1
|
Rejc L, Knez D, Molina-Aguirre G, Espargaró A, Kladnik J, Meden A, Blinc L, Lozinšek M, Jansen-van Vuuren RD, Rogan M, Martek BA, Mlakar J, Dremelj A, Petrič A, Gobec S, Sabaté R, Bresjanac M, Pinter B, Košmrlj J. Probing Alzheimer's pathology: Exploring the next generation of FDDNP analogues for amyloid β detection. Biomed Pharmacother 2024; 175:116616. [PMID: 38723516 DOI: 10.1016/j.biopha.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Fluorescent probes are a powerful tool for imaging amyloid β (Aβ) plaques, the hallmark of Alzheimer's disease (AD). Herein, we report the synthesis and comprehensive characterization of 21 novel probes as well as their optical properties and binding affinities to Aβ fibrils. One of these dyes, 1Ae, exhibited several improvements over FDDNP, an established biomarker for Aβ- and Tau-aggregates. First, 1Ae had large Stokes shifts (138-213 nm) in various solvents, thereby reducing self-absorption. With a high quantum yield ratio (φ(dichloromethane/methanol) = 104), 1Ae also ensures minimal background emission in aqueous environments and high sensitivity. In addition, compound 1Ae exhibited low micromolar binding affinity to Aβ fibrils in vitro (Kd = 1.603 µM), while increasing fluorescence emission (106-fold) compared to emission in buffer alone. Importantly, the selective binding of 1Ae to Aβ1-42 fibrils was confirmed by an in cellulo assay, supported by ex vivo fluorescence microscopy of 1Ae on postmortem AD brain sections, allowing unequivocal identification of Aβ plaques. The intermolecular interactions of fluorophores with Aβ were elucidated by docking studies and molecular dynamics simulations. Density functional theory calculations revealed the unique photophysics of these rod-shaped fluorophores, with a twisted intramolecular charge transfer (TICT) excited state. These results provide valuable insights into the future application of such probes as potential diagnostic tools for AD in vitro and ex vivo such as determination of Aβ1-42 in cerebrospinal fluid or blood.
Collapse
Affiliation(s)
- Luka Rejc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | | | - Alba Espargaró
- Faculty of Pharmacy, Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Section of Physical-Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Anže Meden
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | - Lana Blinc
- Laboratory of Neural Plasticity and Regeneration (LNPR), Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Matic Rogan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Bruno Aleksander Martek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Jernej Mlakar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, Ljubljana SI-1000, Slovenia
| | - Ana Dremelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Andrej Petrič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia.
| | - Raimon Sabaté
- Faculty of Pharmacy, Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Section of Physical-Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain.
| | - Mara Bresjanac
- Laboratory of Neural Plasticity and Regeneration (LNPR), Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia.
| | - Balazs Pinter
- The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
2
|
Zhu FY, Mei LJ, Tian R, Li C, Wang YL, Xiang SL, Zhu MQ, Tang BZ. Recent advances in super-resolution optical imaging based on aggregation-induced emission. Chem Soc Rev 2024; 53:3350-3383. [PMID: 38406832 DOI: 10.1039/d3cs00698k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Super-resolution imaging has rapidly emerged as an optical microscopy technique, offering advantages of high optical resolution over the past two decades; achieving improved imaging resolution requires significant efforts in developing super-resolution imaging agents characterized by high brightness, high contrast and high sensitivity to fluorescence switching. Apart from technical requirements in optical systems and algorithms, super-resolution imaging relies on fluorescent dyes with special photophysical or photochemical properties. The concept of aggregation-induced emission (AIE) was proposed in 2001, coinciding with unprecedented advancements and innovations in super-resolution imaging technology. AIE probes offer many advantages, including high brightness in the aggregated state, low background signal, a larger Stokes shift, ultra-high photostability, and excellent biocompatibility, making them highly promising for applications in super-resolution imaging. In this review, we summarize the progress in implementation methods and provide insights into the mechanism of AIE-based super-resolution imaging, including fluorescence switching resulting from photochemically-converted aggregation-induced emission, electrostatically controlled aggregation-induced emission and specific binding-regulated aggregation-induced emission. Particularly, the aggregation-induced emission principle has been proposed to achieve spontaneous fluorescence switching, expanding the selection and application scenarios of super-resolution imaging probes. By combining the aggregation-induced emission principle and specific molecular design, we offer some comprehensive insights to facilitate the applications of AIEgens (AIE-active molecules) in super-resolution imaging.
