1
|
Liu X, Yang X, Zhang J, Hou H, Li X, Ding X. Preparation, separation and identification of novel hypocholesterolemic peptides from wheat germ: An in vitro and in silico study. Food Chem 2025; 469:142624. [PMID: 39732072 DOI: 10.1016/j.foodchem.2024.142624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
The aim of this study was to prepare, isolate, and identify hypocholesterolemic peptides from wheat germ protein and explore their efficacy. Wheat germ protein was hydrolyzed using four commercial enzymes. Hydrolysate, with the highest in vitro hypocholesterolemic activity was isolated using ultrafiltration and macroporous resin. The fractions with highest binding affinity to sodium taurocholate were evaluated for cholesterol-lowering activity and resistance to digestion using Caco-2 monolayers. Fraction III had the highest cholesterol-lowering activity, reducing the subcutaneous transport and absorption of cholesterol and resisted digestion. Nano-LC-MS/MS and molecular docking were used to identify cholesterol-lowering peptides from Fraction III. Three cholesterol-lowering peptides, FAAGAPP, GAGDIPGGIG, and GPVPDTGIFS, were identified. These peptides exhibited cholesterol micelle solubility, specifically by 76.2 %, 68.3 %, and 64.7 %, respectively. In summary, wheat germ peptides exhibited significant cholesterol-lowering activity in vitro, suggesting their potential for application in functional foods.
Collapse
Affiliation(s)
- Xiao Liu
- Engineering and Technology Center for Grain Processing of Shandong Province, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Avenue, Tai'an 271018, China
| | - Xiaofang Yang
- Internal-medicine Department, Shouguang People's Hospital, 3173 Jiankang Street, Shouguang 262700, China
| | - Jinli Zhang
- Engineering and Technology Center for Grain Processing of Shandong Province, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Avenue, Tai'an 271018, China
| | - Hanxue Hou
- Engineering and Technology Center for Grain Processing of Shandong Province, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Avenue, Tai'an 271018, China
| | - Xiangyang Li
- School of Engineering, Ludong University, Hongqi Middle Road, Zhifu District, Yantai 264025, China
| | - Xiuzhen Ding
- Engineering and Technology Center for Grain Processing of Shandong Province, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Avenue, Tai'an 271018, China.
| |
Collapse
|
2
|
Liu X, Mao S, Yuan Y, Wang Z, Tian Y, Tao L, Dai J. Antin-diabetic cognitive dysfunction effects and underpinning mechanisms of phytogenic bioactive peptides: a review. Front Nutr 2025; 11:1517087. [PMID: 39867560 PMCID: PMC11758632 DOI: 10.3389/fnut.2024.1517087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025] Open
Abstract
Diabetic cognitive dysfunction is one of the important comorbidities and complications of diabetes, which is mainly manifested by loss of learning ability and memory, behavioural disorders, and may even develop into dementia. While traditional anti-diabetic medications are effective in improving cognition and memory, long-term use of these medications can be accompanied by undesirable side effects. Therefore, there is an urgent need to find safe and effective alternative therapies. Accumulating evidence suggests that phytogenic bioactive peptides play an important role in the regulation of cognitive dysfunction in diabetes. In this review, we explored the relationship between diabetes mellitus and cognitive dysfunction, and the potential and underlying mechanisms of plant-derived bioactive peptides to improve diabetic cognitive dysfunction. We found that plant-derived active peptides alleviate diabetic cognitive impairment by inhibiting key enzymes (e.g., α-glucosidase, α-amylase) to improve blood glucose levels and increase antioxidant activity, modulate inflammatory mediators, and address intestinal dysbiosis. In conclusion, plant-derived active peptides show strong potential to improve diabetic cognitive impairment.
Collapse
Affiliation(s)
- Xiaoli Liu
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Shenglian Mao
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yuxue Yuan
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zilin Wang
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Pu’er College, Pu’er, China
| | - Liang Tao
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Rico D, Cano AB, Álvarez Álvarez S, Río Briones G, Martín Diana AB. Study of the Total Antioxidant Capacity (TAC) in Native Cereal-Pulse Flours and the Influence of the Baking Process on TAC Using a Combined Bayesian and Support Vector Machine Modeling Approach. Foods 2023; 12:3208. [PMID: 37685144 PMCID: PMC10487251 DOI: 10.3390/foods12173208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
During the last few years, the increasing evidence of dietary antioxidant compounds and reducing chronic diseases and the relationship between diet and health has promoted an important innovation within the baked product sector, aiming at healthier formulations. This study aims to develop a tool based on mathematical models to predict baked goods' total antioxidant capacity (TAC). The high variability of antioxidant properties of flours based on the aspects related to the type of grain, varieties, proximal composition, and processing, among others, makes it very difficult to innovate on food product development without specific analysis. Total phenol content (TP), oxygen radical absorbance capacity (ORAC), and ferric-reducing antioxidant power assay (FRAP) were used as markers to determine antioxidant capacity. Three Bayesian-type models are proposed based on a double exponential parameterized curve that reflects the initial decrease and subsequent increase as a consequence of the observed processes of degradation and generation, respectively, of the antioxidant compounds. Once the values of the main parameters of each curve were determined, support vector machines (SVM) with an exponential kernel allowed us to predict the values of TAC, based on baking conditions (temperature and time), proteins, and fibers of each native grain.
