1
|
Liu R, Chen L, Zhao X, Bao L, Wei R, Wu X. MUC1 promotes RIF by regulating macrophage ROS-SHP2 signaling pathway to up-regulate inflammatory response and inhibit angiogenesis. Aging (Albany NY) 2024; 16:3790-3802. [PMID: 38412233 PMCID: PMC10929826 DOI: 10.18632/aging.205560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/19/2023] [Indexed: 02/29/2024]
Abstract
OBJECTIVE To explore the effect of MUC1 on recurrent implantation failure (RIF) and its molecular mechanism. METHODS Bioinformation analysis was used to find possible molecular mechanisms of specific genes in the pathogenesis of RIF. The number of M1 and M2 macrophages was measured by flow cytometry. Immunohistochemical staining and western blotting were used to detect the expression of related proteins. Angiogenesis capacity was measured by cell tube-formation assay. RESULTS Bioinformatics analysis results suggest that MUC1 may play an important role in RIF. The results of flow cytometry showed that compared with NC group, M1 macrophages increased significantly and M2 macrophages decreased significantly in MUC1 OE group. The results of immunohistochemical staining showed that MUC1 could inhibit the expression of VEGF. Western blotting results showed that MUC1 could significantly increase the expression of P22, P47, gp91, p-TBK1, IFNγ and IL-1β, and decrease the expression of p-SHP2, p-PI3K, p-mTOR, HIF1α and VEGF. After the addition of ROS inhibitor and PI3K inhibitor, the effect of MUC1 on the above proteins was eliminated. The results of tube formation experiments showed that MUC1 could inhibit vascular formation. CONCLUSION As a promising biomarker for the diagnosis of RIF, MUC1 can promote RIF by regulating macrophage ROS-SHP2 signaling pathway to up-regulate inflammatory response and inhibit angiogenesis.
Collapse
Affiliation(s)
- Rongna Liu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang 050017, China
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei, China
| | - Lin Chen
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang 050017, China
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei, China
| | - Xin Zhao
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei, China
| | - Lili Bao
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei, China
| | - Ruixia Wei
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei, China
| | - Xiaohua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang 050017, China
- Department of Reproductive Medicine Centre, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang 050017, China
| |
Collapse
|
2
|
Ranjbari F, Fathi F. Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy. Anticancer Agents Med Chem 2024; 24:733-744. [PMID: 38409708 DOI: 10.2174/0118715206295598240215112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Semiconductor quantum dots (QD) are a kind of nanoparticle with unique optical properties that have attracted a lot of attention in recent years. In this paper, the characteristics of these nanoparticles and their applications in nanophototherapy have been reviewed. Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has gained special importance because of its high accuracy and local treatment due to the activation of the drug at the tumor site. PDT is a new way of cancer treatment that is performed by activating light-sensitive compounds named photosensitizers (PS) by light. PSs cause the destruction of diseased tissue through the production of singlet oxygen. PTT is another non-invasive method that induces cell death through the conversion of near-infrared light (NIR) into heat in the tumor situation by the photothermal agent (PA). Through using energy transfer via the FRET (Förster resonance energy transfer) process, QDs provide light absorption wavelength for both methods and cover the optical weaknesses of phototherapy agents.
Collapse
Affiliation(s)
- Faride Ranjbari
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Davodabadi F, Mirinejad S, Fathi-Karkan S, Majidpour M, Ajalli N, Sheervalilou R, Sargazi S, Rozmus D, Rahdar A, Diez-Pascual AM. Aptamer-functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: A comprehensive overview of recent trends. Biotechnol Prog 2023; 39:e3366. [PMID: 37222166 DOI: 10.1002/btpr.3366] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ana M Diez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analitica, Quimica Fisica e Ingenieria Quimica, Madrid, Spain
| |
Collapse
|
4
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
5
|
Liu M, Wang L, Lo Y, Shiu SCC, Kinghorn AB, Tanner JA. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022; 11:159. [PMID: 35011722 PMCID: PMC8750369 DOI: 10.3390/cells11010159] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
A wide variety of nanomaterials have emerged in recent years with advantageous properties for a plethora of therapeutic and diagnostic applications. Such applications include drug delivery, imaging, anti-cancer therapy and radiotherapy. There is a critical need for further components which can facilitate therapeutic targeting, augment their physicochemical properties, or broaden their theranostic applications. Aptamers are single-stranded nucleic acids which have been selected or evolved to bind specifically to molecules, surfaces, or cells. Aptamers can also act as direct biologic therapeutics, or in imaging and diagnostics. There is a rich field of discovery at the interdisciplinary interface between nanomaterials and aptamer science that has significant potential across biomedicine. Herein, we review recent progress in aptamer-enabled materials and discuss pending challenges for their future biomedical application.
