1
|
Smith MM, Moran GR. The unusual chemical sequences of mammalian dihydropyrimidine dehydrogenase revealed by transient-state analysis. Methods Enzymol 2023; 685:373-403. [PMID: 37245908 DOI: 10.1016/bs.mie.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Dihydropyrimidine dehydrogenase (DPD) catalyzes the reduction of the 5,6-vinylic bond of uracil and thymine with electrons from NADPH. The complexity of the enzyme belies the simplicity of the reaction catalyzed. To accomplish this chemistry DPD has two active sites that are ∼60Å apart, both of which house flavin cofactors, FAD and FMN. The FAD site interacts with NADPH, while the FMN site with pyrimidines. The distance between the flavins is spanned by four Fe4S4 centers. Though DPD has been studied for nearly 50years, it is only recently that the novel apects of its mechanism have been described. The primary reason for this is that the chemistry of DPD is not portrayed adequately by known descriptive steady-state mechanism categories. The highly chromophoric nature of the enzyme has recently been exploited in transient-state to document unexpected reaction sequences. Specifically, DPD undergoes reductive activation prior to catalytic turnover. Two electrons are taken up from NADPH and transmitted via the FAD and Fe4S4 centers to form the FAD•4(Fe4S4)•FMNH2 form of the enzyme. This form of the enzyme will only reduce pyrimidine substrates in the presence NADPH, establishing that hydride transfer to the pyrimidine precedes reductive reactivation that reinstates the active form of the enzyme. DPD is therefore the first flavoprotein dehydrogenase known to complete the oxidative half-reaction prior to the reductive half-reaction. Here we describe the methods and deduction that led to this mechanistic assignment.
Collapse
Affiliation(s)
- Madison M Smith
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States.
| |
Collapse
|
2
|
Wińska P, Widło Ł, Senkara E, Koronkiewicz M, Cieśla JM, Krzyśko A, Skierka K, Cieśla J. Inhibition of Protein Kinase CK2 Affects Thymidylate Synthesis Cycle Enzyme Level and Distribution in Human Cancer Cells. Front Mol Biosci 2022; 9:847829. [PMID: 35281258 PMCID: PMC8914513 DOI: 10.3389/fmolb.2022.847829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT) constitute the thymidylate synthesis cycle providing thymidylate for DNA synthesis and repair. Our previous studies indicated that TS and DHFR are the substrates of protein kinase CK2. This work has been aimed at the elucidation of the effect of CK2 activity on cell cycle progression, thymidylate synthesis enzyme expression and localization, and the role of CK2-mediated TS phosphorylation in in vitro di- and trimolecular complex formation. The results were obtained by means of western blot, confocal microscopy, flow cytometry, quantitative polymerase chain reaction (QPCR), quartz crystal microbalance with dissipation monitoring (QCM-D), and microthermophoresis (MST). Our research indicates that CK2 inhibition does not change the levels of the transcripts; however, it affects the protein levels of DHFR and TS in both tested cell lines, i.e., A549 and CCRF-CEM, and the level of SHMT1 in CCRF-CEM cells. Moreover, we show that CK2-mediated phosphorylation of TS enables the protein (pTS) interaction with SHMT1 and leads to the stability of the tri-complex containing SHMT1, DHFR, and pTS. Our results suggest an important regulatory role of CK2-mediated phosphorylation for inter- and intracellular protein level of enzymes involved in the thymidylate biosynthesis cycle.
