1
|
Hu J, Jiang Y. Evolution, classification, and mechanisms of transport, activity regulation, and substrate specificity of ZIP metal transporters. Crit Rev Biochem Mol Biol 2024; 59:245-266. [PMID: 39431645 DOI: 10.1080/10409238.2024.2405476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
The Zrt/Irt-like protein (ZIP) family consists of ubiquitously expressed divalent d-block metal transporters that play central roles in the uptake, secretion, excretion, and distribution of several essential and toxic metals in living organisms. The past few years has witnessed rapid progress in the molecular basis of these membrane transport proteins. In this critical review, we summarize the research progress at the molecular level of the ZIP family and discuss the future prospects. Furthermore, an evolutionary path for the unique ZIP fold and a new classification of the ZIP family are proposed based on the presented structural and sequence analyses.
Collapse
Affiliation(s)
- Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Yuhan Jiang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Jin X, Wu P, Li P, Xiong C, Gui M, Huang W. Transcriptome analysis reveals insight into the protective effect of N-acetylcysteine against cadmium toxicity in Ganoderma lucidum (Polyporales: Polyporaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58436-58449. [PMID: 36991205 DOI: 10.1007/s11356-023-26635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Ganoderma lucidum is widely cultivated and used as traditional medicine in China and other Asian countries. As a member of macrofungi, Ganoderma lucidum is also prone to bioaccumulation of cadmium and other heavy metals in a polluted environment, which affects the growth and production of Ganoderma lucidum, as well as human health. N-Acetyl-L-cysteine (NAC) is considered a general antioxidant and free radical scavenger that is involved in the regulation of various stress responses in plants and animals. However, whether NAC could regulate cadmium stress responses in macrofungi, particularly edible fungi, is still unknown. In this work, we found that the exogenous NAC could alleviate Cd-induced growth inhibition and reduce the cadmium accumulation in Ganoderma lucidum. The application of the NAC cloud also inhibit cadmium-induced H2O2 production in the mycelia. By using transcriptome analysis, 2920 and 1046 differentially expressed unigenes were identified in "Cd100 vs CK" and "NAC_Cd100 vs Cd100," respectively. These differential unigenes were classified into a set of functional categories and pathways, which indicated that various biological pathways may play critical roles in the protective effect of NAC against Cd‑induced toxicity in Ganoderma lucidum. Furthermore, it suggested that the ATP-binding cassette transporter, ZIP transporter, heat shock protein, glutathione transferases, and Cytochrome P450 genes contributed to the increased tolerance to cadmium stress after NAC application in Ganoderma lucidum. These results provide new insight into the physiological and molecular response of Ganoderma lucidum to cadmium stress and the protective role of NAC against cadmium toxicity.
Collapse
Affiliation(s)
- Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China.
| |
Collapse
|
3
|
Yao R, Li R, Huang Y. Zinc homeostasis in Schizosaccharomyces pombe. Arch Microbiol 2023; 205:126. [PMID: 36943461 DOI: 10.1007/s00203-023-03473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Most metal ions such as iron, calcium, zinc, or copper are essential for all eukaryotes. Organisms must maintain homeostasis of these metal ions because excess or deficiency of metal ions could cause damage to organisms. The steady state of many metal ions such as iron and copper has been well studied in detail. However, how to regulate zinc homeostasis in Schizosaccharomyces pombe is still confusing. In this review, we provide an overview of the molecular mechanisms that how S. pombe is able to maintain the balance of zinc levels in the changes of environment. In response to high levels of zinc, the transcription factor Loz1 represses the expression of several genes involved in the acquisition of zinc. Meanwhile, the CDF family proteins transport excess zinc to the secretory pathway. When zinc levels are limited, Loz1 was inactivated and could not inhibit the expression of zinc acquisition genes, and zinc stored in the secretory pathway is released for use by the cells. Besides, other factors that regulate zinc homeostasis are also discussed.