Collapse
Affiliation(s)
- Mengping Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Lin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Young Lo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Andrew B. Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Julian A. Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Yan J, Gao T, Lu Z, Yin J, Zhang Y, Pei R. Aptamer-Targeted Photodynamic Platforms for Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27749-27773. [PMID: 34110790 DOI: 10.1021/acsami.1c06818] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving controlled and accurate delivery of photosensitizers (PSs) into tumor sites is a major challenge in conventional photodynamic therapy (PDT). Aptamer is a short oligonucleotide sequence (DNA or RNA) with a folded three-dimensional structure, which can selectively bind to specific small molecules, proteins, or the whole cells. Aptamers could act as ligands and be modified onto PSs or nanocarriers, enabling specific recognition and binding to tumor cells or their membrane proteins. The resultant aptamer-modified PSs or PSs-containing nanocarriers generate amounts of reactive oxygen species with light irradiation and obtain superior photodynamic therapeutic efficiency in tumors. Herein, we overview the recent progress in the designs and applications of aptamer-targeted photodynamic platforms for tumor therapy. First, we focus on the progress on the rational selection of aptamers and summarize the applications of aptamers which have been applied for targeted tumor diagnosis and therapy. Then, aptamer-targeted photodynamic therapies including various aptamer-PSs, aptamer-nanocarriers containing PSs, and aptamer-nano-photosensitizers are highlighted. The aptamer-targeted synergistically therapeutic platforms including PDT, photothermal therapy, and chemotherapy, as well as the imaging-guided theranostics, are also discussed. Finally, we offer an insight into the development trends and future perspectives of aptamer-targeted photodynamic platforms for tumor therapy.
Collapse
Affiliation(s)
- Jincong Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Zhongzhong Lu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| |
Collapse
|
7
|
Alqaraghuli HGJ, Kashanian S, Rafipour R. A Review on Targeting Nanoparticles for Breast Cancer. Curr Pharm Biotechnol 2020; 20:1087-1107. [PMID: 31364513 DOI: 10.2174/1389201020666190731130001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic agents have been used extensively in breast cancer remedy. However, most anticancer drugs cannot differentiate between cancer cells and normal cells, leading to toxic side effects. Also, the resulted drug resistance during chemotherapy reduces treatment efficacy. The development of targeted drug delivery offers great promise in breast cancer treatment both in clinical applications and in pharmaceutical research. Conjugation of nanocarriers with targeting ligands is an effective therapeutic strategy to treat cancer diseases. In this review, we focus on active targeting methods for breast cancer cells through the use of chemical ligands such as antibodies, peptides, aptamers, vitamins, hormones, and carbohydrates. Also, this review covers all information related to these targeting ligands, such as their subtypes, advantages, disadvantages, chemical modification methods with nanoparticles and recent published studies (from 2015 to present). We have discussed 28 different targeting methods utilized for targeted drug delivery to breast cancer cells with different nanocarriers delivering anticancer drugs to the tumors. These different targeting methods give researchers in the field of drug delivery all the information and techniques they need to develop modern drug delivery systems.
Collapse
Affiliation(s)
- Hasanain Gomhor J Alqaraghuli
- Faculty of Chemistry, Razi University, Kermanshah, Iran.,Department of Sciences, College of Basic Education, Al- Muthanna University, Al-Muthanna, Iraq
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran.,Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronak Rafipour
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| |
Collapse
|
8
|
Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Nanocarriers in photodynamic therapy-in vitro and in vivo studies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1509. [PMID: 31692285 DOI: 10.1002/wnan.1599] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 01/16/2023]
Abstract
Photodynamic therapy (PDT) is a minimally invasive technique which has proven to be successful in the treatment of several types of tumors. This relatively simple method exploits three inseparable elements: phototoxic compound (photosensitizer [PS]), light source, and oxygen. Upon irradiation by light with specified wavelength, PS generates reactive oxygen species, which starts the cascade of reactions leading to cell death. The positive therapeutic outcome of PDT may be limited due to several aspects, including low water solubility of PSs, hampering their effective administration and blood circulation, as well as low tumor specificity, inefficient cellular uptake and activation energies requiring prolonged illumination times. One of the promising approaches to overcome these obstacles involves the use of carrier systems modulating pharmacokinetics and pharmacodynamics of the PSs. In the present review, we summarized current in vitro and in vivo studies regarding the use of nanoparticles as potential delivery devices for PSs to enhance their cellular uptake and cytotoxic properties, and thus-the therapeutic outcome of PDT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.,Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| |