Collapse
Affiliation(s)
- Patrycja Wińska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- *Correspondence: Patrycja Wińska, ; Joanna Cieśla,
| | - Łukasz Widło
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Senkara
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | | - Jarosław M. Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Krzyśko
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Skierka
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Joanna Cieśla
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- *Correspondence: Patrycja Wińska, ; Joanna Cieśla,
| |
Collapse
|
3
|
Forouzesh DC, Moran GR. Mammalian dihydropyrimidine dehydrogenase. Arch Biochem Biophys 2021; 714:109066. [PMID: 34717904 DOI: 10.1016/j.abb.2021.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/26/2022]
Abstract
Dihydropyrimidine dehydrogenase (DPD) catalyzes the two-electron reduction of pyrimidine bases uracil and thymine as the first step in pyrimidine catabolism. The enzyme achieves this simple chemistry using a complex cofactor set including two flavins and four Fe4S4 centers. The flavins, FAD and FMN, interact with respective NADPH and pyrimidine substrates and the iron-sulfur centers form an electron transfer wire that links the two active sites that are separated by 56 Å. DPD accepts the common antineoplastic agent 5-fluorouracil as a substrate and so undermines the establishment of efficacious toxicity. Though studied for multiple decades, a precise description of the behavior of the enzyme had remained elusive. It was recently shown that the active form of DPD has the cofactor set of FAD-4(Fe4S4)-FMNH2. This two-electron reduced state is consistent with fewer mechanistic possibilities and data suggests that the instigating and rate determining step in the catalytic cycle is reduction of the pyrimidine substrate that is followed by relatively rapid oxidation of NADPH at the FAD that, via the electron conduit of the 4(Fe4S4) centers, reinstates the FMNH2 cofactor for subsequent catalytic turnover.
Collapse
Affiliation(s)
- Dariush C Forouzesh
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Graham R Moran
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, USA.
| |
Collapse
|
4
|
Beaupre BA, Forouzesh DC, Butrin A, Liu D, Moran GR. Perturbing the Movement of Hydrogens to Delineate and Assign Events in the Reductive Activation and Turnover of Porcine Dihydropyrimidine Dehydrogenase. Biochemistry 2021; 60:1764-1775. [PMID: 34032117 DOI: 10.1021/acs.biochem.1c00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The native function of dihydropyrimidine dehydrogenase (DPD) is to reduce the 5,6-vinylic bond of pyrimidines uracil and thymine with electrons obtained from NADPH. NADPH and pyrimidines bind at separate active sites separated by ∼60 Å that are bridged by four Fe4S4 centers. We have shown that DPD undergoes reductive activation, taking up two electrons from NADPH [Beaupre, B. A., et al. (2020) Biochemistry 59, 2419-2431]. pH studies indicate that the rate of turnover is not controlled by the protonation state of the general acid, cysteine 671. The activation of the C671 variants is delineated into two phases particularly at low pH values. Spectral deconvolution of the delineated reductive activation reaction reveals that the initial phase results in the accumulation of charge transfer absorption added to the binding difference spectrum for NADPH. The second phase results in reduction of one of the two flavins. X-ray crystal structure analysis of the C671S variant soaked with NADPH and the slow substrate, thymine, in a low-oxygen atmosphere resolved the presumed activated form of the enzyme that has the FMN cofactor reduced. These data reveal that charge transfer arises from the proximity of the NADPH and FAD bases and that the ensuing flavin is a result of rapid transfer of electrons to the FMN without accumulation of reduced forms of the FAD or Fe4S4 centers. These data suggest that the slow rate of turnover of DPD is governed by the movement of a mobile structural feature that carries the C671 residue.
