Department of Space, Sector 72, Mohali 160071, Punjab, India
| | - Subash Chandra Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh 160014, Punjab, India
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Nidhi Tyagi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| |
Collapse
|
15
|
Water-Soluble Carbon Monoxide-Releasing Molecules (CORMs). Top Curr Chem (Cham) 2022; 381:3. [PMID: 36515756 DOI: 10.1007/s41061-022-00413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Carbon monoxide-releasing molecules (CORMs) are promising candidates for producing carbon monoxide in the mammalian body for therapeutic purposes. At higher concentrations, CO has a harmful effect on the mammalian organism. However, lower doses at a controlled rate can provide cellular signaling for mandatory pharmacokinetic and pathological activities. To date, exploring the therapeutic implications of CO dose as a prodrug has attracted much attention due to its therapeutic significance. There are two different methods of CO insertion, i.e., indirect and direct exogenous insertion. Indirect exogenous insertion of CO suggests an advantage of reduced toxicity over direct exogenous insertion. For indirect exogenous insertion, researchers are facing the issue of tissue selectivity. To solve this issue, developers have considered the newly produced CORMs. Herein, metal carbonyl complexes (MCCs) are covalently linked with CO molecules to produce different CORMs such as CORM-1, CORM-2, and CORM-3, etc. All these CORMs required exogenous CO insertion to achieve the therapeutic targets at the optimized rate under peculiar conditions or/and triggering. Meanwhile, the metal residue was generated from i-CORMs, which can propagate toxicity. Herein, we explain CO administration, water-soluble CORMs, tissue accumulation, and cytotoxicity of depleted CORMs and the kinetic profile of CO release.
Collapse
|
16
|
Recent advances in colorimetric and fluorometric sensing of neurotransmitters by organic scaffolds. Eur J Med Chem 2022; 244:114820. [DOI: 10.1016/j.ejmech.2022.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
|
17
|
Opoku‐Damoah Y, Zhang R, Ta HT, Xu ZP. Therapeutic gas-releasing nanomedicines with controlled release: Advances and perspectives. EXPLORATION (BEIJING, CHINA) 2022; 2:20210181. [PMID: 37325503 PMCID: PMC10190986 DOI: 10.1002/exp.20210181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticle-based drug delivery has become one of the most popular approaches for maximising drug therapeutic potentials. With the notable improvements, a greater challenge hinges on the formulation of gasotransmitters with unique challenges that are not met in liquid and solid active ingredients. Gas molecules upon release from formulations for therapeutic purposes have not really been discussed extensively. Herein, we take a critical look at four key gasotransmitters, that is, carbon monoxide (CO), nitric oxide (NO), hydrogen sulphide (H2S) and sulphur dioxide (SO2), their possible modification into prodrugs known as gas-releasing molecules (GRMs), and their release from GRMs. Different nanosystems and their mediatory roles for efficient shuttling, targeting and release of these therapeutic gases are also reviewed extensively. This review thoroughly looks at the diverse ways in which these GRM prodrugs in delivery nanosystems are designed to respond to intrinsic and extrinsic stimuli for sustained release. In this review, we seek to provide a succinct summary for the development of therapeutic gases into potent prodrugs that can be adapted in nanomedicine for potential clinical use.
Collapse
Affiliation(s)
- Yaw Opoku‐Damoah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Hang T. Ta
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQueenslandAustralia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
18
|
Hemmersbach L, Schreiner Y, Zhang X, Dicke F, Hünemeyer L, Neudörfl J, Fleming T, Yard B, Schmalz H. Synthesis and Biological Evaluation of Water‐Soluble Esterase‐Activated CO‐Releasing Molecules Targeting Mitochondria. Chemistry 2022; 28:e202201670. [PMID: 35771078 PMCID: PMC9543658 DOI: 10.1002/chem.202201670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Lars Hemmersbach
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | - Yannick Schreiner
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | - Xinmiao Zhang
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | - Finn Dicke
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | - Leon Hünemeyer
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | | | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry University Hospital of Heidelberg 69120 Heidelberg Germany
- German Center for Diabetes Research (DZD) 85764 Neuherberg Germany
| | - Benito Yard
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | | |
Collapse
|
19
|
Photochemical assisted novel formation of δ-lactone utilizing trimethylsilylacetylene, isopropanol and ironpentacarbonyl. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Carné-Sánchez A, Ikemura S, Sakaguchi R, Craig GA, Furukawa S. Photoactive carbon monoxide-releasing coordination polymer particles. Chem Commun (Camb) 2022; 58:9894-9897. [PMID: 35975475 DOI: 10.1039/d2cc03907a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of photoactive carbon monoxide-releasing coordination polymer particles through the assembly of Mn(I) carbonyl complexes with bis(imidazole) ligands. The use of Mn(I) carbonyl complexes as metallic nodes in the coordination network avoids the potential for aggregation-induced self-quenching, favouring their use in the solid state.
