1
|
Macheda T, Andres MR, Sanders L, Roberts KN, Shahidehpour RK, Morganti JM, Bachstetter AD. Old Age Exacerbates White Matter Neuroinflammation and Cognitive Deficits Following Closed-Head Injury, Particularly in Female Mice. Neurotrauma Rep 2024; 5:770-786. [PMID: 39184175 PMCID: PMC11342053 DOI: 10.1089/neur.2024.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
The increasing incidence of traumatic brain injury (TBI) among older adults, particularly mild injuries from falls, underscores the need to investigate age-related outcomes and potential sex differences in response to TBI. Although previous research has defined an aging-TBI signature (heightened glial responses and cognitive impairment) in open-skull moderate-to-severe TBI models, it is unknown whether this signature is also present in mild closed-head injuries (CHIs). This study explores the influences of age and sex on recovery in a mouse CHI model induced by an electromagnetic impactor device in 4-month-old and 18-month-old C57BL/6 mice. We assessed the righting reflex, body weight, behavior (radial arm water maze and active avoidance), and inflammation (GFAP, IBA1, CD45) in the neocortex, corpus callosum, and hippocampus. We observed that aged female mice exhibited more severe TBI-induced cognitive deficits. In addition, a more pronounced reactive neuroinflammatory response with age was noted within white matter regions. Conversely, gray matter regions in aged animals either showed no enhanced pathological changes in response to injury or the aged mice displayed hyporesponsive glia and signs of dystrophic glial degeneration that were not evident in their younger counterparts following CHI. These findings suggest that aging influences CHI outcomes, partially reflecting the aging-TBI signature seen in more severe injuries in white matter, while a distinct aging and mild-TBI signature was identified in gray matter. The heightened vulnerability of females to the combined effects of age and mild CHI establishes a foundation for further investigation into the mechanisms underlying the sexually dimorphic response in aging females.
Collapse
Affiliation(s)
- Teresa Macheda
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Margaret R. Andres
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Lydia Sanders
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Ryan K. Shahidehpour
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Josh M. Morganti
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Du D, Zheng T, Wang Z, Chen Y, Wu S, Yang L, Lu J, Liu L. Evaluating the therapeutic effect of LIPUS in the early stage of traumatic brain injury using FA and T2 * in rats. Aging (Albany NY) 2024; 16:11744-11754. [PMID: 39137314 PMCID: PMC11346775 DOI: 10.18632/aging.206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
To evaluate the protective effect of LIPUS at the early stage of brain trauma in rats, 45 rats were randomly divided into 3 groups: sham (n = 15), TBI (n = 15) and LIPUS treatment groups (n = 15). Ipsilateral and contralateral cortical and thalamic parameters obtained by diffusion tensor imaging (DTI) and fast low-angle shot magnetic resonance imaging (FLASH-MRI) were measured at different times after trauma. For fractional anisotropy (FA) and T2* values, two-way repeated measures ANOVA with Tukey's post hoc was used for intergroup comparisons. With observation time prolonged, the FA values of the ipsilateral cortex in the TBI group gradually increased and were significantly higher than those in the LIPUS treatment group on Day 7 (adjusted P = 0.0067). FA values in the contralateral cortex decreased at this time and were significantly lower than those in the LIPUS treatment group (adjusted P = 0.0192). Meanwhile, compared with LIPUS group, FA values were significantly higher in the injured thalamus (adjusted P = 0.0025). Combined with correlation analysis, FA values were positively correlated with neuronal damage (P = 0.0148, r2 = 0.895). At 7 days after trauma, T2* values in the ipsilateral cortex of the TBI group were significantly lower. After analysis of ferritin content and correlation, we found that T2* values were negatively correlated with ferritin (P = 0.0259, r2 = -0.849). By measuring post-traumatic changes in FA and T2* values, it is possible to demonstrate a neuronal protective effect of LIPUS in the early phase of TBI rats and promote brain rehabilitation.