Collapse
Affiliation(s)
- Feng-Yu Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Li-Jun Mei
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Rui Tian
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Shi-Li Xiang
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
3
|
Daus K, Tharamak S, Pluempanupat W, Galie PA, Theodoraki MA, Theodorakis EA, Alpaugh ML. Fluorescent molecular rotors as versatile in situ sensors for protein quantitation. Sci Rep 2023; 13:20529. [PMID: 37993476 PMCID: PMC10665405 DOI: 10.1038/s41598-023-46571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
Accurate protein quantitation is essential for many cellular mechanistic studies. Existing technology relies on extrinsic sample evaluation that requires significant volumes of sample as well as addition of assay-specific reagents and importantly, is a terminal analysis. This study exploits the unique chemical features of a fluorescent molecular rotor that fluctuates between twisted-to-untwisted states, with a subsequent intensity increase in fluorescence depending on environmental conditions (e.g., viscosity). Here we report the development of a rapid, sensitive in situ protein quantitation method using ARCAM-1, a representative fluorescent molecular rotor that can be employed in both non-terminal and terminal assays.
Collapse
Affiliation(s)
- Kevin Daus
- Department of Biological and Biomedical Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA
| | - Sorachat Tharamak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Special Research Unit for Advanced Magnetic Resonance, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Wanchai Pluempanupat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Special Research Unit for Advanced Magnetic Resonance, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Maria A Theodoraki
- Department of Biology, Arcadia University, 450 S. Easton Rd, Glenside, PA, 19038, USA
| | - Emmanuel A Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.
| | - Mary L Alpaugh
- Department of Biological and Biomedical Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA.
| |
Collapse
|
4
|
Hu Q, Luo X, Tohl D, Pham ATT, Raston C, Tang Y. Hydrogel-Film-Fabricated Fluorescent Biosensors with Aggregation-Induced Emission for Albumin Detection through the Real-Time Modulation of a Vortex Fluidic Device. Molecules 2023; 28:molecules28073244. [PMID: 37050007 PMCID: PMC10096627 DOI: 10.3390/molecules28073244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Hydrogels have various promising prospects as a successful platform for detecting biomarkers, and human serum albumin (HSA) is an important biomarker in the diagnosis of kidney diseases. However, the difficult-to-control passive diffusion kinetics of hydrogels is a major factor affecting detection performance. This study focuses on using hydrogels embedded with aggregation-induced emission (AIE) fluorescent probe TC426 to detect HSA in real time. The vortex fluidic device (VFD) technology is used as a rotation strategy to control the reaction kinetics and micromixing during measurement. The results show that the introduction of VFD could significantly accelerate its fluorescence response and effectively improve the diffusion coefficient, while VFD processing could regulate passive diffusion into active diffusion, offering a new method for future sensing research.