Collapse
Affiliation(s)
- Arnau Carné-Sánchez
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Shuya Ikemura
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Reiko Sakaguchi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Gavin A Craig
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL Glasgow, Scotland, UK
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
21
|
Wang M, Murata K, Koike Y, Jonusauskas G, Furet A, Bassani DM, Saito D, Kato M, Shimoda Y, Miyata K, Onda K, Ishii K. A Red‐Light‐Driven CO‐Releasing Complex: Photoreactivities and Excited‐State Dynamics of Highly Distorted Tricarbonyl Rhenium Phthalocyanines. Chemistry 2022; 28:e202200716. [DOI: 10.1002/chem.202200716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Mengfei Wang
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kei Murata
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Yosuke Koike
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | | | - Amaury Furet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Dario M. Bassani
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Applied Chemistry for Environment School of Biological and Environmental Sciences Kwansei Gakuin University 2-1 Gakuen Sanda-shi Hyogo 669-1337 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Applied Chemistry for Environment School of Biological and Environmental Sciences Kwansei Gakuin University 2-1 Gakuen Sanda-shi Hyogo 669-1337 Japan
| | - Yuushi Shimoda
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kiyoshi Miyata
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ken Onda
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
22
|
Taimisto M, Bajorek T, Rautiainen JM, Pakkanen TA, Oilunkaniemi R, Laitinen RS. Experimental and computational investigation on the formation pathway of [RuCl 2(CO) 2(ERR') 2] (E = S, Se, Te; R, R' = Me, Ph) from [RuCl 2(CO) 3] 2 and ERR'. Dalton Trans 2022; 51:11747-11757. [PMID: 35856630 DOI: 10.1039/d2dt02018a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pathways to the formation of the series of [RuCl2(CO)2(ERR')2] (E = S, Se, Te; R, R' = Me, Ph) complexes from [RuCl2(CO)3]2 and ERR' have been explored experimentally in THF and CH2Cl2, and computationally by PBE0-D3/def2-TZVP calculations. The end-products and some reaction intermediates have been isolated and identified by NMR spectroscopy, and their crystal structures have been determined by X-ray diffraction. The relative stabilities of the [RuCl2(CO)2(ERR')2] isomers follow the order cct > ccc > tcc > ttt ≈ ctc (the terms c/t refer to cis/trans arrangement of the ligands in the order of Cl, CO, and ERR'). The yields were rather similar in both solvents, but the reactions were significantly faster in THF than in CH2Cl2. The highest yields were observed for the telluroether complexes, and the yields decreased with lighter chalcogenoethers. PBE0-D3/def2-TZVP calculations indicated that the reaction path is independent of the nature of the solvent. The substitution of one CO ligand of the intermediate [RuCl2(CO)3(ERR')] by the second ERR' shows the highest activation barrier and is the rate-determining step in all reactions. The observed faster reaction rate in THF than in CH2Cl2 upon reflux can therefore be explained by the higher boiling point of THF. At room temperature the reactions in both solvents proceed equally slowly. When the reaction is carried out in THF, the formation of [RuCl2(CO)3(THF)] is also observed, and the reaction may proceed with the substitution of THF by ERR'. The formation of the THF complex, however, is not necessary for the dissociation of the [RuCl2(CO)3]2. Thermal energy at room temperature is sufficient to cleave one of the bridging Ru-Cl bonds. The intermediate thus formed undergoes a facile reaction with ERR'. This mechanism is viable also in non-coordinating CH2Cl2.
Collapse
Affiliation(s)
- Marjaana Taimisto
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| | - Tom Bajorek
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| | - J Mikko Rautiainen
- Department of Chemistry and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Tapani A Pakkanen
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| | - Raija Oilunkaniemi
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| | - Risto S Laitinen
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| |
Collapse
|
23
|
Lee SX, Tan CH, Mah WL, Wong RCS, Manan NSA, Cheow YL, Sim KS, Tan KW. Group 6 photo-activable carbon monoxide-releasing molecules (PhotoCORMs) with 1’10-phenanthroline based ligand as potential anti-proliferative and anti-microbial agents. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
25
|
Heme oxygenase-1, carbon monoxide, and malaria – The interplay of chemistry and biology. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Appetecchia F, Consalvi S, Berrino E, Gallorini M, Granese A, Campestre C, Carradori S, Biava M, Poce G. A Novel Class of Dual-Acting DCH-CORMs Counteracts Oxidative Stress-Induced Inflammation in Human Primary Tenocytes. Antioxidants (Basel) 2021; 10:antiox10111828. [PMID: 34829699 PMCID: PMC8614895 DOI: 10.3390/antiox10111828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Carbon monoxide (CO) can prevent cell and tissue damage by restoring redox homeostasis and counteracting inflammation. CO-releasing molecules (CORMs) can release a controlled amount of CO to cells and are emerging as a safer therapeutic alternative to delivery of CO in vivo. Sustained oxidative stress and inflammation can cause chronic pain and disability in tendon-related diseases, whose therapeutic management is still a challenge. In this light, we developed three small subsets of 1,5-diarylpyrrole and pyrazole dicobalt(0)hexacarbonyl (DCH)-CORMs to assess their potential use in musculoskeletal diseases. A myoglobin-based spectrophotometric assay showed that these CORMs act as slow and efficient CO-releasers. Five selected compounds were then tested on human primary-derived tenocytes before and after hydrogen peroxide stimulation to assess their efficacy in restoring cell redox homeostasis and counteracting inflammation in terms of PGE2 secretion. The obtained results showed an improvement in tendon homeostasis and a cytoprotective effect, reflecting their activity as CO-releasers, and a reduction of PGE2 secretion. As these compounds contain structural fragments of COX-2 selective inhibitors, we hypothesized that such a composite mechanism of action results from the combination of CO-release and COX-2 inhibition and that these compounds might have a potential role as dual-acting therapeutic agents in tendon-derived diseases.
