1
|
Dilsiz N. A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl Oncol 2024; 50:102121. [PMID: 39278189 PMCID: PMC11418158 DOI: 10.1016/j.tranon.2024.102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Exosomes are small, round vesicles in the 30 and 120 nm diameter range released by all living cell types. Exosomes play many essential functions in intercellular communication and tissue crosstalk in the human body. They can potentially be used as strong biomarkers and therapeutic agents for early diagnosis, therapy response, and prognosis of different diseases. The main requirements for exosomal large-scale clinical practice application are rapid, easy, high-yield, high purity, characterization, safety, low cost, and therapeutic efficacy. Depending on the sample types, environmental insults, and exosome quantity, exosomes can be isolated from various sources, including body fluids, solid tissues, and cell culture medium using different procedures. This study comprehensively analyzed the current research progress in exosome isolation and characterization strategies along with their advantages and disadvantages. The provided information will make it easier to select exosome separation methods based on the types of biological samples available, and it will facilitate the use of exosomes in translational and clinical research, particularly in cancer. Lay abstract Exosomes have recently received much attention due to their potential to function as biomarkers and novel therapeutic agents for early diagnosis, therapeutic response, and prognosis in various diseases. This review summarizes many approaches for isolating and characterizing exosomes, focusing on developing technologies, and provides an in-depth comparison and analysis of each method, including its principles, advantages, and limitations.
Collapse
Affiliation(s)
- Nihat Dilsiz
- Experimental Medicine Application and Research Center (EMARC) Validebag Research Park, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
2
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
3
|
Ren L, Zhang D, Pang L, Liu S. Extracellular vesicles for cancer therapy: potential, progress, and clinical challenges. Front Bioeng Biotechnol 2024; 12:1476737. [PMID: 39398642 PMCID: PMC11466826 DOI: 10.3389/fbioe.2024.1476737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Extracellular vesicles (EVs) play an important role in normal life activities and disease treatment. In recent years, there have been abundant relevant studies focusing on EVs for cancer therapy and showing good performance on tumor inhibition. To enhance the effectiveness of EVs, EV analogs have been developed. This review summarizes the classification, origin, production, purification, modification, drug loading and cancer treatment applications of EVs and their analogs. Also, the characteristics of technologies involved are analyzed, which provides the basis for the development and application of biogenic vesicle-based drug delivery platform for cancer therapy. Meanwhile, challenges in translating these vesicles into clinic, such as limited sources, lack of production standards, and insufficient targeting and effectiveness are discussed. With ongoing exploration and clinical studies, EV-based drugs will make great contributions to cancer therapy.
Collapse
Affiliation(s)
- Lili Ren
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Dingmei Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Long Pang
- College of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
| | - Shiyu Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Shayor AA, Kabir ME, Rifath MSA, Rashid AB, Oh KW. A Synergistic Overview between Microfluidics and Numerical Research for Vascular Flow and Pathological Investigations. SENSORS (BASEL, SWITZERLAND) 2024; 24:5872. [PMID: 39338617 PMCID: PMC11435959 DOI: 10.3390/s24185872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Vascular diseases are widespread, and sometimes such life-threatening medical disorders cause abnormal blood flow, blood particle damage, changes to flow dynamics, restricted blood flow, and other adverse effects. The study of vascular flow is crucial in clinical practice because it can shed light on the causes of stenosis, aneurysm, blood cancer, and many other such diseases, and guide the development of novel treatments and interventions. Microfluidics and computational fluid dynamics (CFDs) are two of the most promising new tools for investigating these phenomena. When compared to conventional experimental methods, microfluidics offers many benefits, including lower costs, smaller sample quantities, and increased control over fluid flow and parameters. In this paper, we address the strengths and weaknesses of computational and experimental approaches utilizing microfluidic devices to investigate the rheological properties of blood, the forces of action causing diseases related to cardiology, provide an overview of the models and methodologies of experiments, and the fabrication of devices utilized in these types of research, and portray the results achieved and their applications. We also discuss how these results can inform clinical practice and where future research should go. Overall, it provides insights into why a combination of both CFDs, and experimental methods can give even more detailed information on disease mechanisms recreated on a microfluidic platform, replicating the original biological system and aiding in developing the device or chip itself.
Collapse
Affiliation(s)
- Ahmed Abrar Shayor
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Md Emamul Kabir
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Md Sartaj Ahamed Rifath
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Adib Bin Rashid
- Department of Industrial and Production Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Kwang W Oh
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
5
|
West JH, Mondal TK, Williams SJ. Electrokinetic particle trapping in microfluidic wells using conductive nanofiber mats. Electrophoresis 2024. [PMID: 39223919 DOI: 10.1002/elps.202400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The frequency dependence of electrokinetic particle trapping using large-area (>mm2) conductive carbon nanofiber (CNF) mat electrodes is investigated. The fibers provide nanoscale geometric features for the generation of high electric field gradients, which is necessary for particle trapping via dielectrophoresis (DEP). A device was fabricated with an array of microfluidic wells for repeated experiments; each well included a CNF mat electrode opposing an aluminum electrode. Fluorescent microspheres (1 µm) were trapped at various electric field frequencies between 30 kHz and 1 MHz. Digital images of each well were analyzed to quantify particle trapping. DEP trapping by the CNF mats was greater at all tested frequencies than that of the control of no applied field, and the greatest trapping was observed at a frequency of 600 kHz, where electrothermal flow is more significantly weakened than DEP. Theoretical analysis and measured impedance spectra indicate that this result was due to a combination of the frequency dependence of DEP and capacitive behavior of the well-based device.
Collapse
Affiliation(s)
- J Hunter West
- Department of Mechanical Engineering, University of Louisville, Louisville, Kentucky, USA
| | - Tonoy K Mondal
- Department of Mechanical Engineering, University of Louisville, Louisville, Kentucky, USA
| | - Stuart J Williams
- Department of Mechanical Engineering, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
6
|
Mika T, Kalnins M, Spalvins K. The use of droplet-based microfluidic technologies for accelerated selection of Yarrowia lipolytica and Phaffia rhodozyma yeast mutants. Biol Methods Protoc 2024; 9:bpae049. [PMID: 39114747 PMCID: PMC11303513 DOI: 10.1093/biomethods/bpae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Microorganisms are widely used for the industrial production of various valuable products, such as pharmaceuticals, food and beverages, biofuels, enzymes, amino acids, vaccines, etc. Research is constantly carried out to improve their properties, mainly to increase their productivity and efficiency and reduce the cost of the processes. The selection of microorganisms with improved qualities takes a lot of time and resources (both human and material); therefore, this process itself needs optimization. In the last two decades, microfluidics technology appeared in bioengineering, which allows for manipulating small particles (from tens of microns to nanometre scale) in the flow of liquid in microchannels. The technology is based on small-volume objects (microdroplets from nano to femtolitres), which are manipulated using a microchip. The chip is made of an optically transparent inert to liquid medium material and contains a series of channels of small size (<1 mm) of certain geometry. Based on the physical and chemical properties of microparticles (like size, weight, optical density, dielectric constant, etc.), they are separated using microsensors. The idea of accelerated selection of microorganisms is the application of microfluidic technologies to separate mutants with improved qualities after mutagenesis. This article discusses the possible application and practical implementation of microfluidic separation of mutants, including yeasts like Yarrowia lipolytica and Phaffia rhodozyma after chemical mutagenesis will be discussed.
Collapse
Affiliation(s)
- Taras Mika
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Martins Kalnins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Kriss Spalvins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| |
Collapse
|
7
|
Wittmann L, Eigenfeld M, Büchner K, Meiler J, Habisch H, Madl T, Kerpes R, Becker T, Berensmeier S, Schwaminger SP. Millifluidic magnetophoresis-based chip for age-specific fractionation: evaluating the impact of age on metabolomics and gene expression in yeast. LAB ON A CHIP 2024; 24:2987-2998. [PMID: 38739033 PMCID: PMC11427765 DOI: 10.1039/d4lc00185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A novel millifluidic process introduces age-based fractionation of S. pastorianus var. carlsbergensis yeast culture through magnetophoresis. Saccharomyces yeast is a model organism for aging research used in various industries. Traditional age-based cell separation methods were labor-intensive, but techniques like magnetic labeling have eased the process by being non-invasive and scalable. Our approach introduces an age-specific fractionation using a 3D-printed millfluidic chip in a two-step process, ensuring efficient cell deflection in the magnetic field and counteracting magnetic induced convection. Among various channel designs, the pinch-shaped channel proved most effective for age differentiation based on magnetically labeled bud scar numbers. Metabolomic analyses revealed changes in certain amino acids and increased NAD+ levels, suggesting metabolic shifts in aging cells. Gene expression studies further underlined these age-related metabolic changes. This innovative platform offers a high-throughput, non-invasive method for age-specific yeast cell fractionation, with potential applications in industries ranging from food and beverages to pharmaceuticals.
