1
|
Shalygin AS, Kozhevnikov IV, Morozov EV, Martyanov ON. Features of Wax Appearance Temperature Determination of Waxy Crude Oil Using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy Under Ambient and High Pressure. APPLIED SPECTROSCOPY 2024; 78:277-288. [PMID: 38115792 DOI: 10.1177/00037028231218714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The wax appearance temperature (WAT), being one of the key characteristics of waxy crude oil and other waxy substances, is used for the necessary assessment of the phase stability of materials during various technological processes. However, the determination of this parameter as well as peculiarities of wax formation under high gas pressure suffers from the lack of suitable techniques for this task. To address this issue, an attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) method has been applied for the first time to measure the WAT of waxy crude oil under high gas pressure. Carbon dioxide (CO2), nitrogen, and natural gas were used in the study due to their widespread applicability as injection gases in enhanced oil recovery methods. The S2/S1 versus temperature method based on changes in the band of rocking vibrations of the CH2 group was applied to determine WAT. It was found that the ATR FT-IR method based on the proposed dependence S2/S1 versus temperature gives lower WAT values compared to those observed by viscometry, magnetic resonance imaging inspection, and cross-polarized microscopy methods for the waxy crude oil studied. A detailed analysis was carried out using variable-temperature ATR FT-IR spectra of waxy crude oil in the temperature region near the WAT. Essentially different dynamics of wax crystal formation in waxy oil sample and model paraffin solution were demonstrated during the cooling process. The results obtained by high-pressure ATR FT-IR showed that CO2 and natural gas reduce the WAT, while nitrogen has virtually no effect. In addition, for the studied oil, it was found that high pressure of CO2 and natural gases leads to a visual decrease in the amount of wax crystals precipitated, but not to the complete disappearance of microcrystals at a certain temperature and pressure. The results obtained proved that ATR FT-IR can be an effective method for proper determinations of WAT under high-pressure conditions similar to those met in practice.
Collapse
Affiliation(s)
- Anton S Shalygin
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Federal Research Center, Krasnoyarsk Science Center of Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Ivan V Kozhevnikov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Federal Research Center, Krasnoyarsk Science Center of Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Evgeny V Morozov
- Federal Research Center, Krasnoyarsk Science Center of Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
- Institute of Chemistry and Chemical Technology, Federal Research Center Krasnoyarsk Science Center of Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Oleg N Martyanov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Zhang Y, Khorshidian H, Mohammadi M, Sanati-Nezhad A, Hejazi SH. Functionalized multiscale visual models to unravel flow and transport physics in porous structures. WATER RESEARCH 2020; 175:115676. [PMID: 32193027 DOI: 10.1016/j.watres.2020.115676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The fluid flow, species transport, and chemical reactions in geological formations are the chief mechanisms in engineering the exploitation of fossil fuels and geothermal energy, the geological storage of carbon dioxide (CO2), and the disposal of hazardous materials. Porous rock is characterized by a wide surface area, where the physicochemical fluid-solid interactions dominate the multiphase flow behavior. A variety of visual models with differences in dimensions, patterns, surface properties, and fabrication techniques have been widely utilized to simulate and directly visualize such interactions in porous media. This review discusses the six categories of visual models used in geological flow applications, including packed beds, Hele-Shaw cells, synthesized microchips (also known as microfluidic chips or micromodels), geomaterial-dominated microchips, three-dimensional (3D) microchips, and nanofluidics. For each category, critical technical points (such as surface chemistry and geometry) and practical applications are summarized. Finally, we discuss opportunities and provide a framework for the development of custom-built visual models.
Collapse
Affiliation(s)
- Yaqi Zhang
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hossein Khorshidian
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mehdi Mohammadi
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Biological Sciences, University of Calgary, Canada
| | - Amir Sanati-Nezhad
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Centre for Bioengineering Research and Education, University of Calgary, Calgary, Canada
| | - S Hossein Hejazi
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
3
|
Qi Z, Xu L, Xu Y, Zhong J, Abedini A, Cheng X, Sinton D. Disposable silicon-glass microfluidic devices: precise, robust and cheap. LAB ON A CHIP 2018; 18:3872-3880. [PMID: 30457137 DOI: 10.1039/c8lc01109e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Si-glass microfluidics have long provided unprecedented precision, robustness and optical clarity. However, chip fabrication is costly (∼500 USD per chip) and in practice, devices are not heavily reused. We present a method to reduce the cost-per-chip by two orders of magnitude (∼5 USD per chip), rendering Si-glass microfluidics disposable for many applications. The strategy is based on reducing the area of the chip and a whole-chip manifolding strategy that achieves reliable high-pressure high-temperature fluid connectivity. The resulting system was validated at 130 bar and 95 °C and demonstrated in both energy and carbon capture applications. We studied heavy oil flooding with brine, polymer, and surfactant polymer solutions and found the surfactant polymer as the most effective solution which recovered ∼80% of the oil with the least amount of injection while maintaining a relatively uniform displacement front. In a carbon capture application, we measured the dilation of an emerging ionic liquid analog, choline chloride with urea, in gaseous and supercritical CO2. Previously restricted to niche microfluidic applications, the approach here brings the established benefits of Si-glass microfluidics to a broad range of applications.
Collapse
Affiliation(s)
- ZhenBang Qi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada.
| | | | | | | | | | | | | |
Collapse
|
4
|
Bao B, Riordon J, Mostowfi F, Sinton D. Microfluidic and nanofluidic phase behaviour characterization for industrial CO 2, oil and gas. LAB ON A CHIP 2017; 17:2740-2759. [PMID: 28731086 DOI: 10.1039/c7lc00301c] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microfluidic systems that leverage unique micro-scale phenomena have been developed to provide rapid, accurate and robust analysis, predominantly for biomedical applications. These attributes, in addition to the ability to access high temperatures and pressures, have motivated recent expanded applications in phase measurements relevant to industrial CO2, oil and gas applications. We here present a comprehensive review of this exciting new field, separating microfluidic and nanofluidic approaches. Microfluidics is practical, and provides similar phase properties analysis to established bulk methods with advantages in speed, control and sample size. Nanofluidic phase behaviour can deviate from bulk measurements, which is of particular relevance to emerging unconventional oil and gas production from nanoporous shale. In short, microfluidics offers a practical, compelling replacement of current bulk phase measurement systems, whereas nanofluidics is not practical, but uniquely provides insight into phase change phenomena at nanoscales. Challenges, trends and opportunities for phase measurements at both scales are highlighted.
Collapse
Affiliation(s)
- Bo Bao
- Interface Fluidics, 11421 Saskatchewan Dr. NW, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|