Collapse
Affiliation(s)
- Qi Hu
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Xuan Luo
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Damian Tohl
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
| | - Anh Tran Tam Pham
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
| | - Colin Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Youhong Tang
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
5
|
Fang H, Hu L, Chen Q, Geng S, Qiu K, Wang C, Hao M, Tian Z, Chen H, Liu L, Guan JL, Chen Y, Dong L, Guo Z, He W, Diao J. An ER-targeted "reserve-release" fluorogen for topological quantification of reticulophagy. Biomaterials 2023; 292:121929. [PMID: 36455487 DOI: 10.1016/j.biomaterials.2022.121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a "reserve-release" mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lianting Hu
- Medical Big Data Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangzhou, 510080, China; School of Information Management, Wuhan University, Wuhan 430072, China
| | - Qixin Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Shanshan Geng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chengjun Wang
- Sinopec Shengli Petroleum Engineering Limited Company, Dongying, 257000, China
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Huimin Chen
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Lei Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Lei Dong
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
6
|
Alahmadi A, Dmello A. Detrimental Effects of Elevated Temperatures on the Structure and Activity of Phenylalanine Ammonia Lyase-Bovine Serum Albumin Mixtures and the Stabilizing Potential of Surfactant and Sugars. AAPS PharmSciTech 2022; 23:297. [DOI: 10.1208/s12249-022-02446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
|
7
|
Majid N, Siddiqi MK, Alam A, Malik S, Ali W, Khan RH. Cholic acid inhibits amyloid fibrillation: Interplay of protonation and deprotonation. Int J Biol Macromol 2022; 221:900-912. [PMID: 36096254 DOI: 10.1016/j.ijbiomac.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
Abstract
Amyloidopathies are the consequence of misfolding with subsequent aggregation affecting people worldwide. Irrespective of speedy advancement in the field of therapeutics no agent for treating amyloidopathies has been discovered and thus targeting amyloid fibrillation process via repositioning of small molecules can be fruitful. According to previous reports potential amyloid inhibitors possess unique features like, hydrophobicity, aromaticity, charge etc. Herein, we have explored the effect of Cholic acid (CA) on amyloid fibrillation irrespective of the charge (determined by Zetasizer) using four proteins Human Serum Albumin, Bovine Serum Albumin, Human Insulin and Beta-lactoglobulin (HSA, BSA, HI and BLG) employing biophysical, imaging and computational techniques. ThT results revealed that CA in both protonated and deprotonated form is potent to curb HSA, BSA, BLG aggregation ~50% and HI aggregation ~96% in a dose dependent manner (in accord with CD, ANS and Congo red assay). Interestingly, CA treated samples displayed reduced cytotoxicity (Hemolytic assay) with altered morphology (TEM) and mechanism behind inhibition may be the interaction of CA with proteins via hydrophobic interactions and hydrogen bonding (supported by molecular docking results). This study proved CA (irrespective of the pH) a potential inhibitor of amyloidosis thus can be helpful in generalizing and repurposing the related drugs/compounds for their anti-aggregation behavior as an implication towards treating amyloidopathies.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Wareesha Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
8
|
Abstract
Applications of AIEgens in biosensing, disease diagnosis, and drug release.
Collapse
Affiliation(s)
- Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Sijie Liao
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Yufeng Liu
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Huaizu Zhang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Xingyu Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P.R. China
| | - Xiangming Zhou
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P.R. China
| |
Collapse
|
9
|
Lu Z, Wang Y, Zhang J, Mao A, Lang M. Rationally designed water-soluble AIE fluorescent polyester for the detection of oligomers based on the characteristics of HEWL amyloid fibrosis. Polym Chem 2022. [DOI: 10.1039/d2py00891b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
According to the fibrotic characteristics of HEWL, a water-soluble stimulus-responsive AIE polymer was designed and successfully used for oligomer detection.
Collapse
Affiliation(s)
- Zhimin Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yixiu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Junyong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Fan C, Chen ZQ, Li C, Wang YL, Yu Q, Zhu MQ. Hydrophilic AIE-Active Tetraarylethenes for Fluorescence Sensing and Super-Resolution Imaging of Amyloid Fibrils from Hen Egg White Lysozyme. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19625-19632. [PMID: 33886270 DOI: 10.1021/acsami.1c01819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hen egg white lysozyme (HEWL) is frequently applied as a model protein for research on protein folding, unfolding, and fibrillization identified by featured fluorescent probes. Here, a series of hydrophilic, pH-sensitive tetraarylethene (TAE)-type AIEgens are synthesized via a geminal cross-coupling (GCC) reaction and evaluated for their capabilities of fluorescence sensing and super-resolution localization imaging of HEWL fibrils. With superior optical and sensing properties, the selected TAE-type AIEgen probe is weakly emissive in aqueous media, without dependence on the pH value and buffer concentration, but exhibits "turn-on" fluorescence upon interaction with HEWL amyloid fibrils in a spontaneous and reversible way that just meets the requirement of fluorescence random switching for super-resolution imaging. The selected probe has the strongest fluorescence response to HEWL amyloid fibrils exhibiting a limit of detection of 0.59 nmol/L and enables super-resolution fluorescence imaging of amyloid aggregates with a high resolution of 40 nm.