Collapse
Affiliation(s)
- Brett A Beaupre
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Dariush C Forouzesh
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Arseniy Butrin
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60660, United States
| |
Collapse
|
5
|
Molecular Mechanism of Thymidylate Synthase Inhibition by N 4-Hydroxy-dCMP in View of Spectrophotometric and Crystallographic Studies. Int J Mol Sci 2021; 22:ijms22094758. [PMID: 33946210 PMCID: PMC8125507 DOI: 10.3390/ijms22094758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Novel evidence is presented allowing further clarification of the mechanism of the slow-binding thymidylate synthase (TS) inhibition by N4-hydroxy-dCMP (N4-OH-dCMP). Spectrophotometric monitoring documented time- and temperature-, and N4-OH-dCMP-dependent TS-catalyzed dihydrofolate production, accompanying the mouse enzyme incubation with N4-OH-dCMP and N5,10-methylenetetrahydrofolate, known to inactivate the enzyme by the covalent binding of the inhibitor, suggesting the demonstrated reaction to be uncoupled from the pyrimidine C(5) methylation. The latter was in accord with the hypothesis based on the previously presented structure of mouse TS (cf. PDB ID: 4EZ8), and with conclusions based on the present structure of the parasitic nematode Trichinella spiralis, both co-crystallized with N4-OH-dCMP and N5,10-methylenetetrahdrofolate. The crystal structure of the mouse TS-N4-OH-dCMP complex soaked with N5,10-methylenetetrahydrofolate revealed the reaction to run via a unique imidazolidine ring opening, leaving the one-carbon group bound to the N(10) atom, thus too distant from the pyrimidine C(5) atom to enable the electrophilic attack and methylene group transfer.
Collapse
|
6
|
Prokopowicz M, Jarmuła A, Casamayou-Boucau Y, Gordon F, Ryder A, Sobich J, Maj P, Cieśla J, Zieliński Z, Fita P, Rode W. Advanced Spectroscopy and APBS Modeling for Determination of the Role of His190 and Trp103 in Mouse Thymidylate Synthase Interaction with Selected dUMP Analogues. Int J Mol Sci 2021; 22:2661. [PMID: 33800923 PMCID: PMC7962005 DOI: 10.3390/ijms22052661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
A homo-dimeric enzyme, thymidylate synthase (TS), has been a long-standing molecular target in chemotherapy. To further elucidate properties and interactions with ligands of wild-type mouse thymidylate synthase (mTS) and its two single mutants, H190A and W103G, spectroscopic and theoretical investigations have been employed. In these mutants, histidine at position 190 and tryptophan at position 103 are substituted with alanine and glycine, respectively. Several emission-based spectroscopy methods used in the paper demonstrate an especially important role for Trp 103 in TS ligands binding. In addition, the Advanced Poisson-Boltzmann Solver (APBS) results show considerable differences in the distribution of electrostatic potential around Trp 103, as compared to distributions observed for all remaining Trp residues in the mTS family of structures. Together, spectroscopic and APBS results reveal a possible interplay between Trp 103 and His190, which contributes to a reduction in enzymatic activity in the case of H190A mutation. Comparison of electrostatic potential for mTS complexes, and their mutants, with the substrate, dUMP, and inhibitors, FdUMP and N4-OH-dCMP, suggests its weaker influence on the enzyme-ligand interactions in N4OH-dCMP-mTS compared to dUMP-mTS and FdUMP-mTS complexes. This difference may be crucial for the explanation of the "abortive reaction" inhibitory mechanism of N4OH-dCMP towards TS. In addition, based on structural analyses and the H190A mutant capacity to form a denaturation-resistant complex with N4-OH-dCMP in the mTHF-dependent reaction, His190 is apparently responsible for a strong preference of the enzyme active center for the anti rotamer of the imino inhibitor form.
Collapse
Affiliation(s)
- Małgorzata Prokopowicz
- Inter-Faculty Interdisciplinary Doctoral Studies in Natural Sciences and Mathematics, MISMaP College, University of Warsaw, ul. Banacha 2C, 02-097 Warsaw, Poland
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland;
- Nencki Institute of Experimental Biology, ul. Pasteura 3, 02-093 Warsaw, Poland; (A.J.); (J.S.); (P.M.); (Z.Z.)
| | - Adam Jarmuła
- Nencki Institute of Experimental Biology, ul. Pasteura 3, 02-093 Warsaw, Poland; (A.J.); (J.S.); (P.M.); (Z.Z.)
| | - Yannick Casamayou-Boucau
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, University Road, H91 TK33 Galway, Ireland; (Y.C.-B.); (F.G.); (A.R.)
