1
|
Roy J, Forzatti M, Arnal L, Martín A, Fuertes S, Tordera D, Sicilia V. Pyrazolate-Bridged NHC Cyclometalated [Pt 2] Complexes and [Pt 2Ag(PPh 3)] + Clusters in Electroluminescent Devices. Inorg Chem 2024; 63:7275-7285. [PMID: 38587101 DOI: 10.1021/acs.inorgchem.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The ionic transition metal complexes (iTMCs) [{Pt(C∧C*)(μ-Rpz)}2Ag(PPh3)]X (HC∧C* = 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazole-2-ylidene, X = ClO4/PF6; Rpz = pz 1a/2a, 4-Mepz 1b/2b, and 3,5-dppz 1c/2c) were prepared from the neutral [{Pt(C∧C*)(μ-Rpz)}2] (Rpz = pz A, 4-Mepz B, and 3,5-dppz C) and fully characterized. The "Ag(PPh3)" fragment is in between the two square-planar platinum units in an "open book" disposition and bonded through two Pt-Ag donor-acceptor bonds, as shown by X-ray diffraction (dPt-Ag ∼ 2.78 Å, 1a-1c). 195Pt{1H} and 31P{1H} NMR confirmed that these solid-state structures remain in solution. Photoluminescence studies and theoretical calculations on 1a, were performed. The diphenylpyrazolate derivatives show the highest photoluminescence quantum yield (PLQY) in the solid state. Therefore, 2c and its neutral precursor C were selected as active materials on light-emitting devices. OLEDs fabricated with C showed a turn-on voltage of 3.2 V, a luminance peak of 21,357 cd m-2 at 13 V, and a peak current efficiency of 28.8 cd A-1 (9.5% EQE). They showed a lifetime t50 of 15.7 h. OLEDs using 2c showed a maximum luminance of 114 cd m-2, while LECs exhibited a maximum luminance of 20 cd m-2 and a current efficiency of around 0.2 cd A-1, with a t50 value of 50 min.
Collapse
Affiliation(s)
- Jorge Roy
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Michele Forzatti
- Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltran, 2, Paterna 46980, Spain
| | - Lorenzo Arnal
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Antonio Martín
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Sara Fuertes
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Daniel Tordera
- Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltran, 2, Paterna 46980, Spain
| | - Violeta Sicilia
- Departamento de Química Inorgánica, Escuela de Ingeniería y Arquitectura de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Campus Río Ebro, Edificio Torres Quevedo, Zaragoza 50018, Spain
| |
Collapse
|
2
|
Zhang X, Xu H. Electroluminescent Clusters. Angew Chem Int Ed Engl 2024; 63:e202317597. [PMID: 38078881 DOI: 10.1002/anie.202317597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Optoelectronic cluster materials emerge rapidly in recent years especially for light-emitting devices, owing to their 100 % exciton harvesting and unique organic-inorganic hybrid structures with tunable excited-state characteristics for thermally activated delayed fluorescence and/or phosphorescence and inheritable photo- and thermo-stability. However, for efficient electroluminescence, excited-state compositions of cluster emitters should be tuned through ligand engineering to enhance ligand-centered radiative components and reduce cluster-centered quenching states. Nonetheless, the balance of optoelectronic properties requires delicate and controllable ligand functionalization. On the other hand, in addition to balancing carrier fluxes, it showed that device engineering, especially host matrixes and interfacial optimization, can not only alleviate triplet quenching, but also modify processing and passivate defects. As consequence, the record external quantum efficiencies of cluster light-emitting diodes already reached ≈30 %. Herein, we overview recent progress of electroluminescent cluster materials and discuss their structure-property relationships, which would inspire the continuous efforts making cluster light-emitting diodes competent as the new generation of displays and lighting sources.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Key Laboratory of Functional, Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, 74 Xuefu Road, 150080, Harbin, P. R. China
| | - Hui Xu
- Key Laboratory of Functional, Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, 74 Xuefu Road, 150080, Harbin, P. R. China
| |