Collapse
Affiliation(s)
- Cheng Fan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ze-Qiang Chen
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ya-Long Wang
- School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Qi Yu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
11
|
Qiu Y, Zhao X, Wang J, Yan H, Jiang Q, Cao S, Wang H, Liao Y, Xie X. Helical tube triggered two-stage emission behavior for tetraphenylethene-functionalised hemicyanine dye: Better dispersion stronger fluorescence. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Hu Q, Yao B, Owyong TC, Prashanth S, Wang C, Zhang X, Wong WWH, Tang Y, Hong Y. Detection of Urinary Albumin Using a "Turn-on" Fluorescent Probe with Aggregation-Induced Emission Characteristics. Chem Asian J 2021; 16:1245-1252. [PMID: 33759376 DOI: 10.1002/asia.202100180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Indexed: 01/08/2023]
Abstract
Human serum albumin (HSA) is a broadly used biomarker for the diagnosis of various diseases such as chronic kidney disease. Here, a fluorescent probe TC426 with aggregation-induced emission (AIE) characteristics is reported as a sensitive and specific probe for HSA. This probe is non-emissive in aqueous solution, meanwhile it shows bright fluorescence upon interacting with HSA, which makes it applicable in detecting HSA with a high signal to noise ratio. Besides, the fluorescence of TC426 exhibits a high linear correlation with the concentration of albumin in the range of microalbumin (20-200 mg/L), which has a significant importance for the early diagnosis of glomerulus related diseases. Compared with previously reported HSA probes TPE-4TA and BSPOTPE, TC426 shows comparable anti-interference ability towards creatinine and other major components in urine but is excited by a longer excitation wavelength at the visible light range. Finally, with the established assay, TC426 shows excellent performance in detecting HSA in real human urine, indicating its great potential in practical urinalysis.
Collapse
Affiliation(s)
- Qi Hu
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Bicheng Yao
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Tze Cin Owyong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia.,ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Sharon Prashanth
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Changyu Wang
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Xinyi Zhang
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia, 5042, Australia.,Australia-China Joint Research Centre for Personal Health Technologies, Flinders University, South Australia, 5042, Australia
| | - Wallace W H Wong
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Youhong Tang
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia, 5042, Australia.,Australia-China Joint Research Centre for Personal Health Technologies, Flinders University, South Australia, 5042, Australia
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| |
Collapse
|
13
|
Bhuin S, Halder S, Saha SK, Chakravarty M. Binding interactions and FRET between bovine serum albumin and various phenothiazine-/anthracene-based dyes: a structure-property relationship. RSC Adv 2021; 11:1679-1693. [PMID: 35424090 PMCID: PMC8693680 DOI: 10.1039/d0ra09580j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
The present study demonstrates binding interactions and Förster resonance energy transfer (FRET) between bovine serum albumin (BSA) and a series of structurally and electronically diverse phenothiazine (PTZ) and anthracene (ANT) dyes. Upon selective excitation of tryptophan (Trp) residues of BSA, radiationless energy transfer to a dye takes place, resulting in fluorescence quenching of the former. Fluorescence quenching mechanisms, FRET parameters, possible locations, and binding constants of dyes with the BSA have been examined to deduce a structure–property relationship. The mechanism of quenching is apparently static in nature. PTZ dyes with heteroatoms and a pentyl tail (C5-PTZ) attached to them were found to have a stronger binding affinity with BSA as compared to ANT dyes. Stronger binding affinities of C5-PTZ dyes with BSA result in greater energy transfer efficiencies (ET). A dye with a strong electron-withdrawing group present in it has shown better energy accepting capability. A FRET study with dicyanoaniline (DCA) analogs of PTZ and ANT dyes (C5-PTZDCA and ANTDCA, respectively) revealed that ET depends on electronic and structural factors of molecules. An almost orthogonal geometry between ANT and DCA moieties (∼79°) in ANTDCA induces the greater extent of electron transfer from ANT to DCA, showing a higher ET for this dye as compared to C5-PTZDCA in which the torsion angle is only ∼38°. Further, the observed facts have been validated by experimentally determined bandgaps (using cyclic voltammetry experiments) for all the dyes. Thus, the hydrophobic character and the presence of interactive substituents along with the electron-accepting abilities majorly control the FRET for such dyes with BSA. The present study demonstrates binding interactions and Förster resonance energy transfer (FRET) between bovine serum albumin (BSA) and a series of structurally and electronically diverse phenothiazine (PTZ) and anthracene (ANT) dyes.![]()