Collapse
Affiliation(s)
- L Wittmann
- TUM School of Engineering and Design, Chair of Bioseparation Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
| | - M Eigenfeld
- TUM School of Life Science, Chair of Brewing and Beverage Technology, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany.
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
| | - K Büchner
- TUM School of Life Science, Chair of Brewing and Beverage Technology, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - J Meiler
- TUM School of Engineering and Design, Chair of Bioseparation Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
| | - H Habisch
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
| | - T Madl
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - R Kerpes
- TUM School of Life Science, Chair of Brewing and Beverage Technology, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - T Becker
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenberstr. 4a, 85748 Garching, Germany
| | - S Berensmeier
- TUM School of Engineering and Design, Chair of Bioseparation Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenberstr. 4a, 85748 Garching, Germany
| | - S P Schwaminger
- TUM School of Engineering and Design, Chair of Bioseparation Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
8
|
Morla-Folch J, Ranzenigo A, Fayad ZA, Teunissen AJP. Nanotherapeutic Heterogeneity: Sources, Effects, and Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307502. [PMID: 38050951 PMCID: PMC11045328 DOI: 10.1002/smll.202307502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Nanomaterials have revolutionized medicine by enabling control over drugs' pharmacokinetics, biodistribution, and biocompatibility. However, most nanotherapeutic batches are highly heterogeneous, meaning they comprise nanoparticles that vary in size, shape, charge, composition, and ligand functionalization. Similarly, individual nanotherapeutics often have heterogeneously distributed components, ligands, and charges. This review discusses nanotherapeutic heterogeneity's sources and effects on experimental readouts and therapeutic efficacy. Among other topics, it demonstrates that heterogeneity exists in nearly all nanotherapeutic types, examines how nanotherapeutic heterogeneity arises, and discusses how heterogeneity impacts nanomaterials' in vitro and in vivo behavior. How nanotherapeutic heterogeneity skews experimental readouts and complicates their optimization and clinical translation is also shown. Lastly, strategies for limiting nanotherapeutic heterogeneity are reviewed and recommendations for developing more reproducible and effective nanotherapeutics provided.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zahi Adel Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abraham Jozef Petrus Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
9
|
Mehraji S, DeVoe DL. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities. LAB ON A CHIP 2024; 24:1154-1174. [PMID: 38165786 DOI: 10.1039/d3lc00821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic technologies are revolutionizing the synthesis of nanoscale lipid particles and enabling new opportunities for the production of lipid-based nanomedicines. By harnessing the benefits of microfluidics for controlling diffusive and advective transport within microfabricated flow cells, microfluidic platforms enable unique capabilities for lipid nanoparticle synthesis with precise and tunable control over nanoparticle properties. Here we present an assessment of the current state of microfluidic technologies for lipid-based nanoparticle and nanomedicine production. Microfluidic techniques are discussed in the context of conventional production methods, with an emphasis on the capabilities of microfluidic systems for controlling nanoparticle size and size distribution. Challenges and opportunities associated with the scaling of manufacturing throughput are discussed, together with an overview of emerging microfluidic methods for lipid nanomedicine post-processing. The impact of additive manufacturing on current and future microfluidic platforms is also considered.
Collapse
Affiliation(s)
- Sima Mehraji
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Peng T, Lin X, Li L, Huang L, Jiang B, Jia Y. Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics. Heliyon 2024; 10:e25042. [PMID: 38322952 PMCID: PMC10845702 DOI: 10.1016/j.heliyon.2024.e25042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
With the development of in vitro diagnostics, extracting submicron scale particles from mixed body fluids samples is crucial. In recent years, microfluidic separation has attracted much attention due to its high efficiency, label-free, and inexpensive nature. Among the microfluidic-based separation, the separation based on ultrasonic standing waves has gradually become a powerful tool. A microfluid environment containing a tilted-angle ultrasonic standing surface acoustic wave (taSSAW) field has been widely adapted and designed to separate submicron particles for biochemical applications. This paper investigated submicron particle defection in microfluidics using taSSAWs analytically. Particles with 0.1-1 μm diameters were analyzed under acoustic pressure, flow rate, tilted angle, and SSAW frequency. According to different acoustic radiation forces acting on the particles, the motion of large-diameter particles was more likely to deflect to the direction of the nodal lines. Decreasing the input flow rate or increasing acoustic pressure and acoustic wave frequency can improve particle deflection. The tilted angle can be optimized by analyzing the simulation results. Based on the simulation analysis, we experimentally showed the separation of polystyrene microspheres (100 nm) from the mixed particles and exosomes (30-150 nm) from human plasma. This research results can provide a certain reference for the practical design of bioparticle separation utilizing acoustofluidic devices.
Collapse
Affiliation(s)
- Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Luming Li
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Lei Huang
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Bingyan Jiang
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Yanwei Jia
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
- Faculty of Science and Technology – Electrical and Computer Engineering, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
11
|
Hettiarachchi S, Ouyang L, Cha H, Hansen HHWB, An H, Nguyen NT, Zhang J. Viscoelastic microfluidics for enhanced separation resolution of submicron particles and extracellular vesicles. NANOSCALE 2024; 16:3560-3570. [PMID: 38289397 DOI: 10.1039/d3nr05410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Manipulation, focusing, and separation of submicron- and nanoparticles such as extracellular vesicles (EVs), viruses and bacteria have broad applications in disease diagnostics and therapeutics. Viscoelastic microfluidic technology emerges as a promising technique, and it shows an unparalleled capacity to manipulate and separate submicron particles in a high resolution based on the elastic effects of non-Newtonian mediums. The maximum particle separation resolution for the reported state-of-the-art viscoelastic microfluidics is around 200 nm. To further enhance the reseparation resolution, this work develops a viscoelastic microfluidic device that can achieve a finer separation resolution up to 100 nm, by optimising the operating conditions such as flow rate, flow rate ratio and polyethylene oxide (PEO) concentration. With these optimised conditions, we separated a ternary mixture of 100 nm, 200 nm and 500 nm polystyrene particles, with purities above 90%, 70% and 82%, respectively. Furthermore, we also applied the developed viscoelastic microfluidic device for the separation of cancer cell-secreted extracellular vesicles (EVs) into three different size groups. After single processing, the separation efficiencies for small EVs (sEVs, <150 nm), medium EVs (mEVs, 150-300 nm), and large EVs (>300 nm) were 86%, 80% and 50%, respectively. The enrichment factors for the three EV groups were 2.4, 1.1 and 1.3, respectively. Moreover, we observed an unexpected effect of high PEO concentrations (2000-5000 ppm) on the lateral migration of nanoparticles where nanoparticles of up to 50 nm surprisingly can migrate and concentrate at the middle of the microchannel. This simple and label-free viscoelastic microfluidic device possesses excellent potential for sorting submicron particles for various chemical, biological, medical and environmental applications.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Helena H W B Hansen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Honjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
12
|
Choi Y, Akyildiz K, Seong J, Lee Y, Jeong E, Park JS, Lee DH, Kim K, Koo HJ, Choi J. Dielectrophoretic Capture of Cancer-Derived Small-Extracellular-Vesicle-Bound Janus Nanoparticles via Lectin-Glycan Interaction. Adv Healthc Mater 2024; 13:e2302313. [PMID: 38124514 DOI: 10.1002/adhm.202302313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Glycosylation is closely related to cellular metabolism and disease progression. In particular, glycan levels in cancer cells and tissues increase during cancer progression. This upregulation of glycosylation in cancer cells may provide a basis for the development of new biomarkers for the targeting and diagnosis of specific cancers. Here, they developed a detection technology for pancreatic cancer cell-derived small extracellular vesicles (PC-sEVs) based on lectin-glycan interactions. Lectins specific for sialic acids are conjugated to Janus nanoparticles to induce interactions with PC-sEVs in a dielectrophoretic (DEP) system. PC-sEVs are selectively bound to the lectin-conjugated Janus nanoparticles (lectin-JNPs) with an affinity comparable to that of conventionally used carbohydrate antigen 19-9 (CA19-9) antibodies. Furthermore, sEVs-bound Lectin-JNPs (sEVs-Lec-JNPs) are manipulated between two electrodes to which an AC signal is applied for DEP capture. In addition, the proposed DEP system can be used to trap the sEVs-Lec-JNP on the electrodes. Their results, which are confirmed by lectin-JNPs using the proposed DEP system followed by target gene analysis, provide a basis for the development of a new early diagnostic marker based on the glycan characteristics of PC-sEVs. In turn, these novel detection methods could overcome the shortcomings of commercially available pancreatic cancer detection techniques.
