1
|
Jalali S, Selvaganapathy PR. A self-assembly and cellular migration based fabrication of high-density 3D tubular constructs of barrier forming membranes. LAB ON A CHIP 2024; 24:2468-2484. [PMID: 38563430 DOI: 10.1039/d4lc00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Three-dimensional (3D) in vitro models, superior in simulating physiological conditions compared to 2D models, offer intricate cell-cell and cell-ECM interactions with diverse signaling cues like fluid shear stress and growth factor gradients. Yet, developing 3D tissue barrier models, specifically perfusable luminal structures with dense, multicellular constructs maintained for extended durations with oxygen and nutrients, remains a technical challenge. Here, we describe a molding-based approach for the fabrication of free-standing, perfusable, high cellular density tissue constructs using a self-assembly and migration process to form functional barriers. This technique utilizes a polytetrafluoroethylene (PTFE)-coated stainless-steel wire, held by stainless steel needles, as a template for a perfusable channel within an elongated PDMS well. Upon adding a bio-ink mix of cells and collagen, it self-assembles into a high cell density layer conformally around the wire. Removing the wire reveals a hollow construct, connectable to an inlet and outlet for perfusion. This scalable method allows creating varied dimensions and multicellular configurations. Notably, post-assembly, cells such as human umbilical vein endothelial cells (HUVECs) migrate to the surface and form functional barriers with adherens junctions. Permeability tests and fluorescence imaging confirm that these constructs closely mimic in vivo endothelial barrier permeability, exhibiting the lowest permeability among all in vitro models in the literature. Unlike traditional methods involving uneven post-seeding of endothelial cells leading to subpar barriers, our approach is a straightforward alternative for fabricating complex perfusable 3D tissue constructs and effective tissue barriers for use in various applications, including tissue engineering, drug screening, and disease modeling.
Collapse
Affiliation(s)
- Seyedaydin Jalali
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Ponnambalam Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Degerstedt O, O'Callaghan P, Clavero AL, Gråsjö J, Eriksson O, Sjögren E, Hansson P, Heindryckx F, Kreuger J, Lennernäs H. Quantitative imaging of doxorubicin diffusion and cellular uptake in biomimetic gels with human liver tumor cells. Drug Deliv Transl Res 2024; 14:970-983. [PMID: 37824040 DOI: 10.1007/s13346-023-01445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Novel tumor-on-a-chip approaches are increasingly used to investigate tumor progression and potential treatment options. To improve the effect of any cancer treatment it is important to have an in depth understanding of drug diffusion, penetration through the tumor extracellular matrix and cellular uptake. In this study, we have developed a miniaturized chip where drug diffusion and cellular uptake in different hydrogel environments can be quantified at high resolution using live imaging. Diffusion of doxorubicin was reduced in a biomimetic hydrogel mimicking tissue properties of cirrhotic liver and early stage hepatocellular carcinoma (373 ± 108 µm2/s) as compared to an agarose gel (501 ± 77 µm2/s, p = 0.019). The diffusion was further lowered to 256 ± 30 µm2/s (p = 0.028) by preparing the biomimetic gel in cell media instead of phosphate buffered saline. The addition of liver tumor cells (Huh7 or HepG2) to the gel, at two different densities, did not significantly influence drug diffusion. Clinically relevant and quantifiable doxorubicin concentration gradients (1-20 µM) were established in the chip within one hour. Intracellular increases in doxorubicin fluorescence correlated with decreasing fluorescence of the DNA-binding stain Hoechst 33342 and based on the quantified intracellular uptake of doxorubicin an apparent cell permeability (9.00 ± 0.74 × 10-4 µm/s for HepG2) was determined. Finally, the data derived from the in vitro model were applied to a spatio-temporal tissue concentration model to evaluate the potential clinical impact of a cirrhotic extracellular matrix on doxorubicin diffusion and tumor cell uptake.