Collapse
|
9
|
Suitability of GnRH Receptors for Targeted Photodynamic Therapy in Head and Neck Cancers. Int J Mol Sci 2019; 20:ijms20205027. [PMID: 31614426 PMCID: PMC6829278 DOI: 10.3390/ijms20205027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 01/17/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) have a high mortality rate, although several potential therapeutic targets have already been identified. Gonadotropin-releasing hormone receptor (GnRH-R) expression is less studied in head and neck cancers, hence, we investigated the therapeutic relevance of GnRH-R targeting in HNSCC patients. Our results indicate that half of the patient-derived samples showed high GnRH-R expression, which was associated with worse prognosis, making this receptor a promising target for GnRH-based drug delivery. Photodynamic therapy is a clinically approved treatment for HNSCC, and the efficacy and selectivity may be enhanced by the covalent conjugation of the photosensitizer to a GnRH-R targeting peptide. Several native ligands, gonadotropin-releasing hormone (GnRH) isoforms, are known to target GnRH-R effectively. Therefore, different 4Lys(Bu) modified GnRH analogs were designed and conjugated to protoporphyrin IX. The receptor binding potency of the novel conjugates was measured on human pituitary and human prostate cancer cells, indicating only slightly lower GnRH-R affinity than the peptides. The in vitro cell viability inhibition was tested on Detroit-562 human pharyngeal carcinoma cells that express GnRH-R in high levels, and the results showed that all conjugates were more effective than the free protoporphyrin IX.
Collapse
|
10
|
Syrkina MS, Vassetzky YS, Rubtsov MA. MUC1 Story: Great Expectations, Disappointments and the Renaissance. Curr Med Chem 2019; 26:554-563. [PMID: 28820070 DOI: 10.2174/0929867324666170817151954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
In the course of studying human mucin MUC1, the attitude towards this molecule has been changing time and again. Initially, the list of presumable functions of MUC1 was restricted to protecting and lubricating epithelium. To date, it is assumed to play an important role in cell signaling as well as in all stages of oncogenesis, from malignant cell transformation to tumor dissemination. The story of MUC1 is full of hopes and disappointments. However, the scientific interest to MUC1 has never waned, and the more profoundly it has been investigated, the clearer its hidden potential turned to be disclosed. The therapeutic potential of mucin MUC1 has already been noted by various scientific groups at the early stages of research. Over forty years ago, the first insights into MUC1 functions became a strong ground for considering this molecule as potential target for anticancer therapy. Therefore, this direction of research has always been of particular interest and practical importance. More than 200 papers on MUC1 were published in 2016; the majority of them are dedicated to MUC1-related anticancer diagnostics and therapeutics. Here we review the history of MUC1 studies from the very first attempts to reveal its functions to the ongoing renaissance.
Collapse
Affiliation(s)
- Marina S Syrkina
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.,LIA LFR2O (LIA French-Russian Cancer Research laboratory) Villejuif, France - Moscow, Russian Federation.,Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Yegor S Vassetzky
- LIA LFR2O (LIA French-Russian Cancer Research laboratory) Villejuif, France - Moscow, Russian Federation.,UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.,Koltzov Institute of Developmental Biology, Moscow, Russian Federation
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.,LIA LFR2O (LIA French-Russian Cancer Research laboratory) Villejuif, France - Moscow, Russian Federation.,Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.,Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
11
|
Liu BY, He XY, Zhuo RX, Cheng SX. Reversal of tumor malignization and modulation of cell behaviors through genome editing mediated by a multi-functional nanovector. NANOSCALE 2018; 10:21209-21218. [PMID: 30417194 DOI: 10.1039/c8nr07321j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To effectively reverse tumor malignization by genome editing, a multi-functional self-assembled nanovector for the delivery of a genome editing plasmid specifically to tumor cells was developed. The nanovector core consisting of protamine and calcium carbonate entrapping the CRISPR-Cas9 plasmid is decorated by aptamer incorporated heparin. Owing to a high affinity between a MUC1 specific aptamer and mucin 1 (MUC1) overexpressed in tumor cells as well as the interaction between AS1411 and nucleolin on the tumor cell surface and cell nuclei, the nanovector can target the nuclei of tumorous cells for the knockout of focal adhesion kinase (FAK). Notably, the genome editing mediated by our delivery systems can effectively modulate cell behaviors and thus reverse tumor malignization. Up-regulated p53, p16, p21, E-cadherin, CD80, MICA, MICB and Fas, together with down-regulated MMP-9, vimentin, VEGF, TGF-β, CD47 and CD133 in genome edited cells indicate that the genome editing system can inhibit cancerous cell growth, prevent tumor invasion and metastasis, reverse tumor-induced immune suppression, and inhibit cancer stemness. More importantly, the edited cells can maintain the modulated cellular function after succeeding subcultures.