Collapse
|
3
|
Tanase T, Nakamae K, Ura Y, Nakajima T. Fine tunable metal assemblies constrained by multidentate phosphine ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Braunstein P, Danopoulos AA. Transition Metal Chain Complexes Supported by Soft Donor Assembling Ligands. Chem Rev 2021; 121:7346-7397. [PMID: 34080835 DOI: 10.1021/acs.chemrev.0c01197] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemistry of discrete molecular chains constituted by metals in low oxidation states, displaying metal-metal proximity and stabilized by suitable metal-bridging, assembling ligands comprising at least one soft donor atom is comprehensively reviewed; complexes with a single (hard or soft) bridging atom (e.g., μ-halide, μ-sulfide, or μ-PR2 etc.) as well as "closed" metal arrays (that fall in the realm of cluster chemistry) are excluded. The focus is on transition metal-based systems, with few excursions to cases combining transition and post-transition elements. Most relevant supporting ligands have neutral C, P, O, or S donor (mainly, N-heterocyclic carbene, phosphine, ether, thioether) or anionic donor (mainly phenyl, ylide, silyl, phosphide, thiolate) groups. A supporting-ligand-based classification of the metal chains is introduced, using as the classifying parameter the number of "bites" (i.e., ligand bridges) subtending each intermetallic separation. The ligands are further grouped according to the number of donor atoms interacting with the metal chain (called denticity in the following) and the column of the Periodic Table to which the set of donor atoms belongs (in ascending order). A complementary metal-based compilation of the complexes discussed is also provided in a concise tabular form.
Collapse
Affiliation(s)
- Pierre Braunstein
- CNRS, Chimie UMR 7177, Laboratoire de Chimie de Coordination, Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg Cedex, France
| | - Andreas A Danopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
5
|
Quan J, Chen ZH, Zhang X, Wang JY, Zhang LY, Chen ZN. Geometrically isomeric Pt 2Ag 2 acetylide complexes of 2,6-bis(diphenylphosphino)pyridine: luminescent and vapochromic properties. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00111f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Geometrically isomeric cis- and trans-Pt2Ag2 alkynyl complexes are characterized by X-ray crystallography with trans-isomers showing bright phosphorescence and interesting vaporchromic properties.
Collapse
Affiliation(s)
- Jian Quan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zhong-Hui Chen
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Xu Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Li-Yi Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
6
|
Han LJ, Wu XX, Ma ZG, Li Y, Wei QH. Novel luminescent homo/heterometallic platinum(ii) alkynyl complexes based on Y-shaped pyridyl diphosphines. Dalton Trans 2020; 49:8347-8353. [PMID: 32519685 DOI: 10.1039/d0dt01173h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of dinuclear platinum(ii) alkynyl complexes [Pt2L2(C[triple bond, length as m-dash]CC6H4R-4)4] (R = H 1, CH32, But3) and unusual tetranuclear Pt(ii)-Ag(i) clusters [Pt2Ag2L(C[triple bond, length as m-dash]CC6H4R-4)6] (R = H, 4; CH3, 5; But, 6), together with novel polymer crystals [Pt2Ag2L(C[triple bond, length as m-dash]CC6H5)6]∞ ([4]∞), were synthesized by a self-assembly reaction between [NBu4]2[Pt(C[triple bond, length as m-dash]CC6H4-R-4)4] and [Ag6L6]6+ (L = 4-(3,5-(diphenylphosphine)phenyl)pyridine). These complexes were characterized by using a range of spectroscopic techniques and complexes 1, 3, 5, and [4]∞ were analysed by X-ray crystallography. Each platinum atom of the Pt(ii)-Ag(i) clusters shows an unusual asymmetric distorted square planar geometry with three alkynyl groups and one bridging L phosphorus atom. Dinuclear complexes 1-3 demonstrate solid-state weak blue luminescence, while tetranuclear Pt(ii)-Ag(i) clusters 4-6 show intense blue-green or yellow-green emission. Furthermore, the crystalline samples of polymer [4]∞ display bright yellow emission (518 nm) that is significantly red-shifted as compared to monomer crystal 4.
