1
|
Boda VK, Yasmen N, Jiang J, Li W. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev 2024; 44:2510-2544. [PMID: 38715347 PMCID: PMC11452291 DOI: 10.1002/med.22048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Transient receptor potential canonical 3 (TRPC3) protein belongs to the TRP family of nonselective cation channels. Its activation occurs by signaling through a G protein-coupled receptor (GPCR) and a phospholipase C-dependent (PLC) pathway. Perturbations in the expression of TRPC3 are associated with a plethora of pathophysiological conditions responsible for disorders of the cardiovascular, immune, and central nervous systems. The recently solved cryo-EM structure of TRPC3 provides detailed inputs about the underlying mechanistic aspects of the channel, which in turn enables more efficient ways of designing small-molecule modulators. Pharmacologically targeting TRPC3 in animal models has demonstrated great efficacy in treating diseases including cancers, neurological disorders, and cardiovascular diseases. Despite extensive scientific evidence supporting some strong correlations between the expression and activity of TRPC3 and various pathophysiological conditions, therapeutic strategies based on its pharmacological modulations have not led to clinical trials. The development of small-molecule TRPC3 modulators with high safety, sufficient brain penetration, and acceptable drug-like profiles remains in progress. Determining the pathological mechanisms for TRPC3 involvement in human diseases and understanding the requirements for a drug-like TRPC3 modulator will be valuable in advancing small-molecule therapeutics to future clinical trials. In this review, we provide an overview of the origin and activation mechanism of TRPC3 channels, diseases associated with irregularities in their expression, and new development in small-molecule modulators as potential therapeutic interventions for treating TRPC3 channelopathies.
Collapse
Affiliation(s)
- Vijay K. Boda
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
2
|
Munir M, Subechi M, Nurmanjaya A, Prasetya KE, Rindiyantono F, Chairuman, Pratama C, Yanto, Pujiyanto A, Setiawan H, Sarwono DA, Sarmini E, Fara ME, Suseno H. Development of a polystyrene-based microplastic model for bioaccumulation and biodistribution study using radiotracing and nuclear analysis method. MARINE POLLUTION BULLETIN 2024; 201:116283. [PMID: 38522338 DOI: 10.1016/j.marpolbul.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The investigation of micro or nano plastics behavior in the environment is essential to minimize the hazards of such pollutants on humans. While the conventional method requires sophisticated procedures and a lot of animal subjects, the nuclear technique confers a sensitive, accurate, and real-time method using radiolabeled micro or nano plastics as a tracer. In this study, polystyrene sulfonate-based microplastic (PSM) was developed with a size of around 3.6 μm, followed by radiolabeling with iodine-131 (131I) or zinc-65 (65Zn) for microplastic radiotracer model. After a stability study in seawater, phosphate buffer saline (PBS), and human serum albumin (HSA) for fifteen days, PSM-131I remained stable (>90 %), except in HSA (50-60 % after day-9), while PSM-65Zn was unstable (<50 %).
Collapse
Affiliation(s)
- Miftakul Munir
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia.
| | - Moch Subechi
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Ahid Nurmanjaya
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Kukuh Eka Prasetya
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Fernanto Rindiyantono
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Chairuman
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Chaidir Pratama
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia; Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia
| | - Yanto
- Directorate of Laboratory Management, Research Facilities, and Science and Technology Park, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Anung Pujiyanto
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Herlan Setiawan
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Daya Agung Sarwono
- Directorate of Nuclear Facility Management, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Endang Sarmini
- Directorate of Nuclear Facility Management, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Meita Eka Fara
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia; Aquatic Resources Management Master Program, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang, Jawa Tengah 50275, Indonesia
| | - Heny Suseno
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| |
Collapse
|
3
|
Nagib MM, Zhang S, Yasmen N, Li L, Hou R, Yu Y, Boda VK, Wu Z, Li W, Jiang J. Inhibition of TRPC3 channels by a novel pyrazole compound confers antiseizure effects. Epilepsia 2022; 63:1003-1015. [PMID: 35179226 PMCID: PMC9007831 DOI: 10.1111/epi.17190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/02/2023]
Abstract
OBJECTIVE As a key member of the transient receptor potential (TRP) superfamily, TRP canonical 3 (TRPC3) regulates calcium homeostasis and contributes to neuronal excitability. Ablation of TRPC3 lessens pilocarpine-induced seizures in mice, suggesting that TRPC3 inhibition might represent a novel antiseizure strategy. Among current TRPC3 inhibitors, pyrazole 3 (Pyr3) is most selective and potent. However, Pyr3 only provides limited benefits in pilocarpine-treated mice, likely due to its low metabolic stability and potential toxicity. We recently reported a modified pyrazole compound 20 (or JW-65) that has improved stability and safety. The objective of this study was to explore the effects of TRPC3 inhibition by our current lead compound JW-65 on seizure susceptibility. METHODS We first examined the pharmacokinetic properties including plasma half-life and brain to plasma ratio of JW-65 after systemic administration in mice. We then investigated the effects of TRPC3 inhibition by JW-65 on behavioral and electrographic seizures in mice treated with pilocarpine. To ensure our findings are not model specific, we assessed the susceptibility of JW-65-treated mice to pentylenetetrazole (PTZ)-induced seizures with phenytoin as a comparator. RESULTS JW-65 showed adequate half-life and brain penetration in mice, justifying its use for central nervous system conditions. Systemic treatment with JW-65 before pilocarpine injection in mice markedly impaired the initiation of behavioral seizures. This antiseizure action was recapitulated when JW-65 was administered after pilocarpine-induced behavioral seizures were well established and was confirmed by time-locked electroencephalographic monitoring and synchronized video. Moreover, JW-65-treated mice showed substantially decreased susceptibility to PTZ-induced seizures in a dose-dependent manner. SIGNIFICANCE These results suggest that pharmacological inhibition of the TRPC3 channels by our novel compound JW-65 might represent a new antiseizure strategy engaging a previously undrugged mechanism of action. Hence, this proof-of-concept study establishes TRPC3 as a novel feasible therapeutic target for the treatment of some forms of epilepsy.