Collapse
Affiliation(s)
- Federico Appetecchia
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Emanuela Berrino
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
| | - Arianna Granese
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Cristina Campestre
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| |
Collapse
|
27
|
Cheng J, Hu J. Recent Advances on Carbon Monoxide Releasing Molecules for Antibacterial Applications. ChemMedChem 2021; 16:3628-3634. [PMID: 34613654 DOI: 10.1002/cmdc.202100555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Indexed: 12/26/2022]
Abstract
Carbon monoxide (CO) has been known as an endogenous signaling molecule in addition to an air pollutant. It plays a critical role in many physiological and pathological processes. Therefore, CO has been recognized as a potent therapeutic agent for the treatment of numerous diseases such as cancers, rheumatoid arthritis, and so on. Instead of direct CO inhalation, two main categories of CO-releasing molecules (CORMs) (i. e., metal carbonyls and nonmetallic CO donors) have been developed to safely and locally deliver CO to target tissues. In this minireview, we summarize the recent achievements of CORMs on antibacterial applications. It appears that the antibacterial activity of CORMs is different from CO gas, which is tightly correlated to not only the types of CORMs applied but also the tested bacterial strains. In some circumstances, the antibacterial mechanisms are debated and need to be clarified. We hope more attention can be paid to this emerging field and new antibacterial agents with a low risk of drug resistance can be developed.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Anhui 230026, Hefei, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Anhui 230026, Hefei, China
| |
Collapse
|
28
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Gai F, Ding G, Wang X, Zuo Y. Functional Polysiloxane Enables Visualization of the Presence of Carbon Monoxide in Biological Systems and Films. Anal Chem 2021; 93:12899-12905. [PMID: 34523925 DOI: 10.1021/acs.analchem.1c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As an essential gasotransmitter, carbon monoxide (CO) had gradually become a research hotspot in that it possessed important physiological functions and unique pharmacological properties. However, to date, no report has focused on the topic of detecting CO both in vivo and using films. To open up a new field of CO probes, for the first time, we designed a probe (PMAH-CO) that showed a distinctive ratio emission characteristic and displayed the quantitative distribution of CO in HeLa cells and zebrafish with a higher signal-to-noise ratio. Meanwhile, the fluorescent polysiloxane-based film (PMF) containing PMAH-CO exhibited an excellent response to CO. Due to the addition of the Si-O bond, the probe exhibited a broad transparency in the visible light range and had excellent photostability. Moreover, the probe was economically viable, easy to handle, and suitable for biological research. Hence, PMAH-CO and PMF would open up the road to broaden the application of silicone materials in the field of fluorescence imaging.