Collapse
Affiliation(s)
- Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China
| | - Rongrong Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China.
| |
Collapse
|
4
|
Cross-Kingdom Comparative Transcriptomics Reveals Conserved Genetic Modules in Response to Cadmium Stress. mSystems 2021; 6:e0118921. [PMID: 34874779 PMCID: PMC8651089 DOI: 10.1128/msystems.01189-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
It is known that organisms have developed various mechanisms to cope with cadmium (Cd) stress, while we still lack a system-level understanding of the functional isomorphy among them. In the present study, a cross-kingdom comparison was conducted among Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii, through toxicological tests, comparative transcriptomics, as well as conventional functional genomics. An equivalent level of Cd stress was determined via inhibition tests. Through transcriptome comparison, the three organisms exhibited differential gene expression under the same Cd stress relative to the corresponding no-treatment control. Results from functional enrichment analysis of differentially expressed genes (DEGs) showed that four metabolic pathways responsible for combating Cd stress were commonly regulated in the three organisms, including antioxidant reactions, sulfur metabolism, cell wall remodeling, and metal transport. In vivo expression patterns of 43 DEGs from the four pathways were further examined using quantitative PCR and resulted in a relatively comparable dynamic of gene expression patterns with transcriptome sequencing (RNA-seq). Cross-kingdom comparison of typical Cd stress-responding proteins resulted in the detection of 12 groups of homologous proteins in the three species. A class of potential metal transporters were subjected to cross-transformation to test their functional complementation. An ABC transporter gene in E. coli, possibly homologous to the yeast ycf1, was heterologously expressed in S. cerevisiae, resulting in enhanced Cd tolerance. Overall, our findings indicated that conserved genetic modules against Cd toxicity were commonly regulated among distantly related microbial species, which will be helpful for utilizing them in modifying microbial traits for bioremediation. IMPORTANCE Research is establishing a systems biology view of biological response to Cd stress. It is meaningful to explore whether there is regulatory isomorphy among distantly related organisms. A transcriptomic comparison was done among model microbes, leading to the identification of a conserved cellular model pinpointing the generic strategies utilized by microbes for combating Cd stress. A novel E. coli transporter gene substantially increased yeast’s Cd tolerance. Knowledge on systems understanding of the cellular response to metals provides the basis for developing bioengineering remediation technology.
Collapse
|
5
|
Ozturk M, Metin M, Altay V, De Filippis L, Ünal BT, Khursheed A, Gul A, Hasanuzzaman M, Nahar K, Kawano T, Caparrós PG. Molecular Biology of Cadmium Toxicity in Saccharomyces cerevisiae. Biol Trace Elem Res 2021; 199:4832-4846. [PMID: 33462792 DOI: 10.1007/s12011-021-02584-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal mainly originating from industrial activities and causes environmental pollution. To better understand its toxicity and pollution remediation, we must understand the effects of Cd on living beings. Saccharomyces cerevisiae (budding yeast) is an eukaryotic unicellular model organism. It has provided much scientific knowledge about cellular and molecular biology in addition to its economic benefits. Effects associated with copper and zinc, sulfur and selenium metabolism, calcium (Ca2+) balance/signaling, and structure of phospholipids as a result of exposure to cadmium have been evaluated. In yeast as a result of cadmium stress, "mitogen-activated protein kinase," "high osmolarity glycerol," and "cell wall integrity" pathways have been reported to activate different signaling pathways. In addition, abnormalities and changes in protein structure, ribosomes, cell cycle disruption, and reactive oxygen species (ROS) following cadmium cytotoxicity have also been detailed. Moreover, the key OLE1 gene that encodes for delta-9 FA desaturase in relation to cadmium toxicity has been discussed in more detail. Keeping all these studies in mind, an attempt has been made to evaluate published cellular and molecular toxicity data related to Cd stress, and specifically published on S. cerevisiae.