Collapse
Affiliation(s)
- Oliver Degerstedt
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ada Lerma Clavero
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan Gråsjö
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Olle Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Per Hansson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Zhao N, Guo Z, Kulkarni S, Norman D, Zhang S, Chung TD, Nerenberg RF, Linville R, Searson P. Engineering the human blood-brain barrier at the capillary scale using a double-templating technique. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2110289. [PMID: 36312050 PMCID: PMC9610437 DOI: 10.1002/adfm.202110289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 05/15/2023]
Abstract
In vitro blood-brain barrier (BBB) models have played an important role in studying processes such as immune cell trafficking and drug delivery, as well as contributing to the understanding of mechanisms of disease progression. Many biological and pathological processes in the cerebrovasculature occur in capillaries and hence the lack of robust hierarchical models at the capillary scale is a major roadblock in BBB research. Here we report on a double-templating technique for engineering hierarchical BBB models with physiological barrier function at the capillary scale. We first demonstrate the formation of hierarchical vascular networks using human umbilical vein endothelial cells. We then characterize barrier function in a BBB model using brain microvascular endothelial-like cells (iBMECs) differentiated from induced pluripotent stem cells (iPSCs). Finally, we characterize immune cell adhesion and transmigration in response to perfusion with the inflammatory cytokine tumor necrosis factor-alpha, and show that we can recapitulate capillary-scale effects, such as leukocyte plugging, observed in mouse models. Our double-templated hierarchical model enables the study of a wide range of biological and pathological processes related to the human BBB.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah Kulkarni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Danielle Norman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sophia Zhang
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D. Chung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Renée F. Nerenberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Raleigh Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
4
|
Effect of Photo-Mediated Ultrasound Therapy on Nitric Oxide and Prostacyclin from Endothelial Cells. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 35983461 PMCID: PMC9384428 DOI: 10.3390/app12052617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several studies have investigated the effect of photo-mediated ultrasound therapy (PUT) on the treatment of neovascularization. This study explores the impact of PUT on the release of the vasoactive agents nitric oxide (NO) and prostacyclin (PGI2) from the endothelial cells in an in vitro blood vessel model. In this study, an in vitro vessel model containing RF/6A chorioretinal endothelial cells was used. The vessels were treated with ultrasound-only (0.5, 1.0, 1.5 and 2.0 MPa peak negative pressure at 0.5 MHz with 10% duty cycle), laser-only (5, 10, 15 and 20 mJ/cm2 at 532 nm with a pulse width of 5 ns), and synchronized laser and ultrasound (PUT) treatments. Passive cavitation detection was used to determine the cavitation activities during treatment. The levels of NO and PGI2 generally increased when the applied ultrasound pressure and laser fluence were low. The increases in NO and PGI2 levels were significantly reduced by 37.2% and 42.7%, respectively, from 0.5 to 1.5 MPa when only ultrasound was applied. The increase in NO was significantly reduced by 89.5% from 5 to 20 mJ/cm2, when only the laser was used. In the PUT group, for 10 mJ/cm2 laser fluence, the release of NO decreased by 76.8% from 0.1 to 1 MPa ultrasound pressure. For 0.5 MPa ultrasound pressure in the PUT group, the release of PGI2 started to decrease by 144% from 15 to 20 mJ/cm2 laser fluence. The decreases in NO and PGI2 levels coincided with the increased cavitation activities in each group. In conclusion, PUT can induce a significant reduction in the release of NO and PGI2 in comparison with ultrasound-only and laser-only treatments.
Collapse
|
5
|
Stephenson EB, Elvira KS. Biomimetic artificial cells to model the effect of membrane asymmetry on chemoresistance. Chem Commun (Camb) 2021; 57:6534-6537. [PMID: 34106114 DOI: 10.1039/d1cc02043a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a microfluidic platform that enables the formation of bespoke asymmetric droplet interface bilayers (DIBs) as artificial cell models from naturally-derived lipids. We use them to perform pharmacokinetic assays to quantify how lipid asymmetry affects the permeability of the chemotherapy drug doxorubicin. Previous attempts to model bilayer asymmetry with DIBs have relied on the use of synthetic lipids to achieve asymmetry. Use of natural lipids serves to increase the biomimetic nature of these artificial cells, showcasing the next step towards forming a true artificial cell membrane in vitro. Here we use our microfluidic platform to form biomimetic, asymmetric and symmetric DIBs, with their asymmetry quantified through their life-mimicking degree of curvature. We subsequently examine permeability of these membranes to doxorubicin, and reveal measurable differences in its pharmacokinetics induced by membrane asymmetry, highlighting another factor that potentially contributes to chemoresistance in some forms of cancer.