Collapse
Affiliation(s)
- Dan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Zhanqiu Wang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yansheng Chen
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Shuo Wu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Linsha Yang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Jiabin Lu
- Department of Radiology, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| |
Collapse
|
3
|
Ghorbani M, Abouei Mehrizi M, Tajvidi M, Amin Habibi M, Mohammadi M, Esmaeilian S, Torabi P, Rahmanipour E, Daskareh M, Mohammadi A. Trehalose: A promising new treatment for traumatic brain injury? A systematic review of animal evidence. INTERDISCIPLINARY NEUROSURGERY 2024; 36:101947. [DOI: 10.1016/j.inat.2023.101947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024] Open
|
4
|
Suryana E, Rowlands BD, Bishop DP, Finkelstein DI, Double KL. Empirically derived formulae for calculation of age- and region-related levels of iron, copper and zinc in the adult C57BL/6 mouse brain. Neurobiol Aging 2024; 136:34-43. [PMID: 38301453 DOI: 10.1016/j.neurobiolaging.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/05/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Metal dyshomeostasis is associated with neurodegenerative disorders, cancers and vascular disease. We report the effects of age (range: 3 to 18 months) on regional copper, iron and zinc levels in the brain of the C57BL/6 mouse, a widely used inbred strain with a permissive background allowing maximal expression of mutations in models that recapitulate these disorders. We present formulae that can be used to determine regional brain metal concentrations in the C57BL/6 mouse at any age in the range of three to eighteen months of life. Copper levels in the C57BL/6 mouse adult brain were highest in the striatum and cerebellum and increased with age, excepting the cortex and hippocampus. Regional iron levels increased linearly with age in all brain regions, while regional zinc concentrations became more homogeneous with age. Knockdown of the copper transporter Ctr1 reduced brain copper, but not iron or zinc, concentrations in a regionally-dependent manner. These findings demonstrate biometals in the brain change with age in a regionally-dependent manner. These data and associated formulae have implications for improving design and interpretation of a wide variety of studies in the C57BL/6 mouse.
Collapse
Affiliation(s)
- E Suryana
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - B D Rowlands
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - D P Bishop
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - D I Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - K L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
5
|
Evans CW, Egid A, Mamsa SSA, Paterson DJ, Ho D, Bartlett CA, Fehily B, Lins BR, Fitzgerald M, Hackett MJ, Smith NM. Elemental Mapping in a Preclinical Animal Model Reveals White Matter Copper Elevation in the Acute Phase of Central Nervous System Trauma. ACS Chem Neurosci 2023; 14:3518-3527. [PMID: 37695072 DOI: 10.1021/acschemneuro.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Understanding the chemical events following trauma to the central nervous system could assist in identifying causative mechanisms and potential interventions to protect neural tissue. Here, we apply a partial optic nerve transection model of injury in rats and use synchrotron X-ray fluorescence microscopy (XFM) to perform elemental mapping of metals (K, Ca, Fe, Cu, Zn) and other related elements (P, S, Cl) in white matter tracts. The partial optic nerve injury model and spatial precision of microscopy allow us to obtain previously unattained resolution in mapping elemental changes in response to a primary injury and subsequent secondary effects. We observed significant elevation of Cu levels at multiple time points following the injury, both at the primary injury site and in neural tissue near the injury site vulnerable to secondary damage, as well as significant changes in Cl, K, P, S, and Ca. Our results suggest widespread metal dyshomeostasis in response to central nervous system trauma and that altered Cu homeostasis may be a specific secondary event in response to white matter injury. The findings highlight metal homeostasis as a potential point of intervention in limiting damage following nervous system injury.
Collapse
Affiliation(s)
- Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Abigail Egid
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Somayra S A Mamsa
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | | | - Diwei Ho
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Carole A Bartlett
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Brooke Fehily
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Brittney R Lins
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Melinda Fitzgerald
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Mark J Hackett
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
6
|
Daglas M, Truong PH, Miles LQ, Juan SMA, Rao SS, Adlard PA. Deferiprone attenuates neuropathology and improves outcome following traumatic brain injury. Br J Pharmacol 2023; 180:214-234. [PMID: 36102035 DOI: 10.1111/bph.15950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity in young adults. The role of iron in potentiating neurodegeneration following TBI has gained recent interest as iron deposition has been detected in the injured brain in the weeks to months post-TBI, in both the preclinical and clinical setting. A failure in iron homeostasis can lead to oxidative stress, inflammation and excitotoxicity; and whether this is a cause or consequence of the long-term effects of TBI remains unknown. EXPERIMENTAL APPROACH We investigated the role of iron and the effect of therapeutic intervention using a brain-permeable iron chelator, deferiprone, in a controlled cortical impact mouse model of TBI. An extensive assessment of cognitive, motor and anxiety/depressive outcome measures were examined, and neuropathological and biochemical changes, over a 3-month period post-TBI. KEY RESULTS Lesion volume was significantly reduced at 3 months, which was preceded by a reduction in astrogliosis, microglia/macrophages and preservation of neurons in the injured brain at 2 weeks and/or 1 month post-TBI in mice receiving oral deferiprone. Deferiprone treatment showed significant improvements in neurological severity scores, locomotor/gait performance and cognitive function, and attenuated anxiety-like symptoms post-TBI. Deferiprone reduced iron levels, lipid peroxidation/oxidative stress and altered expression of neurotrophins in the injured brain over this period. CONCLUSION AND IMPLICATIONS Our findings support a detrimental role of iron in the injured brain and suggest that deferiprone (or similar iron chelators) may be promising therapeutic approaches to improve survival, functional outcomes and quality of life following TBI.