Collapse
Affiliation(s)
| | | | | | | | - Ana Belén Martín Diana
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (D.R.); (S.Á.Á.); (G.R.B.)
| |
Collapse
|
4
|
Zhang ZH, Cheng WL, Li XD, Wang X, Yang FW, Xiao JS, Li YX, Zhao GP. Extraction, bioactive function and application of wheat germ protein/peptides: A review. Curr Res Food Sci 2023; 6:100512. [PMID: 37215742 PMCID: PMC10196331 DOI: 10.1016/j.crfs.2023.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
The aging population and high incidence of age-related diseases are major global societal issues. Consuming bioactive substances as part of our diet is increasingly recognized as essential for ensuring a healthy life for older adults. Wheat germ protein has a reasonable peptide structure and amino acid ratio but has not been fully utilized and exploited, resulting in wasted wheat germ resources. This review summarizes reformational extraction methods of wheat germ protein/peptides (WGPs), of which different methods can be selected to obtain various WGPs. Interestingly, except for some bioactive activities found earlier, WGPs display potential anti-aging activity, with possible mechanisms including antioxidant, immunomodulatory and intestinal flora regulation. However, there are missing in vitro and in vivo bioactivity assessments of WGPs. WGPs possess physicochemical properties of good foamability, emulsification and water retention and are used as raw materials or additives to improve food quality. Based on the above, further studies designing methods to isolate particular types of WGPs, determining their nutritional and bioactive mechanisms and verifying their activity in vivo in humans are crucial for using WGPs to improve human health.
Collapse
Affiliation(s)
- Zhi-hui Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Wei-long Cheng
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
- National Center of Technology Innovation for Dairy, Inner Mongolia, 013757, China
| | - Xiu-de Li
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xin Wang
- Food Quality and Safety, Agricultural University of Hebei Bohai Campus, Cangzhou, 071001, China
| | - Fang-wei Yang
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Jun-song Xiao
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Yi-xuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Guo-ping Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
- National Center of Technology Innovation for Dairy, Inner Mongolia, 013757, China
| |
Collapse
|
5
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
6
|
Wang C, Cui C, Li N, Sun X, Wen L, Gao E, Wang F. Antioxidant activity and protective effect of wheat germ peptides in an in vitro celiac disease model via Keap1/Nrf2 signaling pathway. Food Res Int 2022; 161:111864. [DOI: 10.1016/j.foodres.2022.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 11/27/2022]
|
7
|
Wang F, Yang G, Li Y, Tang Z, Du J, Song H, Xiong L, Wang L, Weng Z, Shen X. A peptide from wheat germ abolishes the senile osteoporosis by regulating OPG/RANKL/RANK/TRAF6 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154304. [PMID: 35793596 DOI: 10.1016/j.phymed.2022.154304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Oxidative stress played a key role in the development of bone brittleness and is an important pathogenic factor of senile osteoporosis. A variety of animal and plant-derived peptides have been shown to have significant anti-osteoporosis effects in vivo and in vitro. PURPOSE In this study, we aim to explore the possible mechanism of wheat germ peptide ADWGGPLPH on senile osteoporosis. STUDY DESIGN Naturally, aged rats were used as animal models of senile osteoporosis. METHODS Wheat germ peptide ADWGGPLPH was administered from 9-months-old to 21-months-old, and the effect of ADWGGPLPH on preventing senile osteoporosis was evaluated by measuring serum biochemical indexes, bone histomorphometry, bone biomechanics, and other indexes to elucidate the mechanism of ADWGGPLPH in delaying senile osteoporosis by detecting the expression of osteoporosis-related proteins. RESULTS The results showed that ADWGGPLPH could effectively reduce the level of oxidative stress and improve the microstructure and bone mineral density in senile osteoporosis rats. In addition, ADWGGPLPH could improve the proliferation and differentiation activity of osteoblasts and effectively inhibit osteoclasts' differentiation by regulating the OPG/RANKL/RANK/TRAF6 pathway. CONCLUSION ADWGGPLPH from wheat germ exhibited a notably effect on senile osteoporosis and has a high potential in the development of the nutrient regimen to against senile osteoporosis.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Gaohong Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Yu Li
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Zhijuan Tang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiayi Du
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Ling Xiong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Luanfeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| |
Collapse
|
8
|
Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Weng Z, Sun L, Wang F, Sui X, Fang Y, Tang X, Shen X. Assessment the flavor of soybean meal hydrolyzed with Alcalase enzyme under different hydrolysis conditions by E-nose, E-tongue and HS-SPME-GC-MS. FOOD CHEMISTRY-X 2021; 12:100141. [PMID: 34704014 PMCID: PMC8523844 DOI: 10.1016/j.fochx.2021.100141] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022]
Abstract
Enzymatic hydrolysis with Alcalase reduced soybean odor substance 1-octene-3-ol. Excessive enzymatic hydrolysis resulted in the deterioration of the hydrolysate flavor. The flavour of soybean meal hydrolysates with different hydrolysis conditions could be distinguished by E-tongue.