Collapse
Affiliation(s)
- Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| | - Kubra Akyildiz
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jihyun Seong
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yangwoo Lee
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Eunseo Jeong
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| | - Jin-Seok Park
- Department of Internal Medicine, Inha University School of Medicine, Incheon, 22212, Republic of Korea
| | - Don Haeng Lee
- Department of Internal Medicine, Inha University School of Medicine, Incheon, 22212, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| |
Collapse
|
13
|
de Los Santos-Ramirez JM, Boyas-Chavez PG, Cerrillos-Ordoñez A, Mata-Gomez M, Gallo-Villanueva RC, Perez-Gonzalez VH. Trends and challenges in microfluidic methods for protein manipulation-A review. Electrophoresis 2024; 45:69-100. [PMID: 37259641 DOI: 10.1002/elps.202300056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Proteins are important molecules involved in an immensely large number of biological processes. Being capable of manipulating proteins is critical for developing reliable and affordable techniques to analyze and/or detect them. Such techniques would enable the production of therapeutic agents for the treatment of diseases or other biotechnological applications (e.g., bioreactors or biocatalysis). Microfluidic technology represents a potential solution to protein manipulation challenges because of the diverse phenomena that can be exploited to achieve micro- and nanoparticle manipulation. In this review, we discuss recent contributions made in the field of protein manipulation in microfluidic systems using different physicochemical principles and techniques, some of which are miniaturized versions of already established macro-scale techniques.
Collapse
Affiliation(s)
| | - Pablo G Boyas-Chavez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | - Marco Mata-Gomez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | | |
Collapse
|
14
|
Amondarain M, Gallego I, Puras G, Saenz-Del-Burgo L, Luzzani C, Pedraz JL. The role of microfluidics and 3D-bioprinting in the future of exosome therapy. Trends Biotechnol 2023; 41:1343-1359. [PMID: 37302911 DOI: 10.1016/j.tibtech.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Exosome-based strategies constitute a promising tool for therapeutics, avoiding potential immunogenic and tumorigenic side-effects of cell therapies. However, the collection of a suitable exosome pool, and the need for high doses with conventional administration approaches, hamper their clinical translation. To overcome these challenges, versatile exosome collection strategies together with advanced delivery platforms may represent major progress in this field. Microfluidics enables large-scale gathering of both natural and synthetic exosomes for their implementation into bioinks, while 3D-bioprinting holds great promise in regenerative medicine with the use of exosome-loaded scaffolds that mimic the target tissue with controlled pharmacokinetics and pharmacodynamics. Hence, the combination of both strategies might become the key for the translation of exosome therapies to clinical practice.
Collapse
Affiliation(s)
- Mikele Amondarain
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Idoia Gallego
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Gustavo Puras
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Carlos Luzzani
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Buenos Aires, Argentina
| | - José Luis Pedraz
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
15
|
Orabi M, Lo JF. Emerging Advances in Microfluidic Hydrogel Droplets for Tissue Engineering and STEM Cell Mechanobiology. Gels 2023; 9:790. [PMID: 37888363 PMCID: PMC10606214 DOI: 10.3390/gels9100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Hydrogel droplets are biodegradable and biocompatible materials with promising applications in tissue engineering, cell encapsulation, and clinical treatments. They represent a well-controlled microstructure to bridge the spatial divide between two-dimensional cell cultures and three-dimensional tissues, toward the recreation of entire organs. The applications of hydrogel droplets in regenerative medicine require a thorough understanding of microfluidic techniques, the biocompatibility of hydrogel materials, and droplet production and manipulation mechanisms. Although hydrogel droplets were well studied, several emerging advances promise to extend current applications to tissue engineering and beyond. Hydrogel droplets can be designed with high surface-to-volume ratios and a variety of matrix microstructures. Microfluidics provides precise control of the flow patterns required for droplet generation, leading to tight distributions of particle size, shape, matrix, and mechanical properties in the resultant microparticles. This review focuses on recent advances in microfluidic hydrogel droplet generation. First, the theoretical principles of microfluidics, materials used in fabrication, and new 3D fabrication techniques were discussed. Then, the hydrogels used in droplet generation and their cell and tissue engineering applications were reviewed. Finally, droplet generation mechanisms were addressed, such as droplet production, droplet manipulation, and surfactants used to prevent coalescence. Lastly, we propose that microfluidic hydrogel droplets can enable novel shear-related tissue engineering and regeneration studies.
Collapse
Affiliation(s)
| | - Joe F. Lo
- Department of Mechanical Engineering, University of Michigan, 4901 Evergreen Road, Dearborn, MI 48128, USA;
| |
Collapse
|
16
|
Sathirapongsasuti N, Panaksri A, Jusain B, Boonyagul S, Pechprasarn S, Jantanasakulwong K, Suksuwan A, Thongkham S, Tanadchangsaeng N. Enhancing protein trapping efficiency of graphene oxide-polybutylene succinate nanofiber membrane via molecular imprinting. Sci Rep 2023; 13:15398. [PMID: 37717111 PMCID: PMC10505162 DOI: 10.1038/s41598-023-42646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Filtration of biological liquids has been widely employed in biological, medical, and environmental investigations due to its convenience; many could be performed without energy and on-site, particularly protein separation. However, most available membranes are universal protein absorption or sub-fractionation due to molecule sizes or properties. SPMA, or syringe-push membrane absorption, is a quick and easy way to prepare biofluids for protein evaluation. The idea of initiating SPMA was to filter proteins from human urine for subsequent proteomic analysis. In our previous study, we developed nanofiber membranes made from polybutylene succinate (PBS) composed of graphene oxide (GO) for SPMA. In this study, we combined molecular imprinting with our developed PBS fiber membranes mixed with graphene oxide to improve protein capture selectivity in a lock-and-key fashion and thereby increase the efficacy of protein capture. As a model, we selected albumin from human serum (ABH), a clinically significant urine biomarker, for proteomic application. The nanofibrous membrane was generated utilizing the electrospinning technique with PBS/GO composite. The PBS/GO solution mixed with ABH was injected from a syringe and transformed into nanofibers by an electric voltage, which led the fibers to a rotating collector spinning for fiber collection. The imprinting process was carried out by removing the albumin protein template from the membrane through immersion of the membrane in a 60% acetonitrile solution for 4 h to generate a molecular imprint on the membrane. Protein trapping ability, high surface area, the potential for producing affinity with proteins, and molecular-level memory were all evaluated using the fabricated membrane morphology, protein binding capacity, and quantitative protein measurement. This study revealed that GO is a controlling factor, increasing electrical conductivity and reducing fiber sizes and membrane pore areas in PBS-GO-composites. On the other hand, the molecular imprinting did not influence membrane shape, nanofiber size, or density. Human albumin imprinted membrane could increase the PBS-GO membrane's ABH binding capacity from 50 to 83%. It can be indicated that applying the imprinting technique in combination with the graphene oxide composite technique resulted in enhanced ABH binding capabilities than using either technique individually in membrane fabrication. The suitable protein elution solution is at 60% acetonitrile with an immersion time of 4 h. Our approach has resulted in the possibility of improving filter membranes for protein enrichment and storage in a variety of biological fluids.