Collapse
Affiliation(s)
- Fengqing Gai
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Guowei Ding
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Xiaoni Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
30
|
Tien Vo TT, Vo QC, Tuan VP, Wee Y, Cheng HC, Lee IT. The potentials of carbon monoxide-releasing molecules in cancer treatment: An outlook from ROS biology and medicine. Redox Biol 2021; 46:102124. [PMID: 34507160 PMCID: PMC8427320 DOI: 10.1016/j.redox.2021.102124] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/21/2023] Open
Abstract
Carbon monoxide (CO) is now well recognized a pivotal endogenous signaling molecule in mammalian lives. The proof-of-concept employing chemical carriers of exogenous CO as prodrugs for CO release, also known as CO-releasing molecules (CO-RMs), has been appreciated. The major advantage of CO-RMs is that they are able to deliver CO to the target sites in a controlled manner. There is an increasing body of experimental studies suggesting the therapeutic potentials of CO and CO-RMs in different cancer models. This review firstly presents a short but crucial view concerning the characteristics of CO and CO-RMs. Then, the anticancer activities of CO-RMs that target many cancer hallmarks, mainly proliferation, apoptosis, angiogenesis, and invasion and metastasis, are discussed. However, their anticancer activities are varying and cell-type specific. The aerobic metabolism of molecular oxygen inevitably generates various oxygen-containing reactive metabolites termed reactive oxygen species (ROS) which play important roles in both physiology and pathophysiology. Although ROS act as a double-edged sword in cancer, both sides of which may potentially have been exploited for therapeutic benefits. The main focus of the present review is thus to identify the possible signaling network by which CO-RMs can exert their anticancer actions, where ROS play the central role. Another important issue concerning the potential effect of CO-RMs on the aerobic glycolysis (the Warburg effect) which is a feature of cancer metabolic reprogramming is given before the conclusion with future prospects on the challenges of developing CO-RMs into clinically pharmaceutical candidates in cancer therapy. CO-RMs as pro-drugs for controlled CO delivery are potentially beneficial in cancer treatment. Anticancer activities of CO-RMs are varying and cell-type specific. Anti-proliferative, pro-apoptotic, and anti-angiogenic effects are major niches. ROS may play a central role in the molecular pathways underlying anticancer activities of CO-RMs. CO-RMs can act against Warburg effect, a feature of cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Quang Canh Vo
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
| | - Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
31
|
Mbenza NM, Nasarudin N, Vadakkedath PG, Patel K, Ismail AZ, Hanif M, Wright LJ, Sarojini V, Hartinger CG, Leung IKH. Carbon Monoxide is an Inhibitor of HIF Prolyl Hydroxylase Domain 2. Chembiochem 2021; 22:2521-2525. [PMID: 34137488 DOI: 10.1002/cbic.202100181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Indexed: 11/11/2022]
Abstract
Hypoxia-inducible factor prolyl hydroxylase domain 2 (PHD2) is an important oxygen sensor in animals. By using the CO-releasing molecule-2 (CORM-2) as an in situ CO donor, we demonstrate that CO is an inhibitor of PHD2. This report provides further evidence about the emerging role of CO in oxygen sensing and homeostasis.
Collapse
Affiliation(s)
- Naasson M Mbenza
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Nawal Nasarudin
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Praveen G Vadakkedath
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Kamal Patel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - A Z Ismail
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Department of Chemistry, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Muhammad Hanif
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - L James Wright
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, 92019, Victoria Street West, Auckland, 1142, New Zealand
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
32
|
Shin Y, Whang K, Hwang JH, Jo Y, Choi JW, Park J, Choi I, Kang T. Sensitive and Direct Optical Monitoring of Release and Cellular Uptake of Aqueous CO from CO-Releasing Molecules. Anal Chem 2021; 93:9927-9932. [PMID: 34236175 DOI: 10.1021/acs.analchem.1c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dynamics of release and cellular uptake of aqueous CO from CO-releasing molecules (CORMs) significantly affect signaling and cell viability. So far, it has been mainly observed by IR, UV-visible, and fluorescence techniques, which suffer from poor sensitivity and slow response time. Here, we show how to directly probe the mass transfer of aqueous CO from CORMs to cells using a fluidic chamber integrated with live cells and Raman reporters of large-area Au@Pd core-shell nanoparticle assembly to emulate a physiologically relevant microenvironment. We sensitively and directly detect CO release from trace CORMs of as low as 100 nM by measuring the Raman transitions of CO via rapid chemisorption onto the surface of the Au@Pd nanoparticles. By using our method, we successfully observe the dynamics of CO release from CORM-2 despite its very short half-life. We also reveal that the initial rate of CO release from CORM-3 is dramatically decreased by tens to hundreds of times when exposed to physiologically relevant pH variations from 7.4 to 2.5, which can be attributed to the acid hydrolysis of the CO ligand. CORM-2 tends to quickly release CO regardless of pH, probably because of its rapid cleavage into two monomeric Ru complexes by the co-solvent. The decrease in the initial rate at lower temperatures is more significant for CORM-3 than for CORM-2. Finally, we observe that the cellular uptake of aqueous CO from CORM-3 by lung cancer cells is approximately 2 times higher than that of normal lung cells.