In the present study, E-nose, E-tongue, and headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC–MS) technology combined with Principal Component Analysis (PCA) were employed to evaluate the flavor characteristics of the volatile and the non-volatile substances generated during the enzymatic hydrolysis of the soybean meal by Alcalase. The results showed that the enzymatic hydrolysis effectively reduced the content of soybean odorous substance 1-octene-3-ol and led to better flavor. However, the excessive enzymatic hydrolysis resulted in the deterioration of the enzymatic hydrolysates flavor. In addition, both radar graph and PCA of E-tongue were able to provide the distribution of flavor substances during the enzymatic hydrolysis of the soybean meal. These results provided a theoretical basis for the improvement of the flavors of the soybean meal and its derived products.
Collapse
Affiliation(s)
- Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Sun
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| |
Collapse
|
10
|
Weng Z, Chen Y, Liang T, Lin Y, Cao H, Song H, Xiong L, Wang F, Shen X, Xiao J. A review on processing methods and functions of wheat germ-derived bioactive peptides. Crit Rev Food Sci Nutr 2021; 63:5577-5593. [PMID: 34964419 DOI: 10.1080/10408398.2021.2021139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Wheat germ protein is a potential resource to produce bioactive peptides. As a cheap, safe, and healthy nutritional factor, wheat germ-derived bioactive peptides (WGBPs) provide benefits and great potential for biomedical applications. The objective of this review is to reveal the current research status of WGBPs, including their preparation methods and biological functions, such as antibacterial, anti-tumor, immune regulation, antioxidant, and anti-inflammatory properties, etc. We also reviewed the information in terms of the preventive ability of WGBPs to treat serious infectious diseases, to offer their reference to further research and application. Opinions on future research directions are also discussed. Through the review of previous research, we find that there are still some scientific issues in the basic research and industrialization process of WGBPs that deserve further exploration. Firstly, based on current complex enzymolysis, the preparation and production of WGBPs need to be combined with other advanced technology to achieve efficient and large-scale production. Secondly, studies on the bioavailability, biosafety, and mechanism against different diseases of WGBPs need to be carried out in different in vitro and in vivo models. More human experimental evidence is also required to support its industrial application as a functional food and nutritional supplement.HighlightsThe purification and identification of wheat germ-derived bioactive peptides.The main biological activities and potential mechanisms of wheat germ hydrolysates/peptides.Possible absorption and transport pathways of wheat germ hydrolysate/peptide.Wheat germ peptide shows a variety of health benefits according to its amino acid sequence.Current food applications and future perspectives of wheat germ protein hydrolysates/peptide.