Collapse
Affiliation(s)
- Nuankanya Sathirapongsasuti
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pli, Samut Prakan, Thailand
| | - Anuchan Panaksri
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Benjabhorn Jusain
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Sani Boonyagul
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Suejit Pechprasarn
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Chiang Mai, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | - Acharee Suksuwan
- The Halal Science Center, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Somprasong Thongkham
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | | |
Collapse
|
17
|
Tehrani SF, Bharadwaj P, Leblond Chain J, Roullin VG. Purification processes of polymeric nanoparticles: How to improve their clinical translation? J Control Release 2023; 360:591-612. [PMID: 37422123 DOI: 10.1016/j.jconrel.2023.06.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Polymeric nanoparticles, as revolutionary nanomedicines, have offered a new class of diagnostic and therapeutic solutions for a multitude of diseases. With its immense potential, the world witnesses the new age of nanotechnology after the COVID-19 vaccines were developed based on nanotechnology. Even though there are countless benchtop research studies in the nanotechnology world, their integration into commercially available technologies is still restricted. The post-pandemic world demands a surge of research in the domain, which leaves us with the fundamental question: why is the clinical translation of therapeutic nanoparticles so restricted? Complications in nanomedicine purification, among other things, are to blame for the lack of transference. Polymeric nanoparticles, owing to their ease of manufacture, biocompatibility, and enhanced efficiency, are one of the more explored domains in organic-based nanomedicines. Purification of nanoparticles can be challenging and necessitates tailoring the available methods in accordance with the polymeric nanoparticle and impurities involved. Though a number of techniques have been described, there are no available guidelines that help in selecting the method to better suit our requirements. We encountered this difficulty while compiling articles for this review and looking for methods to purify polymeric nanoparticles. The currently accessible bibliography for purification techniques only provides approaches for a specific type of nanomaterial or sometimes even procedures for bulk materials, that are not fully relevant to nanoparticles. In our research, we tried to summarize the available purification techniques using the approach of A.F. Armington. We divided the purification systems into two major classes, namely: phase separation-based techniques (based on the physical differences between the phases) and matter exchange-based techniques (centered on physicochemical induced transfer of materials and compounds). The phase separation methods are based on either using nanoparticle size differences to retain them on a physical barrier (filtration techniques) or using their densities to segregate them (centrifugation techniques). The matter exchange separation methods rely on either transferring the molecules or impurities across a barrier using simple physicochemical phenomena, like the concentration gradients (dialysis method) or partition coefficients (extraction technique). After describing the methods in detail, we highlight their advantages and limitations, mainly focusing on preformed polymer-based nanoparticles. Tailoring a purification strategy takes into account the nanoparticle structure and its integrity, the method selected should be suited for preserving the integrity of the particles, in addition to conforming to the economical, material and productivity considerations. In the meantime, we advocate the use of a harmonized international regulatory framework to define the adequate physicochemical and biological characterization of nanomedicines. An appropriate purification strategy serves as the backbone to achieving desired characteristics, in addition to reducing variability. As a result, the present review aspires to serve as a comprehensive guide for researchers, who are new to the domain, as well as a synopsis of purification strategies and analytical characterization methods used in preclinical studies.
Collapse
Affiliation(s)
- Soudeh F Tehrani
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Priyanshu Bharadwaj
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | - V Gaëlle Roullin
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
18
|
Kaur S, Nathani A, Singh M. Exosomal delivery of cannabinoids against cancer. Cancer Lett 2023; 566:216243. [PMID: 37257632 PMCID: PMC10426019 DOI: 10.1016/j.canlet.2023.216243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Exosomes are extracellular vesicles (EVs) originating from endosomes that play a role in cellular communication. These vesicles which mimic the parental cells that release them are promising candidates for targeted drug delivery and therapeutic applications against cancer because of their favorable biocompatibility, specific targeting, low toxicity, and immunogenicity. Currently, Delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD) and other cannabinoids (e.g., CBG, THCV, CBC), are being explored for their anticancer and anti-proliferative properties. Several mechanisms, including cell cycle arrest, proliferation inhibition, activation of autophagy and apoptosis, inhibition of adhesion, metastasis, and angiogenesis have been proposed for their anticancer activity. EVs could be engineered as cannabinoid delivery systems for tumor-specificity leading to superior anticancer effects. This review discusses current techniques for EV isolation from various sources, characterization and strategies to load them with cannabinoids. More extensively, we culminate information available on different sources of EVs that have anticancer activity, mechanism of action of cannabinoids against various wild type and resistant tumors and role of CBD in histone modifications and cancer epigenetics. We have also enumerated the role of EVs containing cannabinoids against various tumors and in chemotherapy induced neuropathic pain.
Collapse
Affiliation(s)
- Sukhmandeep Kaur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
19
|
Deng Y, Zou Y, Song X, Jiang A, Wang M, Qin Q, Song Y, Yue C, Yang D, Yu B, Lu H, Zheng Y. Potential of extracellular vesicles for early prediction of severity and potential risk stratification in critical inflammatory diseases. J Cell Commun Signal 2023:10.1007/s12079-023-00763-w. [PMID: 37195382 DOI: 10.1007/s12079-023-00763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
Some acute inflammatory diseases are often exacerbated during or after hospitalization, leading to some severe manifestations like systemic inflammatory response syndrome, multiple organ failure, and high mortality. Early clinical predictors of disease severity are urgently needed to optimize patient management for better prognosis. The existing clinical scoring system and laboratory tests cannot circumvent the problems of low sensitivity and limited specificity. Extracellular vesicles (EVs) are heterogeneous nanosecretory vesicles containing various biomolecules related to immune regulation, inflammation activation, and inflammation-related complications. This review provides an overview of EVs as inflammatory mediators, inflammatory signaling pathway regulators, promoters of inflammatory exacerbation, and markers of severity and prognosis. Currently, although relevant biomarkers are clinically available or are in the preclinical research stage, searching for new markers and detection methods is still warranted, as the problems of low sensitivity/specificity, cumbersome laboratory operation and high cost still plague clinicians. In-depth study of EVs might open a door in the search for novel predictors.
Collapse
Affiliation(s)
- Yuchuan Deng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Yu Zou
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Xiaoshuang Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Ailing Jiang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Mao Wang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Qin Qin
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Yiran Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Chao Yue
- Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Dujiang Yang
- Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Bo Yu
- Zhejiang Pushkang Biotechnology Co., Ltd, Shaoxing, Zhejiang Province, China
| | - Huimin Lu
- Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yu Zheng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China.
| |
Collapse
|
20
|
Sen S, Xavier J, Kumar N, Ahmad MZ, Ranjan OP. Exosomes as natural nanocarrier-based drug delivery system: recent insights and future perspectives. 3 Biotech 2023; 13:101. [PMID: 36860361 PMCID: PMC9970142 DOI: 10.1007/s13205-023-03521-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Exosomes are nanosized (size ~ 30-150 nm) natural vesicular structures released from cells by physiological processes or pathological circumstances. Exosomes are growing in popularity as a result of their many benefits over conventional nanovehicles, including their ability to escape homing in the liver or metabolic destruction and their lack of undesired accumulation before reaching their intended targets. Various therapeutic molecules, including nucleic acids, have been incorporated into exosomes by different techniques, many of which have shown satisfactory performance in various diseases. Surface-modified exosomes are a potentially effective strategy, and it increases the circulation time and produces the specific drug target vehicle. In this comprehensive review, we describe composition exosomes biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. In addition, we discuss the role of exosomes as diagnostic markers, and their therapeutic and clinical implications. Furthermore, we addressed the challenges and outstanding developments in exosome research and discuss future perspectives. In addition to the current status of exosomes as a therapeutic carrier, the lacuna in the clinical development lifecycles along with the possible strategies to fill the lacuna have been addressed.
Collapse
Affiliation(s)
- Srijita Sen
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101 India
| | - Joyal Xavier
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102 India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102 India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001 Kingdom of Saudi Arabia
| | - Om Prakash Ranjan
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101 India
| |
Collapse
|
21
|
Hettiarachchi S, Cha H, Ouyang L, Mudugamuwa A, An H, Kijanka G, Kashaninejad N, Nguyen NT, Zhang J. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. LAB ON A CHIP 2023; 23:982-1010. [PMID: 36367456 DOI: 10.1039/d2lc00793b] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Gregor Kijanka
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
22
|
Han J, Hu H, Lei Y, Huang Q, Fu C, Gai C, Ning J. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip. ACS OMEGA 2023; 8:311-323. [PMID: 36643460 PMCID: PMC9835635 DOI: 10.1021/acsomega.2c04273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Microparticle separation technology is an important technology in many biomedical and chemical engineering applications from sample detection to disease diagnosis. Although a variety of microparticle separation techniques have been developed thus far, surface acoustic wave (SAW)-based microfluidic separation technology shows great potential because of its high throughput, high precision, and integration with polydimethylsiloxane (PDMS) microchannels. In this work, we demonstrate an acoustofluidic separation chip that includes a piezoelectric device that generates tilted-angle standing SAWs and a permanently bonded PDMS microchannel. We established a mathematical model of particle motion in the microchannel, simulated the particle trajectory through finite element simulation and numerical simulation, and then verified the validity of the model through acoustophoresis experiments. To improve the performance of the separation chip, the influences of particle size, flow rate, and input power on the particle deflection distance were studied. These parameters are closely related to the separation purity and separation efficiency. By optimizing the control parameters, the separation of micron and submicron particles under different throughput conditions was achieved. Moreover, the separation samples were quantitatively analyzed by digital light scattering technology and flow cytometry, and the results showed that the maximum purity of the separated particles was ∼95%, while the maximum efficiency was ∼97%.