Collapse
Affiliation(s)
- Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Phan H Truong
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Linh Q Miles
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Shalini S Rao
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Juan SMA, Daglas M, Gunn AP, Lago L, Adlard PA. Characterization of the spatial distribution of metals and profile of metalloprotein complexes in a mouse model of repetitive mild traumatic brain injury. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865363. [PMID: 36460052 DOI: 10.1093/mtomcs/mfac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Metal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting. Using a mouse model of repetitive mild traumatic brain injury, 3-month-old male and female C57Bl6 mice received one or five impacts (48 h apart). At 1 month following 5× TBI (traumatic brain injury), iron and ferritin levels were significantly elevated in the contralateral cortex. There was a trend toward increased iron levels in the entire contralateral hemisphere and a reduction in contralateral cortical iron-binding proteins following 1× TBI. No major changes in zinc levels were seen in both hemispheres following 5× or 1× TBI, although there was a reduction in ipsilateral zinc-binding proteins following 5× TBI and a contralateral increase in zinc-binding proteins following 1× TBI. Copper levels were significantly increased in both hemispheres following 5× TBI, without changes in copper-binding proteins. This study shows for the first time that repetitive mild TBI (r-mTBI) leads to metal dyshomeostasis, highlighting its potential involvement in promoting neurodegeneration, which provides a rationale for examining the benefit of metal-targeting drugs, which have shown promising results in neurodegenerative conditions and single TBI, but have yet to be tested following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Adam P Gunn
- Neuropathology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Larissa Lago
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Choi YK, Kim YM. Beneficial and Detrimental Roles of Heme Oxygenase-1 in the Neurovascular System. Int J Mol Sci 2022; 23:ijms23137041. [PMID: 35806040 PMCID: PMC9266949 DOI: 10.3390/ijms23137041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Heme oxygenase (HO) has both beneficial and detrimental effects via its metabolites, including carbon monoxide (CO), biliverdin or bilirubin, and ferrous iron. HO-1 is an inducible form of HO that is upregulated by oxidative stress, nitric oxide, CO, and hypoxia, whereas HO-2 is a constitutive form that regulates vascular tone and homeostasis. In brains injured by trauma, ischemia-reperfusion, or Alzheimer’s disease (AD), the long-term expression of HO-1 can be detected, which can lead to cytotoxic ferroptosis via iron accumulation. In contrast, the transient induction of HO-1 in the peri-injured region may have regenerative potential (e.g., angiogenesis, neurogenesis, and mitochondrial biogenesis) and neurovascular protective effects through the CO-mediated signaling pathway, the antioxidant properties of bilirubin, and the iron-mediated ferritin synthesis. In this review, we discuss the dual roles of HO-1 and its metabolites in various neurovascular diseases, including age-related macular degeneration, ischemia-reperfusion injury, traumatic brain injury, Gilbert’s syndrome, and AD.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| |
Collapse
|
9
|
Juan SMA, Daglas M, Adlard P. Tau pathology, metal dyshomeostasis and repetitive mild traumatic brain injury: an unexplored link paving the way for neurodegeneration. J Neurotrauma 2022; 39:902-922. [PMID: 35293225 DOI: 10.1089/neu.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in ageing and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the link between TBI, CTE, ageing and neurodegeneration with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted towards slowing progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, 56369, 30 Royal Parade, Parkville, Melbourne, Victoria, Australia, 3052;
| | - Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| | - Paul Adlard
- Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| |
Collapse
|
10
|
Isaev NK, Stelmashook EV, Genrikhs EE. Role of zinc and copper ions in the pathogenetic mechanisms of traumatic brain injury and Alzheimer's disease. Rev Neurosci 2021; 31:233-243. [PMID: 31747384 DOI: 10.1515/revneuro-2019-0052] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/24/2019] [Indexed: 12/24/2022]
Abstract