Collapse
Affiliation(s)
- Li-Jing Han
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | | | | | | | | |
Collapse
|
7
|
Yoshida T, Ahsan HM, Zhang HT, Izuogu DC, Abe H, Ohtsu H, Yamaguchi T, Breedlove BK, Thom AJW, Yamashita M. Ionic-caged heterometallic bismuth-platinum complex exhibiting electrocatalytic CO 2 reduction. Dalton Trans 2020; 49:2652-2660. [PMID: 32043108 DOI: 10.1039/c9dt04817k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An air-stable heterometallic Bi-Pt complex with the formula [BiPt(SAc)5]n (1; SAc = thioacetate) was synthesized. The crystal structure, natural bond orbital (NBO) and local orbital locator (LOL) analyses, localized orbital bonding analysis (LOBA), and X-ray absorption fine structure (XAFS) measurements were used to confirm the existence of Bi-Pt bonding and an ionic cage of O atoms surrounding the Bi ion. From the cyclic voltammetry (CV) and controlled potential electrolysis (CPE) experiments, 1 in tetrahydrofuran reduced CO2 to CO, with a faradaic efficiency (FE) of 92% and a turnover frequency (TOF) of 8 s-1 after 30 min of CPE at -0.79 V vs. NHE. The proposed mechanism includes an energetically favored pathway via the ionic cage, which is supported by the results of DFT calculations and reflectance infrared spectroelectrochemistry data.
Collapse
Affiliation(s)
- Takefumi Yoshida
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan.
| | - Habib Md Ahsan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan. and Chemistry Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Hai-Tao Zhang
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan.
| | - David Chukwuma Izuogu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan. and Department of Pure & Industrial Chemistry, University of Nigeria, 410001, Nsukka, Nigeria and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Hitoshi Abe
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan and Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tadashi Yamaguchi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan.
| | - Alex J W Thom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan. and WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan and School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Wang Q, Xiao H, Wu Y, Wang ZY, Zheng DS, Chen ZN. From homonuclear to heteronuclear: a viable strategy to promote and modulate phosphorescence. Chem Commun (Camb) 2020; 56:10607-10620. [DOI: 10.1039/d0cc04021e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of weakly emissive homonuclear Pt(ii) precursors to fabricate Pt–M heteronuclear complexes with intermetallic contacts paves a unique avenue to achieve highly efficient phosphorescence as well as modulate emission energy.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hui Xiao
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yue Wu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zhao-Yi Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Da-Sheng Zheng
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
9
|
Verpekin VV, Semeikin OV, Vasiliev AD, Kondrasenko AA, Belousov YA, Ustynyuk NA. Catalyzed M–C coupling reactions in the synthesis of σ-(pyridylethynyl)dicarbonylcyclopentadienyliron complexes. RSC Adv 2020; 10:17014-17025. [PMID: 35521461 PMCID: PMC9053414 DOI: 10.1039/d0ra02333g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
The reactions between terminal ethynylpyridines, (trimethylsilyl)ethynylpyridines and cyclopentadienyliron dicarbonyl iodide were studied under Pd/Cu-catalyzed conditions to develop a synthetic approach to the σ-alkynyl iron complexes Cp(CO)2Fe–C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C–R (R = ortho-, meta-, para-pyridyl). Depending on the catalyst and reagents used, the yields of the desired σ-pyridylethynyl complexes varied from 40 to 95%. In some cases the reactions with ortho-ethynylpyridine gave as byproduct the unexpected binuclear FePd μ-pyridylvinylidene complex [Cp(CO)Fe{μ2-η1(Cα):η1(Cα)-κ1(N)-Cα