Collapse
Affiliation(s)
- Junlong Han
- School
of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen518055, China
| | - Hong Hu
- School
of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen518055, China
| | - Yulin Lei
- School
of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen518055, China
| | | | - Chen Fu
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518055, China
| | - Chenhui Gai
- School
of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen518055, China
| | - Jia Ning
- School
of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen518055, China
| |
Collapse
|
23
|
Ge Y, Ye T, Fu S, Jiang X, Song H, Liu B, Wang G, Wang J. Research progress of extracellular vesicles as biomarkers in immunotherapy for non-small cell lung cancer. Front Immunol 2023; 14:1114041. [PMID: 37153619 PMCID: PMC10162406 DOI: 10.3389/fimmu.2023.1114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Lung cancer is one of the most severe forms of malignancy and a leading cause of cancer-related death worldwide, of which non-small cell lung cancer (NSCLC) is the most primary type observed in the clinic. NSCLC is mainly treated with surgery, radiotherapy, and chemotherapy. Additionally, targeted therapy and immunotherapy have also shown promising results. Several immunotherapies, including immune checkpoint inhibitors, have been developed for clinical use and have benefited patients with NSCLC. However, immunotherapy faces several challenges like poor response and unknown effective population. It is essential to identify novel predictive markers to further advance precision immunotherapy for NSCLC. Extracellular vesicles (EVs) present an important research direction. In this review, we focus on the role of EVs as a biomarker in NSCLC immunotherapy considering various perspectives, including the definition and properties of EVs, their role as biomarkers in current NSCLC immunotherapy, and different EV components as biomarkers in NSCLC immunotherapy research. We describe the cross-talk between the role of EVs as biomarkers and novel technical approaches or research concepts in NSCLC immunotherapy, such as neoadjuvants, multi-omics analysis, and the tumour microenvironment. This review will provide a reference for future research to improve the benefits of immunotherapy for patients with NSCLC.
Collapse
Affiliation(s)
- Yang Ge
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Ye
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Siyun Fu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoying Jiang
- Department of Science and Technology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| | - Guoquan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| | - Jinghui Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| |
Collapse
|
24
|
Wang H, Yang Z, Ai S, Xiao J. Updated Methods of Extracellular Vesicles Isolation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:3-14. [PMID: 37603269 DOI: 10.1007/978-981-99-1443-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Extracellular vesicles (EVs) are considered as cargo and mediate intercellular communication. As natural biological nanoparticles, EVs can be secreted by almost all kinds of cells and exist in biofluids such as milk, urine, blood, etc. In the past decades, several methods have been utilized to isolate EVs from cell culture medium, biofluids, and tissues. Here in this chapter, we summarized conventional and novel methods and fundamental procedures of EVs extraction and purification from different biofluids (plasma, urine, milk, and saliva) and tissues (brain, intestinal tissue, muscles, and heart). The present section also discusses how to choose appropriate methods to extract EVs from tissues based on downstream analysis. This chapter will expand the horizons of EVs isolation and purification from different mediums.
Collapse
Affiliation(s)
- Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Zijiang Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Songwei Ai
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
25
|
Abstract
Exosomes are extracellular vesicles, which have the ability to convey various types of cargo between cells. Lately, a great amount of interest has been paid to exosomal microRNAs (miRNAs), since much evidence has suggested that the sorting of miRNAs into exosomes is not an accidental process. It has been shown that exosomal miRNAs (exo-miRNAs) are implicated in a variety of cellular processes including (but not limited to) cell migration, apoptosis, proliferation, and autophagy. Exosomes can play a role in cardiovascular diseases and can be used as diagnostic biomarkers for several diseases, especially cancer. Tremendous advances in technology have led to the development of various platforms for miRNA profiling. Each platform has its own limitations and strengths that need to be understood in order to use them properly. In the current review, we summarize some exo-miRNAs that are relevant to exo-miRNA profiling studies and describe new methods used for the measurement of miRNA profiles in different human bodily fluids.
Collapse
|
26
|
3D printed microfluidics for bioanalysis: A review of recent advancements and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Zhang J, Chen C, Becker R, Rufo J, Yang S, Mai J, Zhang P, Gu Y, Wang Z, Ma Z, Xia J, Hao N, Tian Z, Wong DT, Sadovsky Y, Lee LP, Huang TJ. A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER). SCIENCE ADVANCES 2022; 8:eade0640. [PMID: 36417505 PMCID: PMC9683722 DOI: 10.1126/sciadv.ade0640] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
High-precision isolation of small extracellular vesicles (sEVs) from biofluids is essential toward developing next-generation liquid biopsies and regenerative therapies. However, current methods of sEV separation require specialized equipment and time-consuming protocols and have difficulties producing highly pure subpopulations of sEVs. Here, we present Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER), which allows single-step, rapid (<10 min), high-purity (>96% small exosomes, >80% exomeres) fractionation of sEV subpopulations from biofluids without the need for any sample preprocessing. Particles are iteratively deflected in a size-selective manner via an excitation resonance. This previously unidentified phenomenon generates patterns of virtual, tunable, pillar-like acoustic field in a fluid using surface acoustic waves. Highly precise sEV fractionation without the need for sample preprocessing or complex nanofabrication methods has been demonstrated using ANSWER, showing potential as a powerful tool that will enable more in-depth studies into the complexity, heterogeneity, and functionality of sEV subpopulations.
Collapse
Affiliation(s)
- Jinxin Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zhehan Ma
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - David T. W. Wong
- School of Dentistry and the Departments of Otolaryngology/Head and Neck Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Luke P. Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
28
|
Halliwell CA, Dann SE, Ferrando‐Soria J, Plasser F, Yendall K, Ramos‐Fernandez EV, Vladisavljević GT, Elsegood MRJ, Fernandez A. Hierarchical Assembly of a Micro- and Macroporous Hydrogen-Bonded Organic Framework with Tailored Single-Crystal Size. Angew Chem Int Ed Engl 2022; 61:e202208677. [PMID: 36161683 PMCID: PMC9827975 DOI: 10.1002/anie.202208677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 01/12/2023]
Abstract
Porous organic molecular materials represent an emergent field of research in Chemistry and Materials Science due to their unique combination of properties. To enhance their performance and expand the number of applications, the incorporation of hierarchical porosity is required, as exclusive microporosity entails several limitations. However, the integration of macropores in porous organic molecular materials is still an outstanding challenge. Herein, we report the first example of a hydrogen-bonded organic framework (MM-TPY) with hierarchical skeletal morphology, containing stable micro- and macroporosity. The crystal size, from micro to centimetre scale, can be controlled in a single step without using additives or templates. The mechanism of assembly during the crystal formation is compatible with a skeletal crystal growth. As proof of concept, we employed the hierarchical porosity as a platform for the dual, sequential and selective co-recognition of molecular species and microparticles.