Collapse
Affiliation(s)
- Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea.,Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Keumrai Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Jeong Ha Hwang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Yuseung Jo
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Junhee Park
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea.,Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
33
|
Zhu J, Wang J, Wang G, Zhang J, Tao W, Liu C, Liu M, Zhang H, Xie R, Ye F, Liu Y, Fang W, Chen X, Li Y. Precise Identification of the Dimethyl Sulfoxide Triggered Tricarbonyldichlororuthenium(II) Dimer for Releasing CO. J Phys Chem Lett 2021; 12:4658-4665. [PMID: 33978423 DOI: 10.1021/acs.jpclett.1c00905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low concentrations of carbon monoxide (CO) can play vital roles in pharmacological and physiological functions in the human body. The transition-metal carbonyl complexes of the tricarbonyldichlororuthenium(II) dimer [Ru2(CO)6Cl4 (CORM-2)] were proposed as CO-releasing molecules (CORMs) to improve the delivery efficiency of CO for therapeutic effects. The accurate identification of final products for CORMs in solution and the detailed mechanisms of the release of CO were the essential prerequisite for its effective physiological application, which have been deficient. In this study, utilizing the cutting-edge two-dimensional (2D) IR spectroscopy, with the intrinsic vibrational modes and the coupling information on dynamics of intramolecular vibrational energy redistribution (IVR), the final products of A, B, C, and E are accurately identified when CORM-2 is dissolved in dimethyl sulfoxide (DMSO). Furthermore, with the clues on intermolecular interaction and chemical exchange dynamics between different products, the transformations between different products are also directly characterized for the first time. These findings challenge the results from the classic 1D spectroscopic pattern, and they evidently demonstrated that the release of CO from CORM-2 in DMSO was slow and complicated with multiple reaction pathways. Combining with DFT simulations, the detailed mechanisms of release of CO for CORM-2 dissolved in DMSO are schematically proposed, which can significantly contribute to its drug optimization and pharmacological as well as physiological applications.
Collapse
Affiliation(s)
- Jiangrui Zhu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guosheng Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jia Zhang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Tao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chang Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming Liu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Zhang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruipei Xie
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Chinese Academy of Sciences, Dongguan, Guangdong 523808, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ying Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weihai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yunliang Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Chinese Academy of Sciences, Dongguan, Guangdong 523808, China
| |
Collapse
|
34
|
Silva AF, Calhau IB, Gomes AC, Valente AA, Gonçalves IS, Pillinger M. A hafnium-based metal-organic framework for the entrapment of molybdenum hexacarbonyl and the light-responsive release of the gasotransmitter carbon monoxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112053. [PMID: 33947547 DOI: 10.1016/j.msec.2021.112053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022]
Abstract
A carbon monoxide-releasing material (CORMA) has been prepared by inclusion of molybdenum hexacarbonyl in a hafnium-based metal-organic framework (MOF) with the UiO-66 architecture. Mo(CO)6 was adsorbed from solution to give supported materials containing 6.0-6.6 wt% Mo. As confirmed by powder X-ray diffraction (PXRD) and SEM coupled with energy dispersive X-ray spectroscopy, neither the crystallinity nor the morphology of the porous host was affected by the loading process. While the general shape of the N2 physisorption isotherms (77 K) did not change significantly after encapsulation of Mo(CO)6, the micropore volume decreased by ca. 20%. Thermogravimetric analysis of the as-prepared materials revealed a weight loss step around 160 °C associated with the decomposition of Mo(CO)6 to subcarbonyl species. Confirmation for the presence of encapsulated Mo(CO)6 complexes was provided by FT-IR and 13C{1H} cross-polarization magic-angle spinning NMR spectroscopies. To test the capability of these materials to behave as CORMAs and transfer CO to heme proteins, the standard myoglobin (Mb) assay was used. While stable in the dark, photoactivation with low-power UV light (365 nm) liberated CO from the encapsulated hexacarbonyl molecules in Mo(6.0)/UiO-66(Hf), leading to a maximum amount of 0.26 mmol CO released per gram of material. Under the simulated physiological conditions of the Mb assay (37 °C, pH 7.4 buffer), minimal leaching of molybdenum occurred, PXRD showed only slight amorphization, and FT-IR spectroscopy confirmed the high chemical stability of the MOF host.
Collapse
Affiliation(s)
- Andreia F Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anabela A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
35
|
Danielak A, Wallace JL, Brzozowski T, Magierowski M. Gaseous Mediators as a Key Molecular Targets for the Development of Gastrointestinal-Safe Anti-Inflammatory Pharmacology. Front Pharmacol 2021; 12:657457. [PMID: 33995080 PMCID: PMC8116801 DOI: 10.3389/fphar.2021.657457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent one of the most widely used classes of drugs and play a pivotal role in the therapy of numerous inflammatory diseases. However, the adverse effects of these drugs, especially when applied chronically, frequently affect gastrointestinal (GI) tract, resulting in ulceration and bleeding, which constitutes a significant limitation in clinical practice. On the other hand, it has been recently discovered that gaseous mediators nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) contribute to many physiological processes in the GI tract, including the maintenance of GI mucosal barrier integrity. Therefore, based on the possible therapeutic properties of NO, H2S and CO, a novel NSAIDs with ability to release one or more of those gaseous messengers have been synthesized. Until now, both preclinical and clinical studies have shown promising effects with respect to the anti-inflammatory potency as well as GI-safety of these novel NSAIDs. This review provides an overview of the gaseous mediators-based NSAIDs along with their mechanisms of action, with special emphasis on possible implications for GI mucosal defense mechanisms.