| | - Fiona Gordon
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, University Road, H91 TK33 Galway, Ireland; (Y.C.-B.); (F.G.); (A.R.)
| | - Alan Ryder
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, University Road, H91 TK33 Galway, Ireland; (Y.C.-B.); (F.G.); (A.R.)
| | - Justyna Sobich
- Nencki Institute of Experimental Biology, ul. Pasteura 3, 02-093 Warsaw, Poland; (A.J.); (J.S.); (P.M.); (Z.Z.)
| | - Piotr Maj
- Nencki Institute of Experimental Biology, ul. Pasteura 3, 02-093 Warsaw, Poland; (A.J.); (J.S.); (P.M.); (Z.Z.)
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Joanna Cieśla
- Faculty of Chemistry, Warsaw University of Technology, ul Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Zbigniew Zieliński
- Nencki Institute of Experimental Biology, ul. Pasteura 3, 02-093 Warsaw, Poland; (A.J.); (J.S.); (P.M.); (Z.Z.)
| | - Piotr Fita
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland;
| | - Wojciech Rode
- Nencki Institute of Experimental Biology, ul. Pasteura 3, 02-093 Warsaw, Poland; (A.J.); (J.S.); (P.M.); (Z.Z.)
| |
Collapse
|
7
|
Beaupre BA, Forouzesh DC, Moran GR. Transient-State Analysis of Porcine Dihydropyrimidine Dehydrogenase Reveals Reductive Activation by NADPH. Biochemistry 2020; 59:2419-2431. [PMID: 32516529 DOI: 10.1021/acs.biochem.0c00223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dihydropyrimidine dehydrogenase (DPD) catalyzes the initial step in the catabolism of the pyrimidines uracil and thymine. Crystal structures have revealed an elaborate subunit architecture consisting of two flavin cofactors, apparently linked by four Fe4S4 centers. Analysis of the DPD reaction(s) equilibrium position under anaerobic conditions revealed a reaction that favors dihydropyrimidine formation. Single-turnover analysis shows biphasic kinetics. The serine variant of the candidate general acid, cysteine 671, provided enhanced kinetic resolution for these phases. In the first event, one subunit of the DPD dimer takes up two electrons from NADPH in a reductive activation. Spectrophotometric deconvolution suggests that these electrons reside on one of the two flavins. The fact that oxidation of the enzyme by dioxygen can be suppressed by the addition of pyrimidine is consistent with these electrons residing on the FMN. The second phase involves further oxidation of NADPH and concomitant reduction of the pyrimidine substrate. During this phase no net reduction of DPD cofactors is observed, indicating that the entire cofactor set acts as a wire, transmitting electrons from NADPH to the pyrimidine rapidly. This indicates that the availability of the proton from the C671 general acid controls the transmittance of electrons from NADPH to the pyrimidine. Acid quench and high-performance liquid chromatography product analysis of single-turnover reactions with limiting NADPH confirmed a 2:1 NADPH:pyrimidine stoichiometry for the enzyme, accounting for successive activation and pyrimidine reduction. These data support an alternating subunit model in which one protomer is activated and turns over before the other subunit can be activated and enter catalysis.