Collapse
Affiliation(s)
| | - Sandra E. Dann
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | | | - Felix Plasser
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | - Keith Yendall
- School of AeronauticalAutomotiveChemical and Materials EngineeringAACME)Loughborough UniversityLoughboroughLE11 3TUUK
| | - Enrique V. Ramos‐Fernandez
- Laboratorio de Materiales AvanzadosDepartamento de Química Inorgánica-Instituto Universitario de Materiales de AlicanteUniversity of AlicanteAlicanteE-03080Spain
| | - Goran T. Vladisavljević
- School of AeronauticalAutomotiveChemical and Materials EngineeringAACME)Loughborough UniversityLoughboroughLE11 3TUUK
| | - Mark R. J. Elsegood
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | - Antonio Fernandez
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| |
Collapse
|
29
|
Osouli-Bostanabad K, Puliga S, Serrano DR, Bucchi A, Halbert G, Lalatsa A. Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics 2022; 14:pharmaceutics14091940. [PMID: 36145688 PMCID: PMC9506151 DOI: 10.3390/pharmaceutics14091940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticulate technologies have revolutionized drug delivery allowing for passive and active targeting, altered biodistribution, controlled drug release (temporospatial or triggered), enhanced stability, improved solubilization capacity, and a reduction in dose and adverse effects. However, their manufacture remains immature, and challenges exist on an industrial scale due to high batch-to-batch variability hindering their clinical translation. Lipid-based nanomedicines remain the most widely approved nanomedicines, and their current manufacturing methods remain discontinuous and face several problems such as high batch-to-batch variability affecting the critical quality attributes (CQAs) of the product, laborious multistep processes, need for an expert workforce, and not being easily amenable to industrial scale-up involving typically a complex process control. Several techniques have emerged in recent years for nanomedicine manufacture, but a paradigm shift occurred when microfluidic strategies able to mix fluids in channels with dimensions of tens of micrometers and small volumes of liquid reagents in a highly controlled manner to form nanoparticles with tunable and reproducible structure were employed. In this review, we summarize the recent advancements in the manufacturing of lipid-based nanomedicines using microfluidics with particular emphasis on the parameters that govern the control of CQAs of final nanomedicines. The impact of microfluidic environments on formation dynamics of nanomaterials, and the application of microdevices as platforms for nanomaterial screening are also discussed.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| | - Sara Puliga
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Facultad de Farmacia, Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| | - Andrea Bucchi
- School of Mechanical and Design Engineering, Faculty of Technology, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Gavin Halbert
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| | - Aikaterini Lalatsa
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| |
Collapse
|
30
|
Wang K, Leville S, Behdani B, Silvera Batista CA. Long-range transport and directed assembly of charged colloids under aperiodic electrodiffusiophoresis. SOFT MATTER 2022; 18:5949-5959. [PMID: 35920440 DOI: 10.1039/d2sm00631f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Faradaic reactions often lead to undesirable side effects during the application of electric fields. Therefore, experimental designs often avoid faradaic reactions by working at low voltages or at high frequencies, where the electrodes behave as ideally polarizable. In this work, we show how faradaic processes under ac fields can be used advantageously to effect long-range transport, focusing and assembly of charged colloids. Herein, we use confocal microscopy and ratiometric analysis to confirm that ac fields applied in media of low conductivity induce significant pH gradients below and above the electrode charging frequency of the system. At voltages above 1 Vpp, and frequencies below 1.7 kHz, the pH profile becomes highly nonlinear. Charged particles respond to such conditions by migrating towards the point of highest pH, thereby focusing tens of microns away from both electrodes. Under the combination of oscillating electric fields and concentration gradients of electroactive species, particles experience aperiodic electrodiffusiophoresis (EDP). The theory of EDP, along with a mass transport model, describes the dynamics of particles. Furthermore, the high local concentration of particles near the focusing point leads to disorder-order transitions, whereby particles form crystals. The position and order within the levitating crystalline sheet can be readily tuned by adjusting the voltage and frequency. These results not only have significant implications for the fundamental understanding of ac colloidal electrokinetics, but also provide new possibilities for the manipulation and directed assembly of charged colloids.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Samuel Leville
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Behrouz Behdani
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Carlos A Silvera Batista
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
31
|
Monia Kabandana GK, Zhang T, Chen C. Emerging 3D printing technologies and methodologies for microfluidic development. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2885-2906. [PMID: 35866586 DOI: 10.1039/d2ay00798c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This review paper examines recent (mostly 2018 or later) advancements in 3D printed microfluidics. Microfluidic devices are widely applied in various fields such as drug delivery, point-of-care diagnosis, and bioanalytical research. In addition to soft lithography, 3D printing has become an appealing technology to develop microfluidics recently. In this work, three main 3D printing technologies, stereolithography, fused filament deposition, and polyjet, which are commonly used to fabricate microfluidic devices, are thoroughly discussed. The advantages, limitations, and recent microfluidic applications are analyzed. New technical advancements within these technology frameworks are also summarized, which are especially suitable for microfluidic development. Next, new emerging 3D-printing technologies are introduced, including the direct printing of polydimethylsiloxane (PDMS), glass, and biopolymers. Although limited microfluidic applications based on these technologies can be found in the literature, they show high potential to revolutionize the next generation of 3D-printed microfluidic apparatus.
Collapse
Affiliation(s)
- Giraso Keza Monia Kabandana
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Tao Zhang
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
32
|
Toghiani R, Abolmaali SS, Najafi H, Tamaddon AM. Bioengineering exosomes for treatment of organ ischemia-reperfusion injury. Life Sci 2022; 302:120654. [PMID: 35597547 DOI: 10.1016/j.lfs.2022.120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a leading cause of death worldwide. It arises from blood reflowing after tissue hypoxia induced by ischemia that causes severe damages due to the accumulation of reactive oxygen species and the activation of inflammatory responses. Exosomes are the smallest members of the extracellular vesicles' family, which originate from nearly all eukaryotic cells. Exosomes have a great potential in the treatment of I/R injury either in native or modified forms. Native exosomes are secreted by different cell types, such as stem cells, and contain components such as specific miRNA molecules with tissue protective properties. On the other hand, exosome bioengineering has recently received increased attention in context of current advances in the purification, manipulation, biological characterization, and pharmacological applications. There are various pre-isolation and post-isolation manipulation approaches that can be utilized to increase the circulation half-life of exosomes or the availability of their bioactive cargos in the target site. In this review, the various therapeutic actions of native exosomes in different I/R injury will be discussed first. Exosome bioengineering approaches will then be explained, including pre- and post-isolation manipulation methods, applicability for delivery of bioactive agents to injured tissue, clinical translation issues, and future perspectives.
Collapse
Affiliation(s)
- Reyhaneh Toghiani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Haniyeh Najafi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
33
|
Yang Y, Zhang L, Jin K, He M, Wei W, Chen X, Yang Q, Wang Y, Pang W, Ren X, Duan X. Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles. SCIENCE ADVANCES 2022; 8:eabn8440. [PMID: 35905179 PMCID: PMC9337757 DOI: 10.1126/sciadv.abn8440] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 05/30/2023]
Abstract
The transport, enrichment, and purification of nanoparticles are fundamental activities in the fields of biology, chemistry, material science, and medicine. Here, we demonstrate an approach for manipulating nanospecimens in which a virtual channel with a diameter that can be spontaneously self-adjusted from dozens to a few micrometers based on the concentration of samples is formed by acoustic waves and streams that are triggered and stabilized by a gigahertz bulk acoustic resonator and microfluidics, respectively. By combining a specially designed arc-shaped resonator and lateral flow, the in situ enrichment, focusing, displacement, and continuous size-based separation of nanoparticles were achieved, with the ability to capture 30-nm polystyrene nanoparticles and continuously focus 150-nm polystyrene nanoparticles. Furthermore, exosome separation was also demonstrated. This technology overcomes the limitation of continuously manipulating particles under 200 nm and has the potential to be useful for a wide range of applications in chemistry, life sciences, and medicine.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Lin Zhang
- Tianjin Medical University Cancer Institute & Hospital, Tianjin 300072, China
| | - Ke Jin
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Meihang He
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wei Wei
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Qingrui Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute & Hospital, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
34
|
Cui X, Fu Q, Wang X, Xia P, Cui X, Bai X, Lu Z. Molecular mechanisms and clinical applications of exosomes in prostate cancer. Biomark Res 2022; 10:56. [PMID: 35906674 PMCID: PMC9338661 DOI: 10.1186/s40364-022-00398-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PC) is a common tumor in men, and the incidence rate is high worldwide. Exosomes are nanosized vesicles released by all types of cells into multiple biological fluid types. These vesicles contribute to intercellular communication by delivering both nucleic acids and proteins to recipient cells. In recent years, many studies have explored the mechanisms by which exosomes mediate the epithelial-mesenchymal transition, angiogenesis, tumor microenvironment establishment, and drug resistance acquisition in PC, and the mechanisms that have been identified and the molecules involved have provided new perspectives for the possible discovery of novel diagnostic markers in PC. Furthermore, the excellent biophysical properties of exosomes, such as their high stability, high biocompatibility and ability to cross biological barriers, have made exosomes promising candidates for use in novel targeted drug delivery system development. In this review, we summarize the roles of exosomes in the growth and signal transmission in PC and show the promising future of exosome contributions to PC diagnostics and treatment.
