1
|
Zhang W, Tian H, Liu T, Liu H, Zhao F, Li X, Wang C, Chen X, Shao J. Chameleon-inspired active tunable structural color based on smart skin with multi-functions of structural color, sensing and actuation. MATERIALS HORIZONS 2023; 10:2024-2034. [PMID: 36942615 DOI: 10.1039/d3mh00070b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tunable structural color has many potential applications in artificial camouflage, mechanical sensors, etc. Despite the extensive efforts to develop efficient tunable structural color, there is still a wide gap between the existing "passive" tuning methods and the "active" strategy found on organisms such as chameleons that can change color according to the environment. Inspired by the active tunable color system of chameleons, we propose a smart skin comprising a nanoscale hole array of photonic crystals, carbon nanotube coatings, and liquid crystal elastomers, to integrate multiple functions, i.e., structural color tunability, sensing, and actuation, in one structure. The smart skin was further coupled with an image acquisition unit (which mimics eyes to obtain colors from the environment) and a controller (which mimics the brain to process the signals transmitted from the image acquisition unit to the smart skin), to construct an active tunable structural color system. The proposed system autonomously modulates the color according to the environmental color. To validate the color tuning, color scanning from red to green to blue or vice versa is demonstrated in this work, which could certainly open up new paths to create active tunable structural color systems, and thus, push the development of structural color-based devices and systems.
Collapse
Affiliation(s)
- Weitian Zhang
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Hongmiao Tian
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Tianci Liu
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Haoran Liu
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Fabo Zhao
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Xiangming Li
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunhui Wang
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Xiaoliang Chen
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinyou Shao
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
2
|
Zhao L, Tian H, Liu H, Zhang W, Zhao F, Song X, Shao J. Bio-Inspired Soft-Rigid Hybrid Smart Artificial Muscle Based on Liquid Crystal Elastomer and Helical Metal Wire. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206342. [PMID: 36653937 DOI: 10.1002/smll.202206342] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Artificial muscles are of significant value in robotic applications. Rigid artificial muscles possess a strong load-bearing capacity, while their deformation is small; soft artificial muscles can be shifted to a large degree; however, their load-bearing capacity is weak. Furthermore, artificial muscles are generally controlled in an open loop due to a lack of deformation-related feedback. Human arms include muscles, bones, and nerves, which ingeniously coordinate the actuation, load-bearing, and sensory systems. Inspired by this, a soft-rigid hybrid smart artificial muscle (SRH-SAM) based on liquid crystal elastomer (LCE) and helical metal wire is proposed. The thermotropic responsiveness of the LCE is adopted for large reversible deformation, and the helical metal wire is used to fulfill high bearing capacity and electric heating function requirements. During actuation, the helical metal wire's resistance changes with the LCE's electrothermal deformation, thereby achieving deformation-sensing characteristics. Based on the proposed SRH-SAM, a reconfigurable blazed grating plane and the effective switch between attachment and detachment in bionic dry adhesion are accomplished. The SRH-SAM opens a new avenue for designing smart artificial muscles and can promote the development of artificial muscle-based devices.
Collapse
Affiliation(s)
- Limeng Zhao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hongmiao Tian
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Haoran Liu
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Weitian Zhang
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Fabo Zhao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaowen Song
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinyou Shao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
3
|
Zhang P, de Haan LT, Debije MG, Schenning APHJ. Liquid crystal-based structural color actuators. LIGHT, SCIENCE & APPLICATIONS 2022; 11:248. [PMID: 35931672 PMCID: PMC9356073 DOI: 10.1038/s41377-022-00937-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/17/2022] [Indexed: 05/08/2023]
Abstract
Animals can modify their body shape and/or color for protection, camouflage and communication. This adaptability has inspired fabrication of actuators with structural color changes to endow soft robots with additional functionalities. Using liquid crystal-based materials for actuators with structural color changes is a promising approach. In this review, we discuss the current state of liquid crystal-based actuators with structural color changes and the potential applications of these structural color actuators in soft robotic devices.