Collapse
Affiliation(s)
- Elanna B Stephenson
- University of Victoria, Department of Chemistry, Victoria BC, V8W 2Y2, Canada.
| | - Katherine S Elvira
- University of Victoria, Department of Chemistry, Victoria BC, V8W 2Y2, Canada.
| |
Collapse
|
6
|
Kougioumtzi A, Chatziathanasiadou MV, Vrettos EI, Sayyad N, Sakka M, Stathopoulos P, Mantzaris MD, Ganai AM, Karpoormath R, Vartholomatos G, Tsikaris V, Lazarides T, Murphy C, Tzakos AG. Development of novel GnRH and Tat 48-60 based luminescent probes with enhanced cellular uptake and bioimaging profile. Dalton Trans 2021; 50:9215-9224. [PMID: 34125130 DOI: 10.1039/d1dt00060h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a clear need to develop photostable chromophores for bioimaging with respect to the classically utilized green fluorescent dye fluorescein. Along these lines, we utilized a phosphorescent carboxy-substituted ruthenium(ii) polypyridyl [Ru(bipy)2(mcb)]2+ (bipy = 2,2'-bipyridyl and mcb = 4-carboxy-4'-methyl-2,2'-bipyridyl) complex. We developed two luminescent peptide conjugates of the cell-penetrating peptide Tat48-60 consisting of either [Ru(bipy)2(mcb)]2+ or 5(6)-carboxyfluorescein (5(6)-FAM) tethered on the Lys50 of the peptide through amide bond. We confirmed the efficient cellular uptake of both bioconjugates in HeLa cells by confocal microscopy and flow cytometry and proved that the ruthenium-based chromophore possesses enhanced photostability compared to a 5(6)-FAM-based peptide, after continuous laser scanning. Furthermore, we designed and developed a luminescent agent with high photostability, based on the ruthenium core, that could be selectively localized in cancer cells overexpressing the GnRH receptor (GnRH-R). To achieve this, we took advantage of the tumor-homing character of d-Lys6-GnRH which selectively recognizes the GnRH-R. The [Ru(bipy)2(mcb)]2+-d-Lys6-GnRH peptide conjugate was synthesized, and its cellular uptake was evaluated through flow cytometric analysis and live-cell imaging in HeLa and T24 bladder cancer cells as negative and positive controls of GnRH-R, respectively. Besides the selective targeting that the specific conjugate could offer, we also recorded high internalization levels in T24 bladder cancer cells. The ruthenium(ii) polypyridyl peptide-based conjugates we developed is an intriguing approach that offers targeted cell imaging in the Near Infrared region, and simultaneously paves the way for further advancements in the dynamic studies on cellular imaging.
Collapse
Affiliation(s)
- Anastasia Kougioumtzi
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Maria V Chatziathanasiadou
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Eirinaios I Vrettos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Nisar Sayyad
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Mariana Sakka
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Panagiotis Stathopoulos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Michalis D Mantzaris
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Georgios Vartholomatos
- Hematology Laboratory, Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, 45110 Greece
| | - Vassilios Tsikaris
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Theodore Lazarides
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Carol Murphy
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece. and University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
7
|
Linville RM, Komin A, Lan X, DeStefano JG, Chu C, Liu G, Walczak P, Hristova K, Searson PC. Reversible blood-brain barrier opening utilizing the membrane active peptide melittin in vitro and in vivo. Biomaterials 2021; 275:120942. [PMID: 34147718 DOI: 10.1016/j.biomaterials.2021.120942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/21/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
The blood-brain barrier (BBB) tightly controls entry of molecules and cells into the brain, restricting the delivery of therapeutics. Blood-brain barrier opening (BBBO) utilizes reversible disruption of cell-cell junctions between brain microvascular endothelial cells to enable transient entry into the brain. Here, we demonstrate that melittin, a membrane active peptide present in bee venom, supports transient BBBO. From endothelial and neuronal viability studies, we first identify the accessible concentration range for BBBO. We then use a tissue-engineered model of the human BBB to optimize dosing and elucidate the mechanism of opening. Melittin and other membrane active variants transiently increase paracellular permeability via disruption of cell-cell junctions that result in transient focal leaks. To validate the results from the tissue-engineered model, we then demonstrate that transient BBBO can be reproduced in a mouse model. We identify a minimum clinically effective intra-arterial dose of 3 μM min melittin, which is reversible within one day and neurologically safe. Melittin-induced BBBO represents a novel technology for delivery of therapeutics into the brain.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander Komin