Collapse
Affiliation(s)
- Munir Ozturk
- Department of Botany and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| | - Mert Metin
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Hatay Mustafa Kemal University, Antakya, Hatay, Turkey
| | - Luigi De Filippis
- School of Life Sciences, University of Technology Sydney, Sydney, 123, Australia
| | - Bengu Turkyilmaz Ünal
- Faculty of Science and Arts, Department of Biotechnology, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Anum Khursheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Kamuran Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Pedro García Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Ctra. Sacramento s/n, La Cañadade San Urbano, 04120, Almería, Spain
| |
Collapse
|
6
|
Toh-E A, Ohkusu M, Ishiwada N, Watanabe A, Kamei K. Genetic system underlying responses of Cryptococcus neoformans to cadmium. Curr Genet 2021; 68:125-141. [PMID: 34761291 DOI: 10.1007/s00294-021-01222-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
Abstract
Cryptococcus neoformans, basidiomycetous pathogenic yeast, is basically an environmental fungus and, therefore, challenged by ever changing environments. In this study, we focused on how C. neoformans responds to stress caused by cadmium that is one of high-risk pollutants. By tracking phenotypes of the resistance or sensitivity to cadmium, we undertook forward and reverse genetic studies to identify genes involved in cadmium metabolism in C. neoformans. We found that the main route of Cd2+ influx is through Mn2+ ion transporter, Smf1, which is an ortholog of Nramp (natural resistance-associated macrophage protein 1) of mouse. We found that serotype A strains are generally more resistant to cadmium than serotype D strains and that cadmium resistance of H99, a representative of serotype A strains, was found to be due to a partial defect in SMF1. We found that calcium channel has a subsidiary role for cadmium uptake. We also showed that Pca1 (P-type-ATPase) functions as an extrusion pump for cadmium. We examined the effects of some metals on cadmium toxicity and suggested (i) that Ca2+ and Zn2+ could exert their protective function against Cd2+ via restoring cadmium-inhibited cellular processes and (ii) that Mg2+ and Mn2+ could have antagonistic roles in an unknown Smf1-independent Cd2+ uptake system. We proposed a model for Cd2+-response of C. neoformans, which will serve as a platform for understanding how this organism copes with the toxic metal.
Collapse
Affiliation(s)
- Akio Toh-E
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan.
| | - Misako Ohkusu
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Naruhiko Ishiwada
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| |
Collapse
|
7
|
Raj A, Nachiappan V. Hydroquinone exposure accumulates neutral lipid by the activation of CDP-DAG pathway in Saccharomyces cerevisiae. Toxicol Res (Camb) 2021; 10:354-367. [PMID: 33884185 DOI: 10.1093/toxres/tfab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 11/13/2022] Open
Abstract
Benzene metabolites (HQ and BQ) are toxic compounds and their presence in human cause alteration in cellular respiration and kidney damage. In the current study, Saccharomyces cerevisiae has been used as a model organism and acute exposure of hydroquinone (HQ) decreased cell growth and increased reactive oxygen species (ROS). The expression of apoptosis regulatory genes (YCA1, NUC1, YSP1 and AIF1) were increased with HQ exposure in the wild-type cells. HQ exposure in the wild-type cells altered both the phospholipid and neutral lipid levels. Phosphatidylcholine is a vital membrane lipid that has a vital role in membrane biogenesis and was increased significantly with HQ. The neutral lipid results were supported with lipid droplets data and mRNA expression study. The phospholipid knockouts (Kennedy pathway) accumulated neutral lipids via the CDP-DAG (cytidine-diphosphate-diacylglycerol) pathway genes both in the presence and absence of HQ.