Collapse
Affiliation(s)
- Bo-Ya Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China.
| | | | | | | |
Collapse
|
12
|
Studies on effectiveness of PTT on 3D tumor model under microfluidic conditions using aptamer-modified nanoshells. Biosens Bioelectron 2018; 126:214-221. [PMID: 30423478 DOI: 10.1016/j.bios.2018.10.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 01/14/2023]
Abstract
Herein, we present the research focused on the synthesis and application of aptamer-modified gold nanoshells for photothermal therapy (PTT). NIR-absorbing hollow gold nanoshells were synthetized and conjugated with anti-MUC1 aptamer (HGNs@anti-MUC1). MUC1 (Mucin 1) is a transmembrane glycoprotein, which is overexpressed in a variety of epithelial cancers (eg. breast, lung, pancreatic). In order to evaluate the efficiency of PTT with HGNs@anti-MUC1 we used 3D cell culture model - multicellular spheroids. The selected cell culture model is considered as the best in vitro model for cancer research (similar morphology, metabolite and oxygen gradients, cellular interactions and cell growth kinetics in the spheroids are similar to the early stage of a nonvascular tumor). We conducted our research on human normal (MRC-5, MCF-10A) and tumor (A549, MCF-7) cell lines using a microfluidic system. Aptamer-modified nanoparticles were accumulated selectively in tumor cells (A549, MCF-7) and this fact contributed to the reduction of tumor spheroids viability and size. It should be underlined, that it is the first example of photothermal therapy carried out in a microsystem on multicellular spheroids.
Collapse
|
13
|
Nabavinia MS, Gholoobi A, Charbgoo F, Nabavinia M, Ramezani M, Abnous K. Anti-MUC1 aptamer: A potential opportunity for cancer treatment. Med Res Rev 2017; 37:1518-1539. [PMID: 28759115 DOI: 10.1002/med.21462] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/19/2017] [Accepted: 06/30/2017] [Indexed: 01/10/2023]
Abstract
Mucin 1 (MUC1) is a protein usually found on the apical surface of most normal secretory epithelial cells. However, in most adenocarcinomas, MUC1 is overexpressed, so that it not only appears over the entire cell surface, but is also shed as MUC1 fragments into the blood stream. These phenomena pinpoint MUC1 as a potential target for the diagnosis and treatment of cancer; consequently, interest has increased in MUC1 as a molecular target for overcoming cancer therapy challenges. MUC1 currently ranks second among 75 antigen candidates for cancer vaccines, and different antibodies or aptamers against MUC1 protein are proving useful for tracing cancer cells in the emerging field of targeted delivery. The unique properties of MUC1 aptamers as novel targeting agents, and the revolutionary role that MUC1 now plays in cancer therapy, are the focus of this review. Recent advancements in MUC1-targeted cancer therapy are also assessed.
Collapse
Affiliation(s)
- Maryam Sadat Nabavinia
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Gholoobi
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Charbgoo
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Kumari R, Khan MI, Bhowmick S, Sinha KK, Das N, Das P. Self-assembly of DNA-porphyrin hybrid molecules for the creation of antimicrobial nanonetwork. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:28-35. [DOI: 10.1016/j.jphotobiol.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
|
15
|
Jin Q, Gubu A, Chen X, Tang X. A Photochemical Avenue to Photoluminescent N-Dots and their Upconversion Cell Imaging. Sci Rep 2017; 7:1793. [PMID: 28496204 PMCID: PMC5431983 DOI: 10.1038/s41598-017-01663-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 01/15/2023] Open
Abstract
A photochemical avenue to synthesize nitrogen-rich quantum dots (N-dots) using 2-azido imidazole as the starting material was established for the first time. A production yield of up to 92.7% was obtained. The N-dots were then fully characterized by elemental analysis, IR, XPS, XRD, AFM and TEM. On the basis of the N2 production and in situ IR results, the underlying mechanism for the photochemical formation of N-dots was proposed. These N-dots showed promising optical properties including wavelength-dependent upconversion photoluminescence, and were successfully used in upconversion cell imaging.
Collapse
Affiliation(s)
- Qingqing Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, NO. 38 Xueyuan Road, Beijing, 100191, China
| | - Amu Gubu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, NO. 38 Xueyuan Road, Beijing, 100191, China
| | - Xiuxian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, NO. 38 Xueyuan Road, Beijing, 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, NO. 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|