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaoyan Lan
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jackson G DeStefano
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chengyan Chu
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kalina Hristova
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Abstract
Since their initial description in 2005, biomaterials that are patterned to contain microfluidic networks ("microfluidic biomaterials") have emerged as promising scaffolds for a variety of tissue engineering and related applications. This class of materials is characterized by the ability to be readily perfused. Transport and exchange of solutes within microfluidic biomaterials is governed by convection within channels and diffusion between channels and the biomaterial bulk. Numerous strategies have been developed for creating microfluidic biomaterials, including micromolding, photopatterning, and 3D printing. In turn, these materials have been used in many applications that benefit from the ability to perfuse a scaffold, including the engineering of blood and lymphatic microvessels, epithelial tubes, and cell-laden tissues. This article reviews the current state of the field and suggests new areas of exploration for this unique class of materials.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts, USA
| | - Yoseph W. Dance
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
3D In Vitro Human Organ Mimicry Devices for Drug Discovery, Development, and Assessment. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6187048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past few decades have shown significant advancement as complex in vitro humanized systems have substituted animal trials and 2D in vitro studies. 3D humanized platforms mimic the organs of interest with their stimulations (physical, electrical, chemical, and mechanical). Organ-on-chip devices, including in vitro modelling of 3D organoids, 3D microfabrication, and 3D bioprinted platforms, play an essential role in drug discovery, testing, and assessment. In this article, a thorough review is provided of the latest advancements in the area of organ-on-chip devices targeting liver, kidney, lung, gut, heart, skin, and brain mimicry devices for drug discovery, development, and/or assessment. The current strategies, fabrication methods, and the specific application of each device, as well as the advantages and disadvantages, are presented for each reported platform. This comprehensive review also provides some insights on the challenges and future perspectives for the further advancement of each organ-on-chip device.
Collapse
|
10
|
Komin A, Bogorad MI, Lin R, Cui H, Searson PC, Hristova K. A peptide for transcellular cargo delivery: Structure-function relationship and mechanism of action. J Control Release 2020; 324:633-643. [PMID: 32474121 DOI: 10.1016/j.jconrel.2020.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
The rate of transport of small molecule drugs across biological barriers, such as the blood-brain barrier, is often a limiting factor in achieving a therapeutic dose. One proposed strategy to enhance delivery across endothelial or epithelial monolayers is conjugation to cell-penetrating peptides (CPPs); however, very little is known about the design of CPPs for efficient transcellular transport. Here, we report on transcellular transport of a CPP, designated the CL peptide, that increases the delivery of small-molecule cargoes across model epithelium approximately 10-fold. The CL peptide contains a helix-like motif and a polyarginine tail. We investigated the effect of cargo, helix-like motif sequence, polyarginine tail length, and peptide stereochemistry on cargo delivery. We showed that there is an optimal helix-like motif sequence (RLLRLLR) and polyarginine tail length (R7) for cargo delivery. Furthermore, we demonstrated that the peptide-cargo conjugate is cleaved by cells in the epithelium at the site of a two-amino acid linker. The cleavage releases the cargo with the N-terminal linker amino acid from the peptide prior to transport out of the epithelium. These studies provide new insight into the sequence requirements for developing novel CPPs for transcellular delivery of cargo.