The disruption of homeostasis of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of many neurodegenerative diseases, such as amyotrophic lateral sclerosis, Wilson's, Creutzfeldt-Jakob, Parkinson's, and Alzheimer's diseases (AD), and traumatic brain injury (TBI). The last two pathological conditions of the brain are the most common; moreover, it is possible that TBI is a risk factor for the development of AD. Disruptions of Zn2+ and Cu2+ homeostasis play an important role in the mechanisms of pathogenesis of both TBI and AD. This review attempts to summarize and systematize the currently available research data on this issue. The neurocytotoxicity of Cu2+ and Zn2+, the synergism of the toxic effect of calcium and Zn2+ ions on the mitochondria of neurons, and the interaction of Zn2+ and Cu2+ with β-amyloid (Abeta) and tau protein are considered.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, N.A. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow 119991, Russia.,Research Center of Neurology, Moscow 125367, Russia
| | | | | |
Collapse
|
11
|
Bourassa ME, Dumel G, Charlebois-Plante C, Gagnon JF, De Beaumont L. Persistent implicit motor learning alterations following a mild traumatic brain injury sustained during late adulthood. J Clin Exp Neuropsychol 2021; 43:105-115. [PMID: 33563109 DOI: 10.1080/13803395.2021.1879735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: The neurocognitive outcomes of sustaining a mild traumatic brain injury (mTBI) during late adulthood are vastly understudied. In young, asymptomatic adults, mTBI-related synaptic plasticity alterations have been associated with persistent implicit motor sequence learning impairments outlasting the usual cognitive recovery period. The current study examined whether uncomplicated mTBI sustained during late adulthood could exert persistent deleterious consequences on implicit motor sequence learning.Method: Thirty participants (aged 50-70 years) who experienced an uncomplicated mTBI within 3 to 24 months of testing, and 40 age-, sex- and education-equivalent healthy controls performed an implicit serial reaction time task (SRT task). The SRT task consisted of 10 blocks of a repeating sequence embedded among 4 random blocks. Participants also completed a battery of standardized neuropsychological tests of attention, memory and executive functioning.Results: While both mTBI participants and controls showed significant implicit motor sequence learning effects, the mTBI group achieved a lower level of competence at performing the SRT task as evidenced by smaller gains in reaction times across the 10 training blocks of the repeating sequence. The time elapsed since the injury was unrelated to implicit motor learning effects. There was no evidence of a persistent effect of mTBI on any neuropsychological domain compared to controls.Conclusions: Findings from this study suggest that a single mTBI sustained during older age may have persistent repercussions on training-dependent motor sequence learning capacity outlasting the recovery of mTBI symptoms and gold-standard neuropsychological tests performance.
Collapse
Affiliation(s)
- Marie-Eve Bourassa
- Centre de recherche de l'Hôpital du Sacré-Cœur de Montréal, CIUSSS du nord-de-l'Île-de-Montréal, Montréal, QC, Canada.,Département de Psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Gaëlle Dumel
- Centre de recherche de l'Hôpital du Sacré-Cœur de Montréal, CIUSSS du nord-de-l'Île-de-Montréal, Montréal, QC, Canada.,Département de Psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Camille Charlebois-Plante
- Centre de recherche de l'Hôpital du Sacré-Cœur de Montréal, CIUSSS du nord-de-l'Île-de-Montréal, Montréal, QC, Canada.,Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Gagnon
- Centre de recherche de l'Hôpital du Sacré-Cœur de Montréal, CIUSSS du nord-de-l'Île-de-Montréal, Montréal, QC, Canada.,Département de Psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Louis De Beaumont
- Centre de recherche de l'Hôpital du Sacré-Cœur de Montréal, CIUSSS du nord-de-l'Île-de-Montréal, Montréal, QC, Canada.,Département de Chirurgie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Shen L, Lin D, Li X, Wu H, Lenahan C, Pan Y, Xu W, Chen Y, Shao A, Zhang J. Ferroptosis in Acute Central Nervous System Injuries: The Future Direction? Front Cell Dev Biol 2020; 8:594. [PMID: 32760721 PMCID: PMC7373735 DOI: 10.3389/fcell.2020.00594] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Acute central nervous system (CNS) injuries, such as stroke, traumatic brain injury (TBI), and spinal cord injury (SCI) present a grave health care challenge worldwide due to high morbidity and mortality, as well as limited clinical therapeutic strategies. Established literature has shown that oxidative stress (OS), inflammation, excitotoxicity, and