Collapse
Affiliation(s)
- Abhishek Raj
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
8
|
Vanithamani S, Akino Mercy CS, Kanagavel M, Sumaiya K, Bothammal P, Saranya P, Prasad M, Ponmurugan K, Muralitharan G, Al-Dhabi NA, Verma A, Vijayachari P, Natarajaseenivasan K. Biochemical analysis of leptospiral LPS explained the difference between pathogenic and non-pathogenic serogroups. Microb Pathog 2021; 152:104738. [PMID: 33529737 DOI: 10.1016/j.micpath.2021.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Lipopolysaccharide (LPS) is the major surface antigen of Leptospira. In this study, the genes involved in the LPS biosynthesis were analyzed and compared by bioinformatics tools. Also, the chemical composition analysis of leptospiral lipopolysaccharides (LPS) extracted from 5 pathogenic serovars like Autumnalis, Australis, Ballum, Grippotyphosa, Pomona, and the nonpathogenic serovar Andamana was performed. Methods used were Limulus amebocyte lysate assay (LAL), gas chromatography-mass spectrometry (GC-MS), fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR). LAL assay showed a significantly higher level of endotoxicity among pathogenic serovars (~0.490 EU/mL) than that of nonpathogenic Andamana (~0.102 EU/mL). FAMES analysis showed the presence of palmitic acid (C16:0), hydroxy lauric acid (3-OH-C12:0), and oleic acid (C18:0). Palmitoleic acid (C16: 1), and 3- hydroxy palmitate (3-OH-C16:0) was detected only in pathogenic serovars. In contrast myristoleic acid (C14:1) and stearic acid (C18:0) were present in Andamana. FTIR analysis revealed C-O-C stretch of esters, 3°ROH functional groups and carbohydrate vibration range were similar among pathogenic serovars. The NMR analysis reveals similarity for 6 deoxy sugars and methyl groups of Autumnalis, Australis, and Ballum. Further, the presence of palmitoleic acid and 3-hydroxy palmitate may be the significant pathogen-associated predisposing factor. This mediates high osmolarity glycerol (HOG) mediated stress response in leptospiral LPS mediated pathogenesis.
Collapse
Affiliation(s)
- Shanmugam Vanithamani
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Charles Solomon Akino Mercy
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Murugesan Kanagavel
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Palanisamy Bothammal
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Perumal Saranya
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Muthu Prasad
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Karuppiah Ponmurugan
- Department of Botany & Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Gangatharan Muralitharan
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Naif Abdullah Al-Dhabi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashutosh Verma
- Lincoln Memorial University, College of Veterinary Medicine, Harrogate, TN, 37752, USA
| | - Paluru Vijayachari
- WHO Collaborating Centre for Diagnosis, Reference, Research and Training in Leptospirosis, Regional Medical Research Centre (ICMR), Port Blair, 744103, India
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India; Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
9
|
Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance. PLoS One 2020; 15:e0239617. [PMID: 32991614 PMCID: PMC7523953 DOI: 10.1371/journal.pone.0239617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance.
Collapse
|
10
|
Rajakumar S, Abhishek A, Selvam GS, Nachiappan V. Effect of cadmium on essential metals and their impact on lipid metabolism in Saccharomyces cerevisiae. Cell Stress Chaperones 2020; 25:19-33. [PMID: 31823289 PMCID: PMC6985397 DOI: 10.1007/s12192-019-01058-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that induces irregularity in numerous lipid metabolic pathways. Saccharomyces cerevisiae, a model to study lipid metabolism, has been used to establish the molecular basis of cellular responses to Cd toxicity in relation to essential minerals and lipid homeostasis. Multiple pathways sense these environmental stresses and trigger the mineral imbalances specifically calcium (Ca) and zinc (Zn). This review is aimed to elucidate the role of Cd toxicity in yeast, in three different perspectives: (1) elucidate stress response and its adaptation to Cd, (2) understand the physiological role of a macromolecule such as lipids, and (3) study the stress rescue mechanism. Here, we explored the impact of Cd interference on the essential minerals such as Zn and Ca and their influence on endoplasmic reticulum stress and lipid metabolism. Cd toxicity contributes to lipid droplet synthesis by activating OLE1 that is essential to alleviate lipotoxicity. In this review, we expanded our current findings about the effect of Cd on lipid metabolism of budding yeast.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Eukaryotic Biology Lab, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Department of Pediatrics, Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| | - Albert Abhishek
- Eukaryotic Biology Lab, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Govindan Sadasivam Selvam
- Eukaryotic Biology Lab, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| |
Collapse
|
11
|
Li C, Yang X, Xu Y, Li L, Wang Y. Cadmium detoxification induced by salt stress improves cadmium tolerance of multi-stress-tolerant Pichia kudriavzevii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:845-854. [PMID: 30036838 DOI: 10.1016/j.envpol.2018.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 05/28/2023]
Abstract
Heavy metal tolerance of microorganisms is the basis of heavy metal removal by growing cells. In this study, a cross-protection effect generated by salt stress significantly enhanced the cadmium tolerance of multi-stress-tolerant Pichia kudriavzevii. Comparative transcriptome analysis using RNA-Seq linked with physiological and biochemical observation was used to elucidate the underlying mechanisms of the improved cadmium tolerance. The expression of cadmium transport related genes (GSTY2, GLR1, GLO2, YCF1 and YOR1), GSH content and GST activity were elevated by salt stress, suggesting enhanced cadmium conjugation and detoxification in yeast cells. The inhibited cadmium uptake by ZRT1 and enhanced cadmium efflux by YOR1 contributed to the decrease in the intracellular cadmium concentration. The improved expression of antioxidant enzyme genes (SOD1, SOD2, SOD6, CAT1 and PRXIID), along with the enhanced activities of antioxidant enzymes (SOD, CAT and POD) resulted in a decrease in cadmium-induced ROS production, protein carbonylation, lipid peroxidation and cell death. The abundant expression of heat shock protein genes (HSP12, HSP10 and SSC1) and genes related to trehalose synthesis (TPS1 and TSL1) induced by salt stress protected yeast cells against complex stress conditions, contributing to the improved cadmium tolerance. These findings will be useful to develop cadmium-tolerant yeasts for cadmium removal by growing cells.