Collapse
Affiliation(s)
- Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - John L Wallace
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
36
|
Alghazwat O, Talebzadeh S, Oyer J, Copik A, Liao Y. Ultrasound responsive carbon monoxide releasing micelle. ULTRASONICS SONOCHEMISTRY 2021; 72:105427. [PMID: 33373872 PMCID: PMC7803797 DOI: 10.1016/j.ultsonch.2020.105427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 05/08/2023]
Abstract
Carbon monoxide (CO), an endogenously produced gasotransmitter, has shown various therapeutic effects in previous studies. In this work, we developed an ultrasound responsive micelle for localized CO delivery. The micelle is composed of a pluronic shell and a core of a CO releasing molecule, CORM-2. The mechanism is based on the ultrasound response of pluronics, and the reaction between CORM-2 and certain biomolecules, e.g. cysteine. The latter allows CO release without significantly breaking the micelles. In a 3.5 mM cysteine solution, the micelles released low level of CO, indicating effective encapsulation of CORM-2. Treatment with a low intensity, non-focused ultrasound led to four times as much CO as the sample without ultrasonication, which is close to that of unencapsulated CORM-2. Significantly reduced proliferation of prostate cancer cells (PC-3) was observed 24 h after the PC-3 cells were treated with the CORM-2 micelles followed by ultrasound activation.
Collapse
Affiliation(s)
| | | | | | | | - Yi Liao
- Florida Institute of Technology, Melbourne, FL, USA.
| |
Collapse
|
37
|
Toscani A, Hind C, Clifford M, Kim SH, Gucic A, Woolley C, Saeed N, Rahman KM, Sutton JM, Castagnolo D. Development of photoactivable phenanthroline-based manganese(I) CO-Releasing molecules (PhotoCORMs) active against ESKAPE bacteria and bacterial biofilms. Eur J Med Chem 2021; 213:113172. [PMID: 33516984 DOI: 10.1016/j.ejmech.2021.113172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/02/2023]
Abstract
The synthesis and biological evaluation of a series of phenanthroline-based visible-light-activated manganese(I) carbon-monoxide-releasing molecules (PhotoCORMs) against ESKAPE bacteria and bacterial biofilms is reported. Four carbonyl compounds of general formula fac-[Mn(N∧N)(CO)3(L)] have been synthesized and characterized. Despite being thermally stable in the absence of light, these PhotoCORMs readily release CO upon blue (435-450 nm) LED light irradiation as confirmed by spectrophotometric CO releasing experiments (Mb Assay). The antibacterial activity of the four PhotoCORMs has been investigated against a panel of ESKAPE bacteria. The compounds 1-3 were found to be effective antibacterials at low concentrations against multidrug-resistant Klebsiella pneumoniae and Acinetobacter baumannii when photoactivated with blue-light. In addition, the PhotoCORMs 1-2 were found to inhibit the formation of Klebsiella pneumoniae and Acinetobacter baumannii bacterial biofilms at low concentrations (MIC = 4-8 μg/mL), turning out to be promising candidates to combat antimicrobial resistance. The antibacterial and biofilm inhibitory effect of the PhotoCORMs is plausibly due to the release of CO as well as the formation of phenanthroline photo-by-products as revealed by spectroscopy and microbiology experiments.
Collapse
Affiliation(s)
- Anita Toscani
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Charlotte Hind
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom
| | - Melanie Clifford
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom
| | - Seong-Heun Kim
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Antonia Gucic
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Charlotte Woolley
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom
| | - Naima Saeed
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - J Mark Sutton
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom.
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom.
| |
Collapse
|
38
|
Opoku-Damoah Y, Zhang R, Ta HT, Amilan Jose D, Sakla R, Xu ZP. Lipid-encapsulated upconversion nanoparticle for near-infrared light-mediated carbon monoxide release for cancer gas therapy. Eur J Pharm Biopharm 2021; 158:211-221. [DOI: 10.1016/j.ejpb.2020.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/15/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
|
39
|
Ren H, Yang Q, Yong J, Fang X, Yang Z, Liu Z, Jiang X, Miao W, Li X. Mitochondria targeted nanoparticles to generate oxygen and responsive-release of carbon monoxide for enhanced photogas therapy of cancer. Biomater Sci 2021; 9:2709-2720. [DOI: 10.1039/d0bm02028a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxygen generating and photothermally responsive carbon monoxide delivering nanoparticles with a mitochondria-targeting property were developed to enhance a combination of phototherapy and gas therapy.