Collapse
Affiliation(s)
- Marwa M Nagib
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lexiao Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ruida Hou
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vijay K Boda
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wei Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Zhang S, Romero LO, Deng S, Wang J, Li Y, Yang L, Hamilton DJ, Miller DD, Liao FF, Cordero-Morales JF, Wu Z, Li W. Discovery of a Highly Selective and Potent TRPC3 Inhibitor with High Metabolic Stability and Low Toxicity. ACS Med Chem Lett 2021; 12:572-578. [PMID: 33859797 PMCID: PMC8040052 DOI: 10.1021/acsmedchemlett.0c00571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
The overactivation of transient receptor potential canonical 3 (TRPC3) is associated with neurodegenerative diseases and hypertension. Pyrazole 3 (Pyr3) is reported as the most selective TRPC3 inhibitor, but it has two inherent structural limitations: (1) the labile ester moiety leads to its rapid hydrolysis to the inactive Pyr8 in vivo, and (2) the alkylating trichloroacrylic amide moiety is known to be toxic. To circumvent these limitations, we designed a series of conformationally restricted Pyr3 analogues and reported that compound 20 maintains high potency and selectivity for human TRPC3 over its closely related TRP channels. It has significantly improved metabolic stability compared with Pyr3 and has a good safety profile. Preliminary evaluation of 20 demonstrated its ability to rescue Aβ-induced neuron damage with similar potency to that of Pyr3 in vitro. Collectively, these results suggest that 20 represents a promising scaffold to potentially ameliorate the symptoms associated with TRPC3-mediated neurological and cardiovascular disorders.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Luis O. Romero
- Department
of Physiology, the University of Tennessee
Health Science Center, Memphis, Tennessee 38163, United States
- Integrated
Biomedical Sciences Graduate Program, College
of Graduate Health Sciences, Memphis, Tennessee 38163, United States
| | - Shanshan Deng
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiaxing Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yong Li
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - David J. Hamilton
- Department
of Comparative Medicine, College of Graduate Health Sciences, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D. Miller
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Francesca-Fang Liao
- Department
of Pharmacology, Addiction Science, and Toxicology, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Julio F. Cordero-Morales
- Department
of Physiology, the University of Tennessee
Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhongzhi Wu
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department
of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
5
|
Affiliation(s)
- Pavel K. Mykhailiuk
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine
| |
Collapse
|
6
|
Lo WL, Liang CH, Chen LC, Lee SY, Lo SN, Chen MW, Lu RM, Liu IJ, Wu HC, Chang CH. Imaging and biodistribution of radiolabeled SP90 peptide in BT-483 tumor bearing mice. Appl Radiat Isot 2020; 161:109162. [PMID: 32561130 DOI: 10.1016/j.apradiso.2020.109162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023]
Abstract
The objective of this study was to evaluate radiolabeled DOTA-SP90 as a radiotracer for breast cancer. The in vitro competition assay showed that radiolabeled DOTA-SP90 had significant binding affinity to BT-483 cancer cells. Biodistribution, nanoSPECT/CT and nanoPET/CT imaging results indicated that radiolabeled DOTA-SP90 can accumulate in tumors. In addition, radiolabeled DOTA-SP90 peptides can also detect metastatic tumors. Therefore, radiolabeled SP90 peptide may provide the potential capability as diagnostic agent for breast cancer patients.