Collapse
Affiliation(s)
- Shouvik Bhuin
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani, Hyderabad Campuses Hyderabad-500078 Telangana India
| | - Sayantan Halder
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani, Hyderabad Campuses Hyderabad-500078 Telangana India
| | - Subit Kumar Saha
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani, Hyderabad Campuses Hyderabad-500078 Telangana India
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani, Hyderabad Campuses Hyderabad-500078 Telangana India
| |
Collapse
|
14
|
Gomes VS, Gonçalves HM, Boto RE, Almeida P, Reis LV. Barbiturate squaraine dyes as fluorescent probes for serum albumins detection. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Srinivasan V, Jhonsi MA, Dhenadhayalan N, Lin KC, Ananth DA, Sivasudha T, Narayanaswamy R, Kathiravan A. Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117150. [PMID: 31176291 DOI: 10.1016/j.saa.2019.117150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/16/2023]
Abstract
Herein, we have meticulously derived the nanosized fluorescent aggregates from pyrene Schiff base (PS) in DMSO:water (10:90) ratio. The aggregation property of PS molecule was characterized by SEM and TEM measurements, revealed the aggregated particles are in spherical shape with ~3 nm in size. Moreover, aggregates exhibit a high fluorescence quantum yield (48%) which was effectively used for the in vitro bioimaging of two different cancer cells such as A549 and MCF-7 cells in which it exhibiting excellent biocompatibility. Further, it was estimated the capability of twofold acridine orange/ethidium bromide (AO/EB) staining to identify the apoptotic associated changes in cancer cells. Additionally, the aggregates were successfully demonstrated as a luminescent probe for the perceptive biomolecule detection of bilirubin. On the other hand, the PS molecule was successfully utilized for protein binding and metal ion sensing studies. The interaction of bovine serum albumin (BSA) with PS molecule in DMSO was using fluorescence spectroscopic method and nature of interaction was also confirmed through molecular docking analysis. The PS molecule also acts as an excellent sensor for biologically important Fe3+ ion with detection limit of 336 nM. Overall, PS molecule can be a prospective material in biological field both in solution as well as aggregated forms.
Collapse
Affiliation(s)
- Venkatesan Srinivasan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 048, Tamil Nadu, India
| | - Mariadoss Asha Jhonsi
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 048, Tamil Nadu, India.
| | - Namasivayam Dhenadhayalan
- Department of Chemistry, National Taiwan University and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Devanesan Arul Ananth
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Thilagar Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Radhakrishnan Narayanaswamy
- Department of Biotechnology, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai 600 062, Tamil Nadu, India
| | - Arunkumar Kathiravan
- Department of Chemistry, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai 600 062, Tamil Nadu, India.
| |
Collapse
|
16
|
Tu Y, Yu Y, Zhou Z, Xie S, Yao B, Guan S, Situ B, Liu Y, Kwok RTK, Lam JWY, Chen S, Huang X, Zeng Z, Tang BZ. Specific and Quantitative Detection of Albumin in Biological Fluids by Tetrazolate-Functionalized Water-Soluble AIEgens. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29619-29629. [PMID: 31340641 DOI: 10.1021/acsami.9b10359] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The analysis of albumin has clinical significance in diagnostic tests and obvious value to research studies on the albumin-mediated drug delivery and therapeutics. The present immunoassay, instrumental techniques, and colorimetric methods for albumin detection are either expensive, troublesome, or insensitive. Herein, a class of water-soluble tetrazolate-functionalized derivatives with aggregation-induced emission (AIE) characteristics is introduced as novel fluorescent probes for albumin detection. They can be selectively lighted up by site-specific binding with albumin. The resulting albumin fluorescent assay exhibits a low detection limit (0.21 nM), high robustness in aqueous buffer (pH = 6-9), and a broad tunable linear dynamic range (0.02-3000 mg/L) for quantification. The tetrazolate functionality endows the probes with a superior water solubility (>0.01 M) and a high binding affinity to albumin (KD = 0.25 μM). To explore the detection mechanism, three unique polar binding sites on albumin are computationally identified, where the multivalent tetrazolate-lysine interactions contribute to the tight binding and restriction of the molecular motion of the AIE probes. The key role of lysine residues is verified by the detection of poly-l-lysine. Moreover, we applied the fluorogenic method to quantify urinary albumin in clinical samples and found it a feasible and practical strategy for albumin analysis in complex biological fluids.