Collapse
Affiliation(s)
- Alexander Komin
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Maxim I Bogorad
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Ran Lin
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | - Kalina Hristova
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
11
|
Role of iPSC-derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D. Fluids Barriers CNS 2019; 16:15. [PMID: 31167667 PMCID: PMC6551886 DOI: 10.1186/s12987-019-0136-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 01/25/2023] Open
Abstract
Background Pericytes of the blood–brain barrier (BBB) are embedded within basement membrane between brain microvascular endothelial cells (BMECs) and astrocyte end-feet. Despite the direct cell–cell contact observed in vivo, most in vitro BBB models introduce an artificial membrane that separates pericytes from BMECs. In this study, we investigated the effects of pericytes on BMEC barrier function across a range of in vitro platforms with varied spatial orientations and levels of cell–cell contact. Methods We differentiated RFP-pericytes and GFP-BMECs from hiPSCs and monitored transendothelial electrical resistance (TEER) across BMECs on transwell inserts while pericytes were either directly co-cultured on the membrane, indirectly co-cultured in the basolateral chamber, or embedded in a collagen I gel formed on the transwell membrane. We then incorporated pericytes into a tissue-engineered microvessel model of the BBB and measured pericyte motility and microvessel permeability. Results We found that BMEC monolayers did not require co-culture with pericytes to achieve physiological TEER values (> 1500 Ω cm2). However, under stressed conditions where TEER values for BMEC monolayers were reduced, indirectly co-cultured hiPSC-derived pericytes restored optimal TEER. Conversely, directly co-cultured pericytes resulted in a decrease in TEER by interfering with BMEC monolayer continuity. In the microvessel model, we observed direct pericyte-BMEC contact, abluminal pericyte localization, and physiologically-low Lucifer yellow permeability comparable to that of BMEC microvessels. In addition, pericyte motility decreased during the first 48 h of co-culture, suggesting progression towards pericyte stabilization. Conclusions We demonstrated that monocultured BMECs do not require co-culture to achieve physiological TEER, but that suboptimal TEER in stressed monolayers can be increased through co-culture with hiPSC-derived pericytes or conditioned media. We also developed the first BBB microvessel model using exclusively hiPSC-derived BMECs and pericytes, which could be used to examine vascular dysfunction in the human CNS. Electronic supplementary material The online version of this article (10.1186/s12987-019-0136-7) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Quantification of Unknown Nanoscale Biomolecules Using the Average-Weight-Difference Method. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9010130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to quantify the amount of drug molecules in drug delivery systems, analytical techniques such as high-performance liquid chromatography are used due to their accuracy and reliability. However, the instruments required for such techniques are expensive and not available in all laboratories. Therefore, in this study, we introduce a method that can be a relatively inexpensive and easy to perform drug analysis in almost any laboratory set-up. We have devised the “average-weight-difference method” within the limits of existing spectral analyses. By employing this method, we quantitatively analyzed the amount of isoniazid or doxorubicin molecules loaded onto β-glucan nanoparticles. This proved to be a relatively simple and reliable method and can be used to estimate the amount of nanoscale biomolecules before their analysis through expensive equipment in an environment where the instruments are not readily available.
Collapse
|
13
|
Wong AD, Russell LM, Katt ME, Searson PC. Chemotherapeutic Drug Delivery and Quantitative Analysis of Proliferation, Apoptosis, and Migration in a Tissue-Engineered Three-Dimensional Microvessel Model of the Tumor Microenvironment. ACS Biomater Sci Eng 2018; 5:633-643. [DOI: 10.1021/acsbiomaterials.8b00877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew D. Wong
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Luisa M. Russell
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Moriah E. Katt
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Peter C. Searson
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, 1650 Orleans Street, Baltimore, Maryland 21287, United States
| |
Collapse
|
14
|
Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials 2018; 190-191:24-37. [PMID: 30391800 DOI: 10.1016/j.biomaterials.2018.10.023] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Microvessels of the blood-brain barrier (BBB) regulate transport into the brain. The highly specialized brain microvascular endothelial cells, a major component of the BBB, express tight junctions and efflux transporters which regulate paracellular and transcellular permeability. However, most existing models of BBB microvessels fail to exhibit physiological barrier function. Here, using (iPSC)-derived human brain microvascular endothelial cells (dhBMECs) within templated type I collagen channels we mimic the cylindrical geometry, cell-extracellular matrix interactions, and shear flow typical of human brain post-capillary venules. We characterize the structure and barrier function in comparison to non-brain-specific microvessels, and show that dhBMEC microvessels recapitulate physiologically low solute permeability and quiescent endothelial cell behavior. Transcellular permeability is increased two-fold using a clinically relevant dose of a p-glycoprotein inhibitor tariquidar, while paracellular permeability is increased using a bolus dose of hyperosmolar agent mannitol. Lastly, we show that our human BBB microvessels are responsive to inflammatory cytokines via upregulation of surface adhesion molecules and increased leukocyte adhesion, but no changes in permeability. Human iPSC-derived blood-brain barrier microvessels support quantitative analysis of barrier function and endothelial cell dynamics in quiescence and in response to biologically- and clinically-relevant perturbations.