apoptosis play important roles in the pathophysiological processes of acute CNS injuries. Recently, there have been many studies on the topic of ferroptosis, a form of regulated cell death characterized by the accumulation of iron-dependent lipid peroxidation. Some studies have revealed an emerging connection between acute CNS injuries and ferroptosis. Ferroptosis, induced by the abnormal metabolism of lipids, glutathione (GSH), and iron, can accelerate acute CNS injuries. However, pharmaceutical agents, such as iron chelators, ferrostatin-1 (Fer-1), and liproxstatin-1 (Lip-1), can inhibit ferroptosis and may have neuroprotective effects after acute CNS injuries. However, the specific mechanisms underlying this connection has not yet been clearly elucidated. In this paper, we discuss the general mechanisms of ferroptosis and its role in stroke, TBI, and SCI. We also summarize ferroptosis-related drugs and highlight the potential therapeutic strategies in treating various acute CNS injuries. Additionally, this paper suggests a testable hypothesis that ferroptosis may be a novel direction for further research of acute CNS injuries by providing corresponding evidence.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danfeng Lin
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyi Li
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yuanbo Pan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Weilin Xu
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Iboaya A, Harris JL, Arickx AN, Nudo RJ. Models of Traumatic Brain Injury in Aged Animals: A Clinical Perspective. Neurorehabil Neural Repair 2019; 33:975-988. [PMID: 31722616 PMCID: PMC6920554 DOI: 10.1177/1545968319883879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States, with advanced age being one of the major predictors of poor prognosis. To replicate the mechanisms and multifaceted complexities of human TBI and develop prospective therapeutic treatments, various TBI animal models have been developed. These models have been essential in furthering our understanding of the pathophysiology and biochemical effects on brain mechanisms following TBI. Despite these advances, translating preclinical results to clinical application, particularly in elderly individuals, continues to be challenging. This review aims to provide a clinical perspective, identifying relevant variables currently not replicated in TBI animal models, to potentially improve translation to clinical practice, especially as it applies to elderly populations. As background for this clinical perspective, we reviewed articles indexed on PubMed from 1970 to 2019 that used aged animal models for studying TBI. These studies examined end points relevant for clinical translation, such as neurocognitive effects, sensorimotor behavior, physiological mechanisms, and efficacy of neuroprotective therapies. However, compared with the higher incidence of TBI in older individuals, animal studies on the basic science of aging and TBI remain remarkably scarce. Moreover, a fundamental disconnect remains between experiments in animal models of TBI and successful translation of findings for treating the older TBI population. In this article, we aim to provide a clinical perspective on the unique attributes of TBI in older individuals and a critical appraisal of the research to date on TBI in aged animal models as well as recommendations for future studies.
Collapse
Affiliation(s)
- Aiwane Iboaya
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Janna L Harris
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | |
Collapse
|
14
|
Portbury SD, Hare DJ, Bishop DP, Finkelstein DI, Doble PA, Adlard PA. Trehalose elevates brain zinc levels following controlled cortical impact in a mouse model of traumatic brain injury. Metallomics 2019; 10:846-853. [PMID: 29872801 DOI: 10.1039/c8mt00068a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zinc (Zn) deficiency is a clinical consequence of brain injury that can result in neuropathological outcomes that are exacerbated with age. Here, we present laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging data showing modulation of brain Zn levels by the disaccharide trehalose in aged mice following a controlled cortical impact model of traumatic brain injury. In this proof-of-concept study, trehalose induced an increase in brain zinc levels, providing important preliminary data for larger studies using this simple carbohydrate as a modulator of this essential micronutrient in traumatic brain injury. Our results may have further implications for the treatment of a variety of neurodegenerative diseases and other disorders of the nervous system.