Collapse
Affiliation(s)
- Brett A Beaupre
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Dariush C Forouzesh
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60660, United States
| |
Collapse
|
8
|
Sobich J, Prokopowicz M, Maj P, Wilk P, Zieliński Z, Frączyk T, Rode W. Thymidylate synthase-catalyzed, tetrahydrofolate-dependent self-inactivation by 5-FdUMP. Arch Biochem Biophys 2019; 674:108106. [PMID: 31520592 DOI: 10.1016/j.abb.2019.108106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022]
Abstract
In view of previous crystallographic studies, N4-hydroxy-dCMP, a slow-binding thymidylate synthase inhibitor apparently caused "uncoupling" of the two thymidylate synthase-catalyzed reactions, including the N5,10-methylenetetrahydrofolate one-carbon group transfer and reduction, suggesting the enzyme's capacity to use tetrahydrofolate as a cofactor reducing the pyrimidine ring C(5) in the absence of the 5-methylene group. Testing the latter interpretation, a possibility was examined of a TS-catalyzed covalent self-modification/self-inactivation with certain pyrimidine deoxynucleotides, including 5-fluoro-dUMP and N4-hydroxy-dCMP, that would be promoted by tetrahydrofolate and accompanied with its parallel oxidation to dihydrofolate. Electrophoretic analysis showed mouse recombinant TS protein to form, in the presence of tetrahydrofolate, a covalently bound, electrophoretically separable 5-fluoro-dUMP-thymidylate synthase complex, similar to that produced in the presence of N5,10-methylenetetrahydrofolate. Further studies of the mouse enzyme binding with 5-fluoro-dUMP/N4-hydroxy-dCMP by TCA precipitation of the complex on filter paper showed it to be tetrahydrofolate-promoted, as well as to depend on both time in the range of minutes and the enzyme molecular activity, indicating thymidylate synthase-catalyzed reaction to be responsible for it. Furthermore, the tetrahydrofolate- and time-dependent, covalent binding by thymidylate synthase of each 5-fluoro-dUMP and N4-hydroxy-dCMP was shown to be accompanied by the enzyme inactivation, as well as spectrophotometrically confirmed dihydrofolate production, the latter demonstrated to depend on the reaction time, thymidylate synthase activity and temperature of the incubation mixture, further documenting its catalytic character.
Collapse
Affiliation(s)
- Justyna Sobich
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Małgorzata Prokopowicz
- Warsaw University, College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, and Faculty of Physics, Warszawa, Poland
| | - Piotr Maj
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Piotr Wilk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Zbigniew Zieliński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Tomasz Frączyk
- Medical University of Warsaw, Department of Immunology, Transplantology and Internal Medicine, Warszawa, Poland
| | - Wojciech Rode
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
9
|
Human dihydrofolate reductase is a substrate of protein kinase CK2α. Biochem Biophys Res Commun 2019; 513:368-373. [PMID: 30961929 DOI: 10.1016/j.bbrc.2019.03.186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 11/22/2022]
Abstract
Dihydrofolate reductase (DHFR) is a prominent molecular target in antitumor, antibacterial, antiprotozoan, and immunosuppressive chemotherapies, and CK2 protein kinase is an ubiquitous enzyme involved in many processes, such as tRNA and rRNA synthesis, apoptosis, cell cycle or oncogenic transformation. We show for the first time that CK2α subunit strongly interacted with and phosphorylated DHFR in vitro. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we determined DHFR-CK2α binding kinetic parameters (Kd below 0.5 μM, kon = 10.31 × 104 M-1s-1 and koff = 1.40 × 10-3s-1) and calculated Gibbs free energy (-36.4 kJ/mol). In order to identify phosphorylation site(s) we used site-directed mutagenesis to obtain several DHFR mutants with predicted CK2-phosphorylable serine or threonine residues substituted with alanines. All enzyme forms were subjected to CK2α subunit catalytic activity and the results pointed to serine 168 as a phosphorylation site. Mass spectrometry analyses confirmed the presence of phosphoserine 168 and revealed additionally the presence of phosphoserine 145, although the latter phosphorylation was on a very low level.