Collapse
Affiliation(s)
- Yujie Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | | | - Zhibiao Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | | | - Shujuan Guan
- Department of Laboratory Medicine, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | | | | | | | - Sijie Chen
- Ming Wai Lau Center for Reparative Medicine , Karolinska Institutet , Hong Kong 999077 , China
| | | | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Ben Zhong Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, (Guangzhou International Campus) , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
17
|
Bhunia S, Kumar S, Purkayastha P. Application of Photoinduced Electron Transfer with Copper Nanoclusters toward Finding Characteristics of Protein Pockets. ACS OMEGA 2019; 4:2523-2532. [PMID: 31459491 PMCID: PMC6648241 DOI: 10.1021/acsomega.8b03213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/18/2019] [Indexed: 05/30/2023]
Abstract
Proteins possess various domains and subdomain pockets with varying hydrophobicity/hydrophilicity. The local polarities of these domains play a major role in oxidation-reduction-based biological processes. Herein, we have synthesized ultrasmall fluorescent copper nanoclusters (Cu NCs) that are directed to bind to the different domain-specific pockets of the model protein bovine serum albumins (BSA). Potential electron acceptors, methyl viologen (MV) derivatives, were chosen such that they specifically reach the various domains following their hydrophobicity/hydrophilicity. Here, we have used MV2+, HMV+, and DHMV2+, possessing hydrophilic, intermediate, and hydrophobic specificities. Being electron acceptors, these derivatives draw electrons from the Cu NCs through photoinduced electron transfer (PET). The rate of PET varies at the different domains of BSA based on the local environment which has been analyzed. Here, PET is confirmed by steady state as well as time-resolved fluorescence spectroscopy. This study would provide a measurable way to identify the location of the different domains of a protein which is scalable by changing the superficial conditions without unfolding the protein.
Collapse
Affiliation(s)
- Soumyadip Bhunia
- Department
of Chemical Sciences and Center for Advanced Functional
Materials (CAFM), Indian Institute of Chemical
Sciences (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Sumit Kumar
- Department
of Chemical Sciences and Center for Advanced Functional
Materials (CAFM), Indian Institute of Chemical
Sciences (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Pradipta Purkayastha
- Department
of Chemical Sciences and Center for Advanced Functional
Materials (CAFM), Indian Institute of Chemical
Sciences (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
18
|
Xie S, Wong AYH, Chen S, Tang BZ. Fluorogenic Detection and Characterization of Proteins by Aggregation‐Induced Emission Methods. Chemistry 2019; 25:5824-5847. [DOI: 10.1002/chem.201805297] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Sheng Xie
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Alex Y. H. Wong
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of NeuroscienceDivision of Biomedical Engineering, and Division of Life Science, HKUST-Shenzhen Research InstituteThe Hong Kong University of Science and Technology, Kowloon Hong Kong S.A.R. China
- NSFC Center for Luminescence from Molecular AggregatesSCUT-HKUST Joint Research InstituteState Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 P.R. China
| |
Collapse
|
19
|
Liu B, Wang K, Lu H, Huang M, Yang J. A nitro-capped tetraaniline derivative with AIE features for BSA detection and the selective imaging of Gram-positive bacteria. NEW J CHEM 2019. [DOI: 10.1039/c9nj02159k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A nitro-capped tetraaniline derivative (NO2-B3-Ani4-NO2) with AIE feature was synthesized and characterized, which presented an ultrasensitive turn-on response towards bovine serum albumin and selective imaging of Gram-positive bacteria based on AIE mechanism.