Collapse
Affiliation(s)
- Xiaolin Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xianglun Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaohui Bai
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
35
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
36
|
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15:83. [PMID: 35765040 PMCID: PMC9238168 DOI: 10.1186/s13045-022-01305-4] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohamad Javad Naghdi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Sabet
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Khoshbakht
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Vienna, Austria
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey.
| |
Collapse
|
37
|
Dimaki M, Olsen MH, Rozlosnik N, Svendsen WE. Sub–100 nm Nanoparticle Upconcentration in Flow by Dielectrophoretic Forces. MICROMACHINES 2022; 13:mi13060866. [PMID: 35744480 PMCID: PMC9230564 DOI: 10.3390/mi13060866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023]
Abstract
This paper presents a novel microfluidic chip for upconcentration of sub–100 nm nanoparticles in a flow using electrical forces generated by a DC or AC field. Two electrode designs were optimized using COMSOL Multiphysics and tested using particles with sizes as low as 47 nm. We show how inclined electrodes with a zig-zag three-tooth configuration in a channel of 20 µm width are the ones generating the highest gradient and therefore the largest force. The design, based on AC dielectrophoresis, was shown to upconcentrate sub–100 nm particles by a factor of 11 using a flow rate of 2–25 µL/h. We present theoretical and experimental results and discuss how the chip design can easily be massively parallelized in order to increase throughput by a factor of at least 1250.
Collapse
Affiliation(s)
- Maria Dimaki
- DTU Bioengineering, Technical University of Denmark, Søltofts Plads, Bldg 221, 2800 Kongens Lyngby, Denmark;
- Correspondence:
| | - Mark Holm Olsen
- Center for Plastics and Packaging Technology, Teknologisk Institut, Gregersensvej 1, 2630 Taastrup, Denmark;
| | | | - Winnie E. Svendsen
- DTU Bioengineering, Technical University of Denmark, Søltofts Plads, Bldg 221, 2800 Kongens Lyngby, Denmark;
| |
Collapse
|
38
|
Maged A, Abdelbaset R, Mahmoud AA, Elkasabgy NA. Merits and advances of microfluidics in the pharmaceutical field: design technologies and future prospects. Drug Deliv 2022; 29:1549-1570. [PMID: 35612293 PMCID: PMC9154770 DOI: 10.1080/10717544.2022.2069878] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microfluidics is used to manipulate fluid flow in micro-channels to fabricate drug delivery vesicles in a uniform tunable size. Thanks to their designs, microfluidic technology provides an alternative and versatile platform over traditional formulation methods of nanoparticles. Understanding the factors that affect the formulation of nanoparticles can guide the proper selection of microfluidic design and the operating parameters aiming at producing nanoparticles with reproducible properties. This review introduces the microfluidic systems' continuous flow (single-phase) and segmented flow (multiphase) and their different mixing parameters and mechanisms. Furthermore, microfluidic approaches for efficient production of nanoparticles as surface modification, anti-fouling, and post-microfluidic treatment are summarized. The review sheds light on the used microfluidic systems and operation parameters applied to prepare and fine-tune nanoparticles like lipid, poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles as well as cross-linked nanoparticles. The approaches for scale-up production using microfluidics for clinical or industrial use are also highlighted. Furthermore, the use of microfluidics in preparing novel micro/nanofluidic drug delivery systems is presented. In conclusion, the characteristic vital features of microfluidics offer the ability to develop precise and efficient drug delivery nanoparticles.
Collapse
Affiliation(s)
- Amr Maged
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.,Pharmaceutical Factory, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Reda Abdelbaset
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo, Egypt
| | - Azza A Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
39
|
Abstract
Research into TBI biomarkers has accelerated rapidly in the past decade owing to the heterogeneous nature of TBI pathologies and management, which pose challenges to TBI evaluation, management, and prognosis. TBI biomarker proteins resulting from axonal, neuronal, or glial cell injuries are widely used and have been extensively studied. However, they might not pass the blood-brain barrier with sufficient amounts to be detected in peripheral blood specimens, and further might not be detectable in the cerebrospinal fluid owing to flow limitations triggered by the injury itself. Despite the advances in TBI research, there is an unmet clinical need to develop and identify novel TBI biomarkers that entirely correlate with TBI pathologies on the molecular level, including mild TBI, and further enable physicians to predict patient outcomes and allow researchers to test neuroprotective agents to limit the extents of injury. Although the extracellular vesicles have been identified and studied long ago, they have recently been revisited and repurposed as potential TBI biomarkers that overcome the many limitations of the traditional blood and CSF assays. Animal and human experiments demonstrated the accuracy of several types of exosomes and miRNAs in detecting mild, moderate, and severe TBI. In this paper, we provide a comprehensive review of the traditional TBI biomarkers that are helpful in clinical practice. Also, we highlight the emerging roles of exosomes and miRNA being the promising candidates under investigation of current research.
Collapse
|
40
|
Liu Y, Huang Y, Wu M, Kong S, Cao W, Li S, Yan G, Liu B, Yang P, Zhang Q, Qiao L, Shen H. Microfluidic free‐flow paper electrochromatography for continuous separation of glycans. ChemElectroChem 2022. [DOI: 10.1002/celc.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yingchao Liu
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Yuanyu Huang
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Mengxi Wu
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Siyuan Kong
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Weiqian Cao
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Shunxiang Li
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Guoqun Yan
- Fudan University Institutes of Biomedical Sciences CHINA
| | | | - Pengyuan Yang
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Quanqing Zhang
- University of California Riverside Chemistry UNITED STATES
| | - Liang Qiao
- Fudan University Chemistry Songhu Road 2005 200438 Shanghai CHINA
| | - Huali Shen
- Fudan University Institutes of Biomedical Sciences CHINA
| |
Collapse
|
41
|
Dao A, Kushwaha R, Kumar A, Huang H, Banerjee S. Engineered exosomes as a photosensitizer delivery platform for cancer photodynamic therapy. ChemMedChem 2022; 17:e202200119. [PMID: 35384336 DOI: 10.1002/cmdc.202200119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/04/2022] [Indexed: 11/10/2022]
Abstract
Photodynamic therapy (PDT), a non/minimally invasive cancer treatment method, has the advantages of low side effects, high selectivity, and low drug resistance. It is currently a popular cancer treatment method. However, the shortcomings of photosensitizers such as poor photostability, poor water solubility, and short half-life in vivo when used alone, the development of photosensitizer nano-delivery platforms have always been a research hotspot. In the human body, various types of cells generally release exosomes, the bilayer extracellular vesicles. Compared with traditional materials, exosomes are currently an ideal drug delivery platform due to their homology, low immunogenicity, easy modification, high biocompatibility, and natural carrying capacity. Therefore, in this concept, we focus on the research status and prospects of engineered exosome-based photosensitizer nano-delivery platforms in cancer PDT.
Collapse
Affiliation(s)
- Anyi Dao
- Sun Yat-Sen University, School of Pharmaceutical Science (Shenzhen), INDIA
| | - Rajesh Kushwaha
- Indian Institute of Technology BHU Varanasi, Chemistry, BHU Varanasi, 221005, Varanasi, INDIA
| | - Ashish Kumar
- Indian Institute of Technology BHU Varanasi, Chemistry, BHU Varanasi, 221005, Varanasi, INDIA
| | - Huaiyi Huang
- Sun Yat-Sen University, School of Pharmaceutical Science (Shenzhen), CHINA
| | - Samya Banerjee
- Indian Institute of Technology BHU Varanasi, Chemistry, BHU, Varanasi, 221005, Varanasi, INDIA
| |
Collapse
|
42
|
Ezrre S, Reyna MA, Anguiano C, Avitia RL, Márquez H. Lab-on-a-Chip Platforms for Airborne Particulate Matter Applications: A Review of Current Perspectives. BIOSENSORS 2022; 12:191. [PMID: 35448251 PMCID: PMC9024784 DOI: 10.3390/bios12040191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Lab-on-a-Chip (LoC) devices are described as versatile, fast, accurate, and low-cost platforms for the handling, detection, characterization, and analysis of a wide range of suspended particles in water-based environments. However, for gas-based applications, particularly in atmospheric aerosols science, LoC platforms are rarely developed. This review summarizes emerging LoC devices for the classification, measurement, and identification of airborne particles, especially those known as Particulate Matter (PM), which are linked to increased morbidity and mortality levels from cardiovascular and respiratory diseases. For these devices, their operating principles and performance parameters are introduced and compared while highlighting their advantages and disadvantages. Discussing the current applications will allow us to identify challenges and determine future directions for developing more robust LoC devices to monitor and analyze airborne PM.