Collapse
|
10
|
Bacterial versus human thymidylate synthase: Kinetics and functionality. PLoS One 2018; 13:e0196506. [PMID: 29715278 PMCID: PMC5929524 DOI: 10.1371/journal.pone.0196506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/13/2018] [Indexed: 11/19/2022] Open
Abstract
Thymidylate Synthase (TSase) is a highly conserved enzyme that catalyzes the production of the DNA building block thymidylate. Structurally, functionally and mechanistically, bacterial and mammalian TSases share remarkable similarities. Because of this closeness, bacterial enzymes have long been used as model systems for human TSase. Furthermore, while TSase inhibitors have long served as chemotherapeutic drugs, no TSase inhibitor serves as an antibiotic. Despite their high resemblance, the mammalian TSases are distinct in a few known aspects, such as having a N-terminal tail and two insertions in the primary sequence and active/inactive conformations. Here, we aim to comprehensively characterize human (hs) TSase and delineate its contrasts and the similarities to the well-studied Escherichia coli (ec) TSase. We found that, in contrast to ecTSase, Mg2+ does not enhance reaction rates for hsTSase. The temperature dependence of intrinsic kinetic isotope effects (KIEs), on the other hand, suggests that Mg2+ has little or no impact on the transition state of hydride transfer in either enzyme, and that the transition state for the hydride transfer in hsTSase is looser than in ecTSase. Additionally, the substrates’ binding order is strictly ordered for ecTSase but slightly less ordered for hsTSase. The observed kinetic and functional differences between bacterial and human enzymes may aid in the development of antibiotic drugs with reduced toxicity.
Collapse
|
11
|
Jarmuła A, Wilk P, Maj P, Ludwiczak J, Dowierciał A, Banaszak K, Rypniewski W, Cieśla J, Dąbrowska M, Frączyk T, Bronowska AK, Jakowiecki J, Filipek S, Rode W. Crystal structures of nematode (parasitic T. spiralis and free living C. elegans), compared to mammalian, thymidylate synthases (TS). Molecular docking and molecular dynamics simulations in search for nematode-specific inhibitors of TS. J Mol Graph Model 2017; 77:33-50. [PMID: 28826032 DOI: 10.1016/j.jmgm.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
Three crystal structures are presented of nematode thymidylate synthases (TS), including Caenorhabditis elegans (Ce) enzyme without ligands and its ternary complex with dUMP and Raltitrexed, and binary complex of Trichinella spiralis (Ts) enzyme with dUMP. In search of differences potentially relevant for the development of species-specific inhibitors of the nematode enzyme, a comparison was made of the present Ce and Ts enzyme structures, as well as binary complex of Ce enzyme with dUMP, with the corresponding mammalian (human, mouse and rat) enzyme crystal structures. To complement the comparison, tCONCOORD computations were performed to evaluate dynamic behaviors of mammalian and nematode TS structures. Finally, comparative molecular docking combined with molecular dynamics and free energy of binding calculations were carried out to search for ligands showing selective affinity to T. spiralis TS. Despite an overall strong similarity in structure and dynamics of nematode vs mammalian TSs, a pool of ligands demonstrating predictively a strong and selective binding to TsTS has been delimited. These compounds, the E63 family, locate in the dimerization interface of TsTS where they exert species-specific interactions with certain non-conserved residues, including hydrogen bonds with Thr174 and hydrophobic contacts with Phe192, Cys191 and Tyr152. The E63 family of ligands opens the possibility of future development of selective inhibitors of TsTS and effective agents against trichinellosis.
Collapse
Affiliation(s)
- Adam Jarmuła
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland.
| | - Piotr Wilk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland; Macromolecular Crystallography (BESSY-MX), Berlin, Germany
| | - Piotr Maj
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Jan Ludwiczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland; Centre of New Technologies, University of Warsaw, Warszawa, Poland
| | - Anna Dowierciał
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Katarzyna Banaszak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Cieśla
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Magdalena Dąbrowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Tomasz Frączyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | | | | | | | - Wojciech Rode
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
12
|
Dowierciał A, Jarmuła A, Wilk P, Rypniewski W, Kowalska M, Frączyk T, Cieśla J, Rode W. Mouse thymidylate synthase does not show the inactive conformation, observed for the human enzyme. Struct Chem 2016. [DOI: 10.1007/s11224-016-0840-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|