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
Cβ(H)(o-C5H4N)}(μ-CO)PdI]. The conditions, catalysts, and reagents that provide the highest yields of the desired σ-pyridylethynyl iron compounds were determined. The methods developed allowed the synthesis of the corresponding σ-4-benzothiadiazolylethynyl complex Cp(CO)2Fe–CC–(4-C6H3N2S) as well. Eventually, synthetic approaches to σ-alkynyl iron complexes of the type Cp(CO)2Fe–CC–R (R = ortho-, meta-, para-pyridyl, 4-benzothiadiazol-2,1,3-yl) based on the Pd/Cu-catalyzed cross-coupling reactions were elaborated. Two approaches were developed for the synthesis of iron σ-pyridylethynyl complexes based on Pd/Cu- and Pd-catalyzed Fe–C coupling reactions.![]()
Collapse
Affiliation(s)
- Victor V. Verpekin
- Institute of Chemistry and Chemical Technology SB RAS
- Krasnoyarsk Research Center
- Siberian Branch of the Russian Academy of Sciences
- Krasnoyarsk
- Russian Federation
| | - Oleg V. Semeikin
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Alexander D. Vasiliev
- Institute of Physics SB RAS
- Krasnoyarsk Research Center
- Siberian Branch of the Russian Academy of Sciences
- Krasnoyarsk
- Russia
| | - Alexander A. Kondrasenko
- Institute of Chemistry and Chemical Technology SB RAS
- Krasnoyarsk Research Center
- Siberian Branch of the Russian Academy of Sciences
- Krasnoyarsk
- Russian Federation
| | - Yuri A. Belousov
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Nikolai A. Ustynyuk
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| |
Collapse
|
10
|
Rajabi S, Jamali S, Naseri S, Jamjah A, Kia R, Samouei H, Mastrorilli P, Shahsavari HR, Raithby PR. Pt–M (M = Au and Tl) Dative Bonds Using Bis(cyclometalated)platinum(II) Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sheida Rajabi
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran 1458889694, Iran
| | - Sirous Jamali
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran 1458889694, Iran
| | - Soroosh Naseri
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran 1458889694, Iran
| | - Ali Jamjah
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran 1458889694, Iran
| | - Reza Kia
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran 1458889694, Iran
| | - Hamidreza Samouei
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | | | - Hamid R. Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Paul R. Raithby
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
11
|
Huang J, Liu Z, Chen H, Zhang H, Zhang H, Liu C, Gao Q, Du C, Zhang B. Formation of Hetero-binuclear Pt(II)-M(II) Complexes Based on (2-(1 H-Tetrazol-5-yl)phenyl)diphenylphosphine Oxide for Superior Phosphorescence of Monomers. Inorg Chem 2019; 58:4253-4261. [PMID: 30892024 DOI: 10.1021/acs.inorgchem.8b03326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel hetero-binuclear platinum complexes (HBC-Pt(II)-M(II), M = Ca(II), Mg(II), Zn(II), and Cd(II)) have been synthesized by the reaction of the corresponding precursors [Pt(ppy)(μ-Cl)]2 with (2-(1 H-tetrazol-5-yl)phenyl)diphenylphosphine oxide (TTPPO). The X-ray structures of the complexes show that two ancillary ligands TTPPO in the square-planar Pt(II) moiety act as a quadridentate chelating agent for the other metal center, eventually forming a distorted octahedral configuration. There are no significant π-π interactions and Pt-M metallophilic interactions in the crystal lattice, due to the steric hindrances associated with the rigid octahedral structure together with the bulky TTPPO. Consequently, HBC-Pt-M complexes show monomer emission characteristics with quantum yields up to 59% in powder, suggesting their great potential for practical applications. DFT and TD-DFT calculations on HBC-Pt-Zn reveal that the phosphorescence can be ascribed to intraligand charge transfer (3ILCT) combined with some metal-to-ligand charge transfer (3MLCT) in the Pt(ppy) moiety, which is consistent with the observations from the photophysical investigations.