Collapse
Affiliation(s)
- Hao Ren
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing 211816
- China
| | - Qingqing Yang
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jiahui Yong
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xue Fang
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Yang
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhangya Liu
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xing Jiang
- School of Nursing
- Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | - Wenjun Miao
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xueming Li
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
40
|
Maiti B, Ng G, Abramov A, Boyer C, Díaz DD. Methionine-based carbon monoxide releasing polymer for the prevention of biofilm formation. Polym Chem 2021. [DOI: 10.1039/d1py00546d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new water-soluble methionine-based CO releasing polymer shows slow and spontaneous release of CO with sustained-release kinetics, preventing biofilm formation against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Binoy Maiti
- Institut für Organische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
| | - Gervase Ng
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - Alex Abramov
- Institut für Organische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - David Díaz Díaz
- Institut für Organische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
- Departamento de Química Orgánica
| |
Collapse
|
41
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
42
|
Lee GY, Zeb A, Kim EH, Suh B, Shin YJ, Kim D, Kim KW, Choe YH, Choi HI, Lee CH, Qureshi OS, Han IB, Chang SY, Bae ON, Kim JK. CORM-2-entrapped ultradeformable liposomes ameliorate acute skin inflammation in an ear edema model via effective CO delivery. Acta Pharm Sin B 2020; 10:2362-2373. [PMID: 33354507 PMCID: PMC7745126 DOI: 10.1016/j.apsb.2020.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
The short release half-life of carbon monoxide (CO) is a major obstacle to the effective therapeutic use of carbon monoxide-releasing molecule-2 (CORM-2). The potential of CORM-2-entrapped ultradeformable liposomes (CORM-2-UDLs) to enhance the release half-life of CO and alleviate skin inflammation was investigated in the present study. CORM-2-UDLs were prepared by using soy phosphatidylcholine to form lipid bilayers and Tween 80 as an edge activator. The deformability of CORM-2-UDLs was measured and compared with that of conventional liposomes by passing formulations through a filter device at a constant pressure. The release profile of CO from CORM-2-UDLs was evaluated by myoglobin assay. In vitro and in vivo anti-inflammatory effects of CORM-2-UDLs were assessed in lipopolysaccharide-stimulated macrophages and TPA-induced ear edema model, respectively. The deformability of the optimized CORM-2-UDLs was 2.3 times higher than conventional liposomes. CORM-2-UDLs significantly prolonged the release half-life of CO from 30 s in a CORM-2 solution to 21.6 min. CORM-2-UDLs demonstrated in vitro anti-inflammatory activity by decreasing nitrite production and pro-inflammatory cytokine levels. Furthermore, CORM-2-UDLs successfully ameliorated skin inflammation by reducing ear edema, pathological scores, neutrophil accumulation, and inflammatory cytokines expression. The results demonstrate that CORM-2-UDLs could be used as promising therapeutics against acute skin inflammation.
Collapse
|
43
|
Masuda Y, Yagami Y, Nakazawa K, Hirotsu M. Iron Carbonyl Complexes Containing N,C,S-Tridentate Ligands with Quinoline, Vinyl, and Benzenethiolate Units. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuta Masuda
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Yuki Yagami
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Kotomi Nakazawa
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Masakazu Hirotsu
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| |
Collapse
|
44
|
Thiang Brian Kueh J, Seifert‐Simpson JM, Thwaite SH, Rodgers GD, Harrison JC, Sammut IA, Larsen DS. Studies towards Non‐toxic, Water Soluble, Vasoactive Norbornene Organic Carbon Monoxide Releasing Molecules. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Stephanie H. Thwaite
- Department of Pharmacology and Toxicology University of Otago Dunedin postcode missing New Zealand
| | - Gina D. Rodgers
- Department of Pharmacology and Toxicology University of Otago Dunedin postcode missing New Zealand
| | - Joanne C. Harrison
- Department of Pharmacology and Toxicology University of Otago Dunedin postcode missing New Zealand
| | - Ivan A. Sammut
- Department of Pharmacology and Toxicology University of Otago Dunedin postcode missing New Zealand
| | - David S. Larsen
- Department of Chemistry University of Otago Dunedin postcode missing New Zealand
| |
Collapse
|
45
|
Lazarus LS, Benninghoff AD, Berreau LM. Development of Triggerable, Trackable, and Targetable Carbon Monoxide Releasing Molecules. Acc Chem Res 2020; 53:2273-2285. [PMID: 32929957 PMCID: PMC7654722 DOI: 10.1021/acs.accounts.0c00402] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carbon monoxide (CO) is a gaseous signaling molecule produced in humans via the breakdown of heme in an O2-dependent reaction catalyzed by heme oxygenase enzymes. A long-lived species relative to other signaling molecules (e.g., NO, H2S), CO exerts its physiological effects via binding to low-valent transition metal centers in proteins and enzymes. Studies involving the administration of low doses of CO have shown its potential as a therapeutic agent to produce vasodilation, anti-inflammatory, antiapoptotic, and anticancer effects. In pursuit of developing tools to define better the role and therapeutic potential of CO, carbon monoxide releasing molecules (CORMs) were developed. To date, the vast majority of reported CORMs have been metal carbonyl complexes, with the most well-known being Ru2Cl4(CO)6 (CORM-2), Ru(CO)3Cl(glycinate) (CORM-3), and Mn(CO)4(S2CNMe(CH2CO2H)) (CORM-401). These complexes have been used to probe the effects of CO in