Collapse
Affiliation(s)
- Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanrong Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Tingting Liang
- Changshu Hospital, Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yajuan Lin
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Cao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jianbo Xiao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
11
|
Deng Z, Yang Z, Peng J. Role of bioactive peptides derived from food proteins in programmed cell death to treat inflammatory diseases and cancer. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34694177 DOI: 10.1080/10408398.2021.1992606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bioactive peptides are specific peptide which usually contains 2-20 amino acid residues and actively exerts various functions and biological activities and ultimately affect health. Programmed cell deaths are some styles of cell death discovered in recent years, which is the key to tissue development and balance, eliminating excess, damaged or aging cells. More importantly, programmed cell death is a potential way to treat inflammatory diseases and cancer. In this review, through screening references from 2015 to present, we introduce the effect of bioactive peptides derived from food proteins on inflammatory diseases or cancer through regulating programmed cell deaths, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. And this review also introduces the targets of these bioactive peptides to regulate programmed cell death. The purpose of this review is to help to expand the prospective applications of bioactive peptides in the field of inflammatory disease and cancer to provide some guidance.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
12
|
Mohammadi H, Karimifar M, Heidari Z, Zare M, Amani R. The effects of wheat germ consumption on mental health and brain-derived neurotrophic factor in subjects with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Nutr Neurosci 2021; 25:46-53. [PMID: 33983107 DOI: 10.1080/1028415x.2019.1708032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objectives: Herbals, as bioactive foods, have been one of the most popular alternatives and complementary treatments in preventing and controlling type 2 diabetes mellitus (T2DM). The aim of the present trial was to examine the effects of wheat germ consumption on mental health and brain-derived neurotrophic factor (BDNF) among patients with T2DM.Methods: Eighty participants with T2DM were randomly allocated to receive 20 g wheat germ (n = 40) or placebo (n = 40) in a randomized double-blind clinical trial for 12 weeks. Depression, anxiety, stress scale-21 (DASS-21) questionnaire was used to assess the mental health of study participants. Serum BDNF was assessed at the baseline and end of intervention. Anthropometric indices were measured at the baseline, 6 and 12 weeks during the intervention.Results: A total of 75 subjects completed the trial. Compared with the placebo, wheat germ consumption led to a significant reduction in depression (P = .03) and stress (P = .04) scores. Moreover, a significant increase in serum BDNF concentrations was observed in the wheat germ group (P = .004), while there was no significant difference between the groups. Wheat germ intake had no significant effects on anthropometric indices and anxiety scores between the groups.Conclusion: Our findings showed that wheat germ consumption for 12 weeks could significantly reduce the stress and depression scores but had no significant effects on anxiety scale and anthropometric outcomes in patients with T2DM.
Collapse
Affiliation(s)
- Hamed Mohammadi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozhgan Karimifar
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Zare
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Wang F, Weng Z, Lyu Y, Bao Y, Liu J, Zhang Y, Sui X, Fang Y, Tang X, Shen X. Wheat germ-derived peptide ADWGGPLPH abolishes high glucose-induced oxidative stress via modulation of the PKCζ/AMPK/NOX4 pathway. Food Funct 2021; 11:6843-6854. [PMID: 32662486 DOI: 10.1039/d0fo01229g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study explores the antioxidative effect of a specific wheat germ-derived peptide on high glucose-induced oxidative stress in vascular smooth muscle cells (VSMCs) and the underlying mechanisms. The peptide ADWGGPLPH was identified by LC-MS/MS. The effects of this peptide on the production of ROS and the expression of oxidative stress signaling proteins in VSMCs were determined. STZ-induced mice were utilized to confirm the anti-oxidative and anti-diabetic cardiovascular disease effects of this peptide in vivo. The results showed that ADWGGPLPH significantly prevented high glucose-induced cell proliferation, decreased intracellular ROS generation, stimulated AMPK activity, inhibited the PKCζ, AKT and Erk1/2 phosphorylation, and suppressed NOX4 protein expression. In addition, ADWGGPLPH enhanced the antioxidant abilities and attenuated inflammatory cytokine generation in STZ-induced diabetic mice. Therefore, ADWGGPLPH prevents high glucose-induced oxidative stress in VSMCs by modulating the PKCζ/AMPK/NOX4 pathway.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Lyu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Juncheng Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Yu Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| |
Collapse
|
14
|
Ofosu FK, Mensah DJF, Daliri EBM, Oh DH. Exploring Molecular Insights of Cereal Peptidic Antioxidants in Metabolic Syndrome Prevention. Antioxidants (Basel) 2021; 10:518. [PMID: 33810450 PMCID: PMC8066008 DOI: 10.3390/antiox10040518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 11/23/2022] Open
Abstract
The prevalence of metabolic syndrome (MetS) is presently an alarming public health problem globally. Oxidative stress has been postulated to be strongly correlated with MetS, such as type 2 diabetes, obesity, hypertension, cardiovascular diseases, and certain cancers. Cereals are important staple foods which account for a huge proportion of the human diet. However, owing to recent growing demand and the search for natural antioxidants for the prevention and management of MetS, cereal peptides have gained increasing attention for developing functional ingredients or foods with substantial antioxidant properties. This review explores the current production techniques for cereal peptidic antioxidants and their potential mechanism of action in the prevention and management of MetS.