Collapse
Affiliation(s)
- Stuart D Portbury
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
Daglas M, Adlard PA. The Involvement of Iron in Traumatic Brain Injury and Neurodegenerative Disease. Front Neurosci 2018; 12:981. [PMID: 30618597 PMCID: PMC6306469 DOI: 10.3389/fnins.2018.00981] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) consists of acute and long-term pathophysiological sequelae that ultimately lead to cognitive and motor function deficits, with age being a critical risk factor for poorer prognosis. TBI has been recently linked to the development of neurodegenerative diseases later in life including Alzheimer’s disease, Parkinson’s disease, chronic traumatic encephalopathy, and multiple sclerosis. The accumulation of iron in the brain has been documented in a number of neurodegenerative diseases, and also in normal aging, and can contribute to neurotoxicity through a variety of mechanisms including the production of free radicals leading to oxidative stress, excitotoxicity and by promoting inflammatory reactions. A growing body of evidence similarly supports a deleterious role of iron in the pathogenesis of TBI. Iron deposition in the injured brain can occur via hemorrhage/microhemorrhages (heme-bound iron) or independently as labile iron (non-heme bound), which is considered to be more damaging to the brain. This review focusses on the role of iron in potentiating neurodegeneration in TBI, with insight into the intersection with neurodegenerative conditions. An important implication of this work is the potential for therapeutic approaches that target iron to attenuate the neuropathology/phenotype related to TBI and to also reduce the associated risk of developing neurodegenerative disease.
Collapse
Affiliation(s)
- Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Rong H, Xi Y, An Y, Tao L, Zhang X, Yu H, Wang Y, Qin Z, Xiao R. The Correlation between Early Stages of Life Exposed to Chinese Famine and Cognitive Decline in Adulthood: Nutrition of Adulthood Plays an Important Role in the Link? Front Aging Neurosci 2018; 9:444. [PMID: 29375368 PMCID: PMC5767719 DOI: 10.3389/fnagi.2017.00444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Objective: The aim of this study was to investigate whether people exposed to the Chinese Famine in fetal period or in multiple stages of childhood are associated with cognitive decline in adulthood. Furthermore, the nutritional environment of adulthood was explored as an important factor in this correlation. Methods: 1162 adults born between 1952 and 1964 were recruited. They were divided into five groups which were non-exposed group, fetal-exposed group, early childhood-exposed group, mid childhood-exposed group and late childhood-exposed group. Cognitive function was measured by using a comprehensive neuropsychological battery test, including Montreal cognitive assessment-Beijing version, mini-mental state examination, auditory verbal learning test, digit span forward, digit span backward, trail making test, and digit symbol test. Semi-quantified food frequency questionnaire (FFQ) was used to assess the dietary nutrition in their adulthood. The dietary nutrient consumption pattern was identified by Two-step and K-means cluster analysis. Results: The significant differences in cognitive function were manifested in different groups. Compared with non-exposed group, subjects in fetal-exposed group had a higher risk of mild cognitive impairment (MCI) (OR 1.51 95% CI 1.02–2.23, P = 0.039) and global cognitive decline (OR 1.68 59% CI 1.02–2.77, P = 0.044). The similar result was also observed in subjects of early childhood-exposed group. Otherwise, subjects who were classified in high nutrient consumption pattern had higher risk of cognitive decline. Moreover, the higher consumption of several nutrients such as fat, carbohydrate and manganese were associated with worse performance on digit span forward, digit span backward, trail making test A, trail making test B and digit symbol. Conclusion: Early stages of life exposed to the Chinese Famine were associated with higher risk of cognitive decline in adulthood. The stronger associations were manifested in the people with high nutrient consumption pattern. The consumption of fat, carbohydrate and manganese were associated with multiple domains cognitive decline.