hundreds of cell- and animal-based experiments. However, through recent investigations, it has become evident that these reagents exhibit complicated reactivity in biological environments. The interpretation of the effects produced by some of these complexes is obscured by protein binding, such that their formulation is not clear, and by CO leakage and potential redox activity. An additional weakness with regard to CORM-2 and CORM-3 is that these compounds cannot be tracked via fluorescence. Therefore, it is unclear where or when CO release occurs, which confounds the interpretation of experiments using these molecules. To address these weaknesses, our research team has pioneered the development of metal-free CORMs based on structurally tunable extended flavonol or quinolone scaffolds. In addition to being highly controlled, with CO release only occurring upon triggering with visible light (photoCORMs), these CO donors are trackable via fluorescence prior to CO release in cellular environments and can be targeted to specific cellular locations.In the Account, we highlight the development and application of a series of structurally related flavonol photoCORMs that (1) sense characteristics of cellular environments prior to CO release; (2) enable evaluation of the influence of cytosolic versus mitochondrial-localized CO release on cellular bioenergetics; (3) probe the cytotoxicity and anti-inflammatory effects of intracellular versus extracellular CO delivery; and (4) demonstrate that albumin delivery of a photoCORM enables potent anticancer and anti-inflammatory effects. A key advantage of using triggered CO release compounds in these investigations is the ability to examine the effects of the molecular delivery vehicle in the absence and presence of localized CO release, thus providing insight into the independent contributions of CO. Overall, flavonol-based CO delivery molecules offer opportunities for triggerable, trackable, and targetable CO delivery that are unprecedented in terms of previously reported CORMs and, thus, offer significant potential for applications in biological systems.
Collapse
Affiliation(s)
- Livia S Lazarus
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, Utah 84322-4815, United States
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| |
Collapse
|
46
|
Spectroscopic and antimicrobial activity of photoactivatable tricarbonyl Mn(I) terpyridine compounds. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Pordel S, Schrage BR, Ziegler CJ, White JK. Impact of steric bulk on photoinduced ligand exchange reactions in Mn(I) photoCORMs. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Liu C, Du Z, Ma M, Sun Y, Ren J, Qu X. Carbon Monoxide Controllable Targeted Gas Therapy for Synergistic Anti-inflammation. iScience 2020; 23:101483. [PMID: 32891060 PMCID: PMC7479631 DOI: 10.1016/j.isci.2020.101483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023] Open
Abstract
Carbon monoxide (CO) plays an important role in the regulation of a variety of physiological processes and thus is regarded as a promising pharmaceutical agent. Nevertheless, therapeutic applications of CO are severely hampered by the difficulty of the delivery of controlled amounts of CO to biological targets. To address this deficiency, we present a spatiotemporally controllable CO-releasing platform (designated as Neu-MnO2/Fla) for synergistic anti-inflammation. With the assistance of neutrophil membrane coating, Neu-MnO2/Fla can target to inflammatory sites. Subsequently, excess H2O2 at the inflamed tissues can be decomposed into oxygen because of MnO2 as nanozymes possessing catalase (CAT) activity, which not only relieves oxidative stress but also achieves in situ rapid photo-induced CO release. The in vitro and in vivo results indicate our CO-releasing platform exhibits a strong synergistic anti-inflammatory effect. Our work will shed light on targeted CO release to avoid side effects of therapeutic applications of CO.
Collapse
Affiliation(s)
- Chun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuhuan Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
49
|
Robson JA, Kubánková M, Bond T, Hendley RA, White AJP, Kuimova MK, Wilton‐Ely JDET. Simultaneous Detection of Carbon Monoxide and Viscosity Changes in Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jonathan A. Robson
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - Markéta Kubánková
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - Tamzin Bond
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - Rian A. Hendley
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - Andrew J. P. White
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - Marina K. Kuimova
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - James D. E. T. Wilton‐Ely
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
50
|
Robson JA, Kubánková M, Bond T, Hendley RA, White AJP, Kuimova MK, Wilton-Ely JDET. Simultaneous Detection of Carbon Monoxide and Viscosity Changes in Cells. Angew Chem Int Ed Engl 2020; 59:21431-21435. [PMID: 32686308 PMCID: PMC7756414 DOI: 10.1002/anie.202008224] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022]
Abstract
A new family of robust, non‐toxic, water‐compatible ruthenium(II) vinyl probes allows the rapid, selective and sensitive detection of endogenous carbon monoxide (CO) in live mammalian cells under normoxic and hypoxic conditions. Uniquely, these probes incorporate a viscosity‐sensitive BODIPY fluorophore that allows the measurement of microscopic viscosity in live cells via fluorescence lifetime imaging microscopy (FLIM) while also monitoring CO levels. This is the first example of a probe that can simultaneously detect CO alongside small viscosity changes in organelles of live cells.
Collapse
Affiliation(s)
- Jonathan A Robson
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Markéta Kubánková
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Tamzin Bond
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Rian A Hendley
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| |
Collapse
|