Collapse
Affiliation(s)
- Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| | - Dylis-Judith Fafa Mensah
- Department of Family and Consumer Sciences, College of Applied Science and Technology, Illinois State University, Normal, IL 61761, USA;
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| |
Collapse
|
15
|
Chen W, Liao A, Hou Y, Pan L, Yu G, Du J, Yang C, Li X, Huang J. Digestive characteristics and peptide release from wheat embryo proteins in vitro. Food Funct 2021; 12:2257-2269. [PMID: 33596303 DOI: 10.1039/d0fo03193c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the scarcity of the data on digestion and metabolism of wheat embryo proteins WEP, a simulated gastrointestinal digestion (SGID) scheme in vitro was utilized to explain the protein hydrolysis and biological activity of WEP during the digestion process. WEP had a certain degree of resistance to gastric digestion, especially the protein with a molecular weight of 50 kDa. In all the samples, no visually intact protein band emerged in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) during the intestinal phase, which was consistent with a gradually increasing content of released free amino acids. Moreover, the resistant digestion peptides (the amino acid sequences were ISQFXX and GTVX) were identified at the end of the gastrointestinal digestion (GID) product by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Although the complete protein in the sample was degraded, the antioxidant activity was not negatively affected, rather it showed an increasing trend and maintained a higher level of activity. The amount of the β-sheet gradually increased as that of the α-helix declined, the random coil decreased, whereas no obvious change was noticed in β-turn content. The results provide a better understanding for optimal selection of peptide candidates for designing protein products in the food processing industry as well as for WEP digestion and metabolism in the human body.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Aimei Liao
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Yinchen Hou
- National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China and School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450001, China
| | - Long Pan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Guanghai Yu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Jun Du
- China Biotech Fermentation Industry Association, Beijing 100000, China
| | - Canrui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Xiaoxiao Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Jihong Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Wang F, Bao Y, Shen X, Zengin G, Lyu Y, Xiao J, Weng Z. Niazirin from Moringa oleifera Lam. attenuates high glucose-induced oxidative stress through PKCζ/Nox4 pathway. PHYTOMEDICINE 2019; 86:153066. [PMID: 31447278 DOI: 10.1016/j.phymed.2019.153066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/04/2019] [Accepted: 08/04/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diabetic complications-coronary atherosclerosis is closely related to the increased reactive oxygen species (ROS) induced by hyperglycemia. ROS are reported to induce the abnormal proliferation of vascular smooth muscle cells (VSMCs) under high glucose conditions. Leaf and seed extracts from Moringa oleifera are found to exhibit antioxidant activity. However, few studies are evaluating the antioxidant activities of chemical compounds isolated from the M. oleifera especially in cardiovascular field. PURPOSE The aim of this study is to explore the antioxidative effect during hyperglycemia of niazirin from M. oleifera. STUDY DESIGN A cell model was applied. METHODS After the taking the in vitro antioxidant experiment including ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) assay and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Cell viability was carried out using high glucose-induced VSMCs model. ROS production was tested by 2',7'-dichlorofluorescein diacetate (DCF-DA) assay. The protein kinase C zeta (PKCζ) and NADPH oxidase 4 (Nox 4) expression in vitro and in vivo were measured by western blot analysis. RESULTS Niazirin showed good free radical scavenging activity. Niazirin significantly attenuated the proliferation of high glucose-induced VSMCs. Furthermore, it could decrease the ROS and malondialdehyde (MDA) productions, while increased total antioxidant capacity (T-AOC), superoxide dismutase (SOD) as well as glutathione peroxidase (GPx) levels in high glucose-induced VSMCs and streptozotocin-induced mice. In addition, niazirin could eliminate the high glucose-induced PKCζ activation, indicated by Thr410 phosphorylation and inhibition of the Nox4 protein expression in vitro and in vivo. CONCLUSION Niazirin from M. oleifera exhibited notably antioxidant activities and could be utilized as a potential natural antioxidant in preventing diabetic atherosclerosis.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Yi Lyu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Zebin Weng
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
17
|
Agrawal H, Joshi R, Gupta M. Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate. Food Res Int 2019; 120:697-707. [DOI: 10.1016/j.foodres.2018.11.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/08/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
|
18
|
Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem 2018; 245:750-755. [DOI: 10.1016/j.foodchem.2017.11.119] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
|
19
|
Cao X, Lyu Y, Ning J, Tang X, Shen X. Synthetic peptide, Ala-Arg-Glu-Gly-Glu-Met, abolishes pro-proliferative and anti-apoptotic effects of high glucose in vascular smooth muscle cells. Biochem Biophys Res Commun 2017; 485:215-220. [DOI: 10.1016/j.bbrc.2017.02.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
|