Collapse
Affiliation(s)
- Sharon Ezrre
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Marco A. Reyna
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Citlalli Anguiano
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Roberto L. Avitia
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Heriberto Márquez
- Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico;
| |
Collapse
|
43
|
Sebastian V. Toward continuous production of high-quality nanomaterials using microfluidics: nanoengineering the shape, structure and chemical composition. NANOSCALE 2022; 14:4411-4447. [PMID: 35274121 DOI: 10.1039/d1nr06342a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last decade, a multitude of synthesis strategies has been reported for the production of high-quality nanoparticles. Wet-chemical methods are generally the most efficient synthesis procedures since high control of crystallinity and physicochemical properties can be achieved. However, a number of challenges remain from inadequate reaction control during the nanocrystallization process; specifically variability, selectivity, scalability and safety. These shortcomings complicate the synthesis, make it difficult to obtain a uniform product with desired properties, and present serious limitations for scaling the production of colloidal nanocrystals from academic studies to industrial applications. Continuous flow reactors based on microfluidic principles offer potential solutions and advantages. The reproducibility of reaction conditions in microfluidics and therefore product quality have proved to exceed those obtained by batch processing. Considering that in nanoparticles' production not only is it crucial to control the particle size distribution, but also the shape and chemical composition, this review presents an overview of the current state-of-the-art in synthesis of anisotropic and faceted nanostructures by using microfluidics techniques. The review surveys the available tools that enable shape and chemical control, including secondary growth methods, active segmented flow, and photoinduced shape conversion. In addition, emphasis is placed on the available approaches developed to tune the structure and chemical composition of nanomaterials in order to produce complex heterostructures in a continuous and reproducible fashion.
Collapse
Affiliation(s)
- Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Department of Chemical Engineering and Environmental Technologies, University de Zaragoza, 50018, Zaragoza, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
44
|
Zhao K, Wei Y, Dong J, Zhao P, Wang Y, Pan X, Wang J. Separation and characterization of microplastic and nanoplastic particles in marine environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118773. [PMID: 34974085 DOI: 10.1016/j.envpol.2021.118773] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (<5 mm) are divided into primary and secondary microplastics, which are further degraded into nanoplastics. The microplastic particles are widely distributed in marine environment, terrestrial ecosystem and biological organism, leading to damages to whole environmental system. Microplastics are not only difficult to degrade, but also able to adsorb pollutants. Due to the tiny size and various properties, the separation and characterization of microplastic particles has become more and more challenging. This review introduces the sources and destinations of the microplastic particles and summarizes the general methods for the sorting and characterization of microplastics, especially the manipulation of microplastic particles on microfluidic chip, showing possibility to deal with smaller nanoplastic particles over traditional methods. This review focuses on studies of the size-based separation and property-dependent characterization of microplastics in marine environment by utilizing the microfluidic chip device.
Collapse
Affiliation(s)
- Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Yunman Wei
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Jianhong Dong
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Penglu Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Yuezhu Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Environmental Sciences and Engineering, Dalian Maritime University, 116026, Dalian, China
| | - Xinxiang Pan
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Maritime, Guangdong Ocean University, 524000, Zhanjiang, China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China.
| |
Collapse
|
45
|
Zeng L, Chen X, Zhang R, Hu S, Zhang H, Zhang Y, Yang H. High-Resolution Separation of Nanoparticles Using a Negative Magnetophoretic Microfluidic System. MICROMACHINES 2022; 13:mi13030377. [PMID: 35334669 PMCID: PMC8951349 DOI: 10.3390/mi13030377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
The separation and purification of a sample of interest is essential for subsequent detection and analysis procedures, but there is a lack of effective separation methods with which to purify nano-sized particles from the sample media. In this paper, a microfluidic system based on negative magnetophoresis is presented for the high-resolution separation of nanoparticles. The system includes on-chip magnetic pole arrays and permalloys that symmetrically distribute on both sides of the separation channel and four permanent magnets that provide strong magnetic fields. The microfluidic system can separate 200 nm particles with a high purity from the mixture (1000 nm and 200 nm particles) due to a magnetic field gradient as high as 10,000 T/m being generated inside the separation channel, which can provide a negative magnetophoretic force of up to 10 pN to the 1000 nm particle. The overall recovery rate of the particles reaches 99%, the recovery rate of 200 nm particles is 84.2%, and the purity reaches 98.2%. Compared with the existing negative magnetophoretic separation methods, our system not only exhibits high resolution on particle sizes (800 nm), but also improves the sample processing throughput, which reaches 2.5 μL/min. The microfluidic system is expected to provide a new solution for the high-purity separation of nanoparticles, as well as nanobiological samples.
Collapse
Affiliation(s)
- Lin Zeng
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (X.C.); (R.Z.); (S.H.)
| | - Xi Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (X.C.); (R.Z.); (S.H.)
| | - Rongrong Zhang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (X.C.); (R.Z.); (S.H.)
| | - Shi Hu
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (X.C.); (R.Z.); (S.H.)
| | - Hongpeng Zhang
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China;
| | - Yi Zhang
- Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (X.C.); (R.Z.); (S.H.)
- Correspondence: ; Tel.: +86-0755-86392675
| |
Collapse
|
46
|
Zhang F, Guo J, Zhang Z, Duan M, Wang G, Qian Y, Zhao H, Yang Z, Jiang X. Application of engineered extracellular vesicles for targeted tumor therapy. J Biomed Sci 2022; 29:14. [PMID: 35189894 PMCID: PMC8862579 DOI: 10.1186/s12929-022-00798-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
All cells, including prokaryotes and eukaryotes, could release extracellular vesicles (EVs). EVs contain many cellular components, including RNA, and surface proteins, and are essential for maintaining normal intercellular communication and homeostasis of the internal environment. EVs released from different tissues and cells exhibit excellent properties and functions (e.g., targeting specificity, regulatory ability, physical durability, and immunogenicity), rendering them a potential new option for drug delivery and precision therapy. EVs have been demonstrated to transport antitumor drugs for tumor therapy; additionally, EVs' contents and surface substance can be altered to improve their therapeutic efficacy in the clinic by boosting targeting potential and drug delivery effectiveness. EVs can regulate immune system function by affecting the tumor microenvironment, thereby inhibiting tumor progression. Co-delivery systems for EVs can be utilized to further improve the drug delivery efficiency of EVs, including hydrogels and liposomes. In this review, we discuss the isolation technologies of EVs, as well as engineering approaches to their modification. Moreover, we evaluate the therapeutic potential of EVs in tumors, including engineered extracellular vesicles and EVs' co-delivery systems. Technologies such as microfluidics can improve EVs isolation efficiency. Engineering technologies can improve EVs drug loading efficiency and tumor targeting. EVs-based drug co-delivery systems are being developed, such as those with liposomes and hydrogels.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenghou Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meiqi Duan
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiping Qian
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Yang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
47
|
Volk AA, Campbell ZS, Ibrahim MYS, Bennett JA, Abolhasani M. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing. Annu Rev Chem Biomol Eng 2022; 13:45-72. [PMID: 35259931 DOI: 10.1146/annurev-chembioeng-092120-024449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microfluidic devices and systems have entered many areas of chemical engineering, and the rate of their adoption is only increasing. As we approach and adapt to the critical global challenges we face in the near future, it is important to consider the capabilities of flow chemistry and its applications in next-generation technologies for sustainability, energy production, and tailor-made specialty chemicals. We present the introduction of microfluidics into the fundamental unit operations of chemical engineering. We discuss the traits and advantages of microfluidic approaches to different reactive systems, both well-established and emerging, with a focus on the integration of modular microfluidic devices into high-efficiency experimental platforms for accelerated process optimization and intensified continuous manufacturing. Finally, we discuss the current state and new horizons in self-driven experimentation in flow chemistry for both intelligent exploration through the chemical universe and distributed manufacturing. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Zachary S Campbell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Malek Y S Ibrahim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Jeffrey A Bennett
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| |
Collapse
|
48
|
Long T, Wu H, Qiao C, Bao B, Zhao S, Liu H. Nonnegligible nano-confinement effect on solvent-mediated interactions between nanoparticles. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Cha H, Fallahi H, Dai Y, Yuan D, An H, Nguyen NT, Zhang J. Multiphysics microfluidics for cell manipulation and separation: a review. LAB ON A CHIP 2022; 22:423-444. [PMID: 35048916 DOI: 10.1039/d1lc00869b] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3216, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
50
|
Wang Z, Yu H, Liyanage A, Qiu J, Thushara D, Bao B, Zhao S. Collective diffusion of charged nanoparticles in microchannel under electric field. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|