Collapse
Affiliation(s)
- Wei-Lin Lo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Chen-Hsien Liang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Liang-Cheng Chen
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Shih-Ying Lee
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Sheng-Nan Lo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ming-Wei Chen
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsien Chang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Mushtaq S, Nam YR, Kang JA, Choi DS, Park SH. Efficient and Site-Specific 125I-Radioiodination of Bioactive Molecules Using Oxidative Condensation Reaction. ACS OMEGA 2018; 3:6903-6911. [PMID: 30023965 PMCID: PMC6044831 DOI: 10.1021/acsomega.8b00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
In this report, the novel and site-specific radioiodination of biomolecules by using aryl diamine and alkyl aldehyde condensation reaction in the presence of a Cu2+ catalyst under ambient conditions was reported. 125I-labeled alkyl aldehyde was synthesized using a tin precursor with a high radiochemical yield (72 ± 6%, n = 5) and radiochemical purity (>99%). The utility of the radioiodinated precursor was demonstrated through aryl diamine-installed c[RGDfK(C)] peptide and human serum albumin (HSA). Radioiodinated c[RGDfK(C)] peptide and HSA protein were synthesized with high radiochemical yields and purity. 125I-HSA protein showed excellent in vivo stability and negligible thyroid uptake as compared with directly radioiodinated HSA by using the tyrosine group. Excellent reaction kinetics and the in vitro and in vivo stabilities of 125I-labeled alkyl aldehyde have suggested the usefulness of the strategy for the radioiodination of bioactive molecules.
Collapse
Affiliation(s)
- Sajid Mushtaq
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea
- Department
of Radiation Biotechnology and Applied Radioisotope Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - You Ree Nam
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Jung Ae Kang
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Dae Seong Choi
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Sang Hyun Park
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea
- Department
of Radiation Biotechnology and Applied Radioisotope Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Saloutin VI, Kudyakova YS, Goryaeva MV, Burgart YV, Chupakhin ON. Polyfluoroalkylated 2-ethoxymethylene- 3-oxo esters: synthesis and chemical properties overview. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractThe review focuses on the synthesis and chemical properties of polyfluoroalkylated 2-ethoxymethylene-3-oxo esters. The scope and peculiarities of their use as organic reagents in reactions with various N-, C-, O-, mono- and dinucleophiles are discussed in detail. The high reactivity of such derivatives is employed in the construction of enaminoketone, arene and heterocycle frameworks. Particular attention is paid to applications of these building blocks as chemicals for fine organic synthesis, bioactive compounds and metal complexes synthesis.
Collapse
Affiliation(s)
- Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Yulia S. Kudyakova
- Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Marina V. Goryaeva
- Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Oleg N. Chupakhin
- Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russian Federation
- Ural Federal University named after the first President of Russia B.N.Yeltsin, Ekaterinburg, Russian Federation
| |
Collapse
|
9
|
Cavina L, van der Born D, Klaren PHM, Feiters MC, Boerman OC, Rutjes FPJT. Design of Radioiodinated Pharmaceuticals: Structural Features Affecting Metabolic Stability towards in Vivo Deiodination. European J Org Chem 2017; 2017:3387-3414. [PMID: 28736501 PMCID: PMC5499721 DOI: 10.1002/ejoc.201601638] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 11/09/2022]
Abstract
Radioiodinated pharmaceuticals are convenient tracers for clinical and research investigations because of the relatively long half-lives of radioactive iodine isotopes (i.e., 123I, 124I, and 131I) and the ease of their chemical insertion. Their application in radionuclide imaging and therapy may, however, be hampered by poor in vivo stability of the C-I bond. After an overview of the use of iodine in biology and nuclear medicine, we present here a survey of the catabolic pathways for iodinated xenobiotics, including their biodistribution, accumulation, and biostability. We summarize successful rational improvements in the biostability and conclude with general guidelines for the design of stable radioiodinated pharmaceuticals. It appears to be necessary to consider the whole molecule, rather than the radioiodinated fragment alone. Iodine radionuclides are generally retained in vivo on sp2 carbon atoms in iodoarenes and iodovinyl moieties, but not in iodinated heterocycles or on sp3 carbon atoms. Iodoarene substituents also have an influence, with increased in vivo deiodination in the cases of iodophenols and iodoanilines, whereas methoxylation and difluorination improve biostability.
Collapse
Affiliation(s)
- Lorenzo Cavina
- Institute of Molecules and MaterialsFaculty of ScienceRadboud UniversityHeyendaalseweg 1356525 AJ NijmegenNetherlands
- FutureChemistry Holding BV6525 ECNijmegenNetherlands
- Department of Animal Ecology & PhysiologyInstitute of Water & Wetland ResearchFaculty of ScienceRadboud UniversityPOB 90106500 GLNijmegenNetherlands
| | | | - Peter H. M. Klaren
- Department of Animal Ecology & PhysiologyInstitute of Water & Wetland ResearchFaculty of ScienceRadboud UniversityPOB 90106500 GLNijmegenNetherlands
| | - Martin C. Feiters
- Institute of Molecules and MaterialsFaculty of ScienceRadboud UniversityHeyendaalseweg 1356525 AJ NijmegenNetherlands
| | - Otto C. Boerman
- Department of Radiology & Nuclear MedicineRadboud University Medical Center6500 HBNijmegenthe Netherlands
| | - Floris P. J. T. Rutjes
- Institute of Molecules and MaterialsFaculty of ScienceRadboud UniversityHeyendaalseweg 1356525 AJ NijmegenNetherlands
| |
Collapse
|