Collapse
Affiliation(s)
- Beibei Liu
- Key Laboratory of Aerospace Advanced Materials and Performance
- Ministry of Education
- School of Materials Science and Engineering
- Beihang University
- Beijing 100083
| | - Kun Wang
- Key Laboratory of Aerospace Advanced Materials and Performance
- Ministry of Education
- School of Materials Science and Engineering
- Beihang University
- Beijing 100083
| | - Hao Lu
- Key Laboratory of Aerospace Advanced Materials and Performance
- Ministry of Education
- School of Materials Science and Engineering
- Beihang University
- Beijing 100083
| | - Mingming Huang
- Key Laboratory of Aerospace Advanced Materials and Performance
- Ministry of Education
- School of Materials Science and Engineering
- Beihang University
- Beijing 100083
| | - Jiping Yang
- Key Laboratory of Aerospace Advanced Materials and Performance
- Ministry of Education
- School of Materials Science and Engineering
- Beihang University
- Beijing 100083
| |
Collapse
|
20
|
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS APPLIED BIO MATERIALS 2018; 1:1768-1786. [DOI: 10.1021/acsabm.8b00600] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunlei Zhu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ryan T. K. Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
21
|
Huang C, Ran G, Zhao Y, Wang C, Song Q. Synthesis and application of a water-soluble phosphorescent iridium complex as turn-on sensing material for human serum albumin. Dalton Trans 2018; 47:2330-2336. [PMID: 29367989 DOI: 10.1039/c7dt04676f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel water-soluble cyclometallated iridium complex [Ir(pq-COOH)2FDS]- (pq-COOH = 2-phenylquinoline-4-carboxylic acid, FDS = 3-(2-pyridyl)-5,6-bis(4-sulfophenyl)-1,2,4-triazine dianions) (abbreviated as Ir) was synthesized and its phosphorescent property was comprehensively studied. It was found that the complex exhibited strong phosphorescence, which peaked at 634 nm in neutral conditions (maximized at pH 8.0). Its phosphorescence decreased with an increase in acidity of the aqueous solution. At pH 2.0, the quenched phosphorescence could be resumed upon the addition of human serum albumin (HSA) because of the hydrophobic and electrostatic interactions between HSA and Ir. Based on this phenomenon, a "turn on" type phosphorescence probe was developed for the detection of HSA. Under optimal conditions, a wide calibration range of 1-280 nM was obtained with a limit of detection of 0.8 nM for HSA. The phosphorescence probe was successfully used for the determination of HSA in blood serum and urine samples.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | |
Collapse
|
22
|
Wang Z, Gu Y, Liu J, Cheng X, Sun JZ, Qin A, Tang BZ. A novel pyridinium modified tetraphenylethene: AIE-activity, mechanochromism, DNA detection and mitochondrial imaging. J Mater Chem B 2018; 6:1279-1285. [DOI: 10.1039/c7tb03012f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A cationic AIE-gen demonstrates multiple functions including mechanoluminochromic and solvatochromic effects, fluorescence turn-on responses to DNA-binding and mitochondria-specific living cell imaging.
Collapse
Affiliation(s)
- Zhaoyang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yuan Gu
- Department of Chemistry
- Institute for Advanced Study
- Institute of Molecular Functional Materials, and State Key Laboratory of Molecular Neuroscience
- The Hong Kong University of Science and Technology
- Clear Water Bay
| | - Junyuan Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiao Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Anjun Qin
- Guangdong Innovative Research Team
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
23
|
Chen R, Gao X, Cheng X, Qin A, Sun JZ, Tang BZ. A red-emitting cationic hyperbranched polymer: facile synthesis, aggregation-enhanced emission, large Stokes shift, polarity-insensitive fluorescence and application in cell imaging. Polym Chem 2017. [DOI: 10.1039/c7py01378g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cationic hyperbranched polymer containing TPE units demonstrates bright and stable red-emission with AEE-characteristics and good performance in cell imaging.
Collapse
Affiliation(s)
- Rui Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiaoying Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiao Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Anjun Qin
- Guangdong Innovative Research Team
- State Key Lab of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|