Collapse
Affiliation(s)
- Hongguo Rong
- School of Public Health, Capital Medical University, Beijing, China
| | - Yuandi Xi
- School of Public Health, Capital Medical University, Beijing, China
| | - Yu An
- School of Public Health, Capital Medical University, Beijing, China
| | - Lingwei Tao
- School of Public Health, Capital Medical University, Beijing, China
| | - Xiaona Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Huiyan Yu
- School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- School of Public Health, Capital Medical University, Beijing, China
| | | | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Rodríguez-Moro G, Ramírez-Acosta S, Arias-Borrego A, García-Barrera T, Gómez-Ariza JL. Environmental Metallomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:39-66. [DOI: 10.1007/978-3-319-90143-5_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Griesbach GS, Masel BE, Helvie RE, Ashley MJ. The Impact of Traumatic Brain Injury on Later Life: Effects on Normal Aging and Neurodegenerative Diseases. J Neurotrauma 2017; 35:17-24. [PMID: 28920532 DOI: 10.1089/neu.2017.5103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The acute and chronic effects of traumatic brain injury (TBI) have been widely described; however, there is limited knowledge on how a TBI sustained during early adulthood or mid-adulthood will influence aging. Epidemiological studies have explored whether TBI poses a risk for dementia and other neurodegenerative diseases associated with aging. We will discuss the influence of TBI and resulting medical comorbidities such as endocrine, sleep, and inflammatory disturbances on age-related gray and white matter changes and cognitive decline. Post mortem studies examining amyloid, tau, and other proteins will be discussed within the context of neurodegenerative diseases and chronic traumatic encephalopathy. The data support the suggestion that pathological changes triggered by an earlier TBI will have an influence on normal aging processes and will interact with neurodegenerative disease processes rather than the development of a specific disease, such as Alzheimer's or Parkinson's. Chronic neurophysiologic change after TBI may have detrimental effects on neurodegenerative disease.
Collapse
Affiliation(s)
- Grace S Griesbach
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California.,2 Department of Neurosurgery, David Geffen School of Medicine at the University of California , Los Angeles, California
| | - Brent E Masel
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California.,3 University of Texas Medical Branch , Galveston, Texas
| | - Richard E Helvie
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California
| | - Mark J Ashley
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California
| |
Collapse
|
19
|
Portbury SD, Hare DJ, Finkelstein DI, Adlard PA. Trehalose improves traumatic brain injury-induced cognitive impairment. PLoS One 2017; 12:e0183683. [PMID: 28837626 PMCID: PMC5570321 DOI: 10.1371/journal.pone.0183683] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain Injury (TBI) is a significant cause of death and long-term disability for which there are currently no effective pharmacological treatment options. In this study then, we utilized a mouse model of TBI to assess the therapeutic potential of the stable disaccharide trehalose, which is known to protect against oxidative stress, increase levels of chaperone molecules and enhance autophagy. Furthermore, trehalose has demonstrated neuroprotective properties in numerous animal models and has been proposed as a potential treatment for neurodegeneration. As TBI (and associated neurodegenerative disorders) is complicated by a sudden and dramatic change in brain metal concentrations, including iron (Fe) and zinc (Zn), the collective accumulation and translocation of which has been hypothesized to contribute to the pathogenesis of TBI, then we also sought to determine whether trehalose modulated the metal dyshomeostasis associated with TBI. In this study three-month-old C57Bl/6 wildtype mice received a controlled cortical impact TBI, and were subsequently treated for one month with trehalose. During this time animals were assessed on multiple behavioral tasks prior to tissue collection. Results showed an overall significant improvement in the Morris water maze, Y-maze and open field behavioral tests in trehalose-treated mice when compared to controls. These functional benefits occurred in the absence of any change in lesion volume or any significant modulation of biometals, as assessed by laser ablation inductively coupled plasma mass spectrometry. Western blot analysis, however, revealed an upregulation of synaptophysin, doublecortin and brain derived neurotrophic factor protein in trehalose treated mice in the contralateral cortex. These results indicate that trehalose may be efficacious in improving functional outcomes following TBI by a previously undescribed mechanism of action that has relevance to multiple disorders of the central nervous system.
Collapse
Affiliation(s)
- Stuart D. Portbury
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- University of Technology Sydney, Elemental Bio-imaging, Sydney, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
20
|
Abstract
There are numerous blood-based biomarkers for assessing iron stores, but all come with certain limitations. Hepcidin is a hormone primarily produced in the liver that has been proposed as the 'master regulator' of dietary uptake and iron metabolism, and has enormous potential to provide a 'real time' indicator of body iron levels. In this Minireview, the biochemical function of hepcidin in regulating iron levels will be discussed, with a specific focus on how hepcidin can aid in the assessment of iron stores and clinical diagnosis of iron deficiency, iron deficiency anaemia and other iron-related disorders. The role hepcidin itself plays in diseases of iron metabolism will be examined, and current efforts to translate hepcidin assays into the clinic will be critically appraised. Potential limitations of hepcidin as a marker of iron need will also be addressed, as well as the development of new therapies that directly target the hormone that sits atop the hierarchy of systemic iron metabolism.
Collapse
Affiliation(s)
- Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|