Collapse
|
15
|
Bogorad MI, DeStefano J, Wong AD, Searson PC. Tissue-engineered 3D microvessel and capillary network models for the study of vascular phenomena. Microcirculation 2018; 24. [PMID: 28164421 DOI: 10.1111/micc.12360] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/29/2017] [Indexed: 12/13/2022]
Abstract
Advances in tissue engineering, cell biology, microfabrication, and microfluidics have led to the development of a wide range of vascular models. Here, we review platforms based on templated microvessel fabrication to generate increasingly complex vascular models of (i) the tumor microenvironment, (ii) occluded microvessels, and (iii) perfused capillary networks. We outline fabrication guidelines and demonstrate a number of experimental methods for probing vascular function such as permeability measurements, tumor cell intravasation, flow characterization, and endothelial cell morphology and proliferation.
Collapse
Affiliation(s)
- Max I Bogorad
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson DeStefano
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew D Wong
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
16
|
Katt ME, Linville RM, Mayo LN, Xu ZS, Searson PC. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids Barriers CNS 2018; 15:7. [PMID: 29463314 PMCID: PMC5819713 DOI: 10.1186/s12987-018-0092-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Transwell-based models of the blood-brain barrier (BBB) incorporating monolayers of human brain microvascular endothelial cells (dhBMECs) derived from induced pluripotent stem cells show many of the key features of the BBB, including expression of transporters and efflux pumps, expression of tight junction proteins, and physiological values of transendothelial electrical resistance. The fabrication of 3D BBB models using dhBMECs has so far been unsuccessful due to the poor adhesion and survival of these cells on matrix materials commonly used in tissue engineering. METHODS To address this issue, we systematically screened a wide range of matrix materials (collagen I, hyaluronic acid, and fibrin), compositions (laminin/entactin), protein coatings (fibronectin, laminin, collagen IV, perlecan, and agrin), and soluble factors (ROCK inhibitor and cyclic adenosine monophosphate) in 2D culture to assess cell adhesion, spreading, and barrier function. RESULTS Cell coverage increased with stiffness of collagen I gels coated with collagen IV and fibronectin. On 7 mg mL-1 collagen I gels coated with basement membrane proteins (fibronectin, collagen IV, and laminin), cell coverage was high but did not reliably reach confluence. The transendothelial electrical resistance (TEER) on collagen I gels coated with basement membrane proteins was lower than on coated transwell membranes. Agrin, a heparin sulfate proteoglycan found in basement membranes of the brain, promoted monolayer formation but resulted in a significant decrease in transendothelial electrical resistance (TEER). However, the addition of ROCK inhibitor, cAMP, or cross-linking the gels to increase stiffness, resulted in a significant improvement of TEER values and enabled the formation of confluent monolayers. CONCLUSIONS Having identified matrix compositions that promote monolayer formation and barrier function, we successfully fabricated dhBMEC microvessels in cross-linked collagen I gels coated with fibronectin and collagen IV, and treated with ROCK inhibitor and cAMP. We measured apparent permeability values for Lucifer yellow, comparable to values obtained in the transwell assay. During these experiments we observed no focal leaks, suggesting the formation of tight junctions that effectively block paracellular transport.
Collapse
Affiliation(s)
- Moriah E Katt
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lakyn N Mayo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zinnia S Xu
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Jamieson JJ, Searson PC, Gerecht S. Engineering the human blood-brain barrier in vitro. J Biol Eng 2017; 11:37. [PMID: 29213304 PMCID: PMC5713119 DOI: 10.1186/s13036-017-0076-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
The blood-brain barrier (BBB) is the interface between the vasculature and the brain, regulating molecular and cellular transport into the brain. Endothelial cells (ECs) that form the capillary walls constitute the physical barrier but are dependent on interactions with other cell types. In vitro models are widely used in BBB research for mechanistic studies and drug screening. Current models have both biological and technical limitations. Here we review recent advances in stem cell engineering that have been utilized to create innovative platforms to replicate key features of the BBB. The development of human in vitro models is envisioned to enable new mechanistic investigations of BBB transport in central nervous system diseases.
Collapse
Affiliation(s)
- John J Jamieson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Peter C Searson
- Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| |
Collapse
|