Collapse
Affiliation(s)
- Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Ying Xu
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
12
|
Andreeva N, Kulakovskaya E, Zvonarev A, Penin A, Eliseeva I, Teterina A, Lando A, Kulakovskiy IV, Kulakovskaya T. Transcriptome profile of yeast reveals the essential role of PMA2 and uncharacterized gene YBR056W-A (MNC1) in adaptation to toxic manganese concentration. Metallomics 2017; 9:175-182. [PMID: 28128390 DOI: 10.1039/c6mt00210b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adaptation of S. cerevisiae to toxic concentrations of manganese provides a physiological model of heavy metal homeostasis. Transcriptome analysis of adapted yeast cells reveals upregulation of cell wall and plasma membrane proteins including membrane transporters. The gene expression in adapted cells differs from that of cells under short-term toxic metal stress. Among the most significantly upregulated genes are PMA2, encoding an ortholog of Pma1 H+-ATPase of the plasma membrane, and YBR056W-A, encoding a putative membrane protein Mnc1 that belongs to the CYSTM family and presumably chelates manganese at the cell surface. We demonstrate that these genes are essential for the adaptation to toxic manganese concentration and propose an extended scheme of manganese detoxification in yeast.
Collapse
Affiliation(s)
- N Andreeva
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, 142290, Russia.
| | - E Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, 142290, Russia.
| | - A Zvonarev
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, 142290, Russia.
| | - A Penin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia and Laboratory of Extreme Biology, Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, 420012, Russia and Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - I Eliseeva
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Institutskaya 4, Pushchino, 142290, Russia
| | - A Teterina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow, GSP-1, 119991, Russia
| | - A Lando
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow, GSP-1, 119991, Russia and Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141700, Russia
| | - I V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow, GSP-1, 119991, Russia and Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, GSP-1, 119991, Russia.
| | - T Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, 142290, Russia.
| |
Collapse
|
13
|
Rajakumar S, Bhanupriya N, Ravi C, Nachiappan V. Endoplasmic reticulum stress and calcium imbalance are involved in cadmium-induced lipid aberrancy in Saccharomyces cerevisiae. Cell Stress Chaperones 2016; 21:895-906. [PMID: 27344570 PMCID: PMC5003806 DOI: 10.1007/s12192-016-0714-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022] Open
Abstract
The endoplasmic reticulum is the key organelle which controls protein folding, lipid biogenesis, and calcium (Ca(2+)) homeostasis. Cd exposure in Saccharomyces cerevisiae activated the unfolded protein response and was confirmed by the increased Kar2p expression. Cd exposure in wild-type (WT) cells increased PC levels and the PC biosynthetic genes. Deletion of the two phospholipid methyltransferases CHO2 and OPI3 modulated PC, TAG levels and the lipid droplets with cadmium exposure. Interestingly, we noticed an increase in the calcium levels upon Cd exposure in the mutant cells. This study concluded that Cd interrupted calcium homeostasis-induced lipid dysregulation leading to ER stress.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Nagaraj Bhanupriya
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Chidambaram Ravi
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|