Collapse
Affiliation(s)
- Juan Huang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Zhuo Liu
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Hui Chen
- Institute of Chemistry , Henan Academy of Sciences , Zhengzhou 450002 , China
| | - Hailing Zhang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Han Zhang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Chunmei Liu
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Qin Gao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Chenxia Du
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Bin Zhang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| |
Collapse
|
12
|
Shahsavari HR, Giménez N, Lalinde E, Moreno MT, Fereidoonnezhad M, Babadi Aghakhanpour R, Khatami M, Kalantari F, Jamshidi Z, Mohammadpour M. Heterobimetallic PtII
-AuI
Complexes Comprising Unsymmetrical 1,1-Bis(diphenylphosphanyl)methane Bridges: Synthesis, Photophysical, and Cytotoxic Studies. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hamid R. Shahsavari
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| | - Nora Giménez
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ); Universidad de La Rioja; 26006 Logroño Spain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ); Universidad de La Rioja; 26006 Logroño Spain
| | - M. Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ); Universidad de La Rioja; 26006 Logroño Spain
| | - Masood Fereidoonnezhad
- Toxicology Research Center; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
- Department of Medicinal Chemistry; Student Research Committee; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Reza Babadi Aghakhanpour
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| | - Mehri Khatami
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| | - Foroogh Kalantari
- Department of Medicinal Chemistry; Student Research Committee; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Zahra Jamshidi
- Student Research Committee; Chemistry & Chemical Engineering Research Center of Iran; 14968-13151 Tehran Iran
| | - Mozhdeh Mohammadpour
- Student Research Committee; Chemistry & Chemical Engineering Research Center of Iran; 14968-13151 Tehran Iran
| |
Collapse
|
13
|
Frogley BJ, Hill AF, Watson LJ. Bridging selenocarbonyl ligands: an open and shut case. Chem Commun (Camb) 2019; 55:14450-14453. [DOI: 10.1039/c9cc07757j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel platinum bis(isoselenocarbonyl) complex [Pt{SeCW(CO)2(Tp*)}2] is capable of opening both μ:σ–μ-CSe bridges to allow addition of nucleophilic (CNR: R = tBu, C6H2Me3) reagents to platinum by varying the selenocarbonyl bridging mode.
Collapse
Affiliation(s)
| | - Anthony F. Hill
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Lachlan J. Watson
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
14
|
Zhang QC, Xiao H, Zhang X, Xu LJ, Chen ZN. Luminescent oligonuclear metal complexes and the use in organic light-emitting diodes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.01.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Berenguer JR, Lalinde E, Moreno MT. Luminescent cyclometalated-pentafluorophenyl Pt II , Pt IV and heteropolynuclear complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Cebrián C, Mauro M. Recent advances in phosphorescent platinum complexes for organic light-emitting diodes. Beilstein J Org Chem 2018; 14:1459-1481. [PMID: 30013674 PMCID: PMC6037003 DOI: 10.3762/bjoc.14.124] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/23/2018] [Indexed: 01/30/2023] Open
Abstract
Phosphorescent organometallic compounds based on heavy transition metal complexes (TMCs) are an appealing research topic of enormous current interest. Amongst all different fields in which they found valuable application, development of emitting materials based on TMCs have become crucial for electroluminescent devices such as phosphorescent organic light-emitting diodes (PhOLEDs) and light-emitting electrochemical cells (LEECs). This interest is driven by the fact that luminescent TMCs with long-lived excited state lifetimes are able to efficiently harvest both singlet and triplet electro-generated excitons, thus opening the possibility to achieve theoretically 100% internal quantum efficiency in such devices. In the recent past, various classes of compounds have been reported, possessing a beautiful structural variety that allowed to nicely obtain efficient photo- and electroluminescence with high colour purity in the red, green and blue (RGB) portions of the visible spectrum. In addition, achievement of efficient emission beyond such range towards ultraviolet (UV) and near infrared (NIR) regions was also challenged. By employing TMCs as triplet emitters in OLEDs, remarkably high device performances were demonstrated, with square planar platinum(II) complexes bearing π-conjugated chromophoric ligands playing a key role in such respect. In this contribution, the most recent and promising trends in the field of phosphorescent platinum complexes will be reviewed and discussed. In particular, the importance of proper molecular design that underpins the successful achievement of improved photophysical features and enhanced device performances will be highlighted. Special emphasis will be devoted to those recent systems that have been employed as triplet emitters in efficient PhOLEDs.
Collapse
Affiliation(s)
| | - Matteo Mauro
- Université de Strasbourg, CNRS - Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, F-67000 Strasbourg, France
| |
Collapse
|
17
|
Shu HX, Wang JY, Zhang QC, Chen ZN. Photophysical and Electroluminescent Properties of PtAg2 Acetylide Complexes Supported with meso- and rac-Tetraphosphine. Inorg Chem 2017; 56:9461-9473. [PMID: 28441021 DOI: 10.1021/acs.inorgchem.7b00452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui-Xing Shu
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Jin-Yun Wang
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Qian-Chong Zhang
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Zhong-Ning Chen
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|