Collapse
Affiliation(s)
- Pei Zhang
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands
| | - Laurens T de Haan
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Michael G Debije
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| | - Albert P H J Schenning
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications. Molecules 2022; 27:molecules27144330. [PMID: 35889204 PMCID: PMC9317631 DOI: 10.3390/molecules27144330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Liquid crystal elastomers (LCEs) are programmable deformable materials that can respond to physical fields such as light, heat, and electricity. Photothermal-driven LCE has the advantages of accuracy and remote control and avoids the requirement of high photon energy for photochemistry. In this review, we discuss recent advances in photothermal LCE materials and investigate methods for mechanical alignment, external field alignment, and surface-induced alignment. Advances in the synthesis and orientation of LCEs have enabled liquid crystal elastomers to meet applications in optics, robotics, and more. The review concludes with a discussion of current challenges and research opportunities.
Collapse
|
5
|
Zhang P, Debije MG, de Haan LT, Schenning APHJ. Pigmented Structural Color Actuators Fueled by Near-Infrared Light. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20093-20100. [PMID: 35451302 PMCID: PMC9073939 DOI: 10.1021/acsami.2c03392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cuttlefish can modify their body shape and both their pigmentary and structural colors for protection. This adaptability has inspired the development of appearance-changing polymers such as structural color actuators, although in most cases, the original shape has been confined to being flat, and pigmented structural color actuators have not yet been reported. Here, we have successfully created a pigmented structural color actuator using a cholesteric liquid crystal elastomer with a lower actuation temperature where both actuation and coloration (structural and pigmental) are tunable with temperature and NIR light. The shape, structural color, and absorption of the NIR-absorbing dye pigment of the actuator all change with temperature. Light can be used to trigger local in-plane bending actuation in flat films and local shape changes in a variety of 3D-shaped objects. A cuttlefish mimic that can sense light and respond by locally changing its appearance was also made to demonstrate the potential of pigmented structural color actuators for signaling and camouflage in soft robotics.
Collapse
Affiliation(s)
- Pei Zhang
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Michael G. Debije
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Laurens T. de Haan
- SCNU-TUE
Joint Lab of Device Integrated Responsive Materials (DIRM), National
Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Albert P. H. J. Schenning
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Barhoum A, García-Betancourt ML, Jeevanandam J, Hussien EA, Mekkawy SA, Mostafa M, Omran MM, S. Abdalla M, Bechelany M. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:177. [PMID: 35055196 PMCID: PMC8780156 DOI: 10.3390/nano12020177] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023]
Abstract
Nanomaterials are becoming important materials in several fields and industries thanks to their very reduced size and shape-related features. Scientists think that nanoparticles and nanostructured materials originated during the Big Bang process from meteorites leading to the formation of the universe and Earth. Since 1990, the term nanotechnology became very popular due to advances in imaging technologies that paved the way to specific industrial applications. Currently, nanoparticles and nanostructured materials are synthesized on a large scale and are indispensable for many industries. This fact fosters and supports research in biochemistry, biophysics, and biochemical engineering applications. Recently, nanotechnology has been combined with other sciences to fabricate new forms of nanomaterials that could be used, for instance, for diagnostic tools, drug delivery systems, energy generation/storage, environmental remediation as well as agriculture and food processing. In contrast with traditional materials, specific features can be integrated into nanoparticles, nanostructures, and nanosystems by simply modifying their scale, shape, and composition. This article first summarizes the history of nanomaterials and nanotechnology. Followed by the progress that led to improved synthesis processes to produce different nanoparticles and nanostructures characterized by specific features. The content finally presents various origins and sources of nanomaterials, synthesis strategies, their toxicity, risks, regulations, and self-aggregation.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| | | | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Eman A. Hussien
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
| | - Sara A. Mekkawy
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Menna Mostafa
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Mohga S. Abdalla
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34000 Montpellier, France
| |
Collapse
|
7
|
Tanjeem N, Minnis MB, Hayward RC, Shields CW. Shape-Changing Particles: From Materials Design and Mechanisms to Implementation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105758. [PMID: 34741359 PMCID: PMC9579005 DOI: 10.1002/adma.202105758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Indexed: 05/05/2023]
Abstract
Demands for next-generation soft and responsive materials have sparked recent interest in the development of shape-changing particles and particle assemblies. Over the last two decades, a variety of mechanisms that drive shape change have been explored and integrated into particulate systems. Through a combination of top-down fabrication and bottom-up synthesis techniques, shape-morphing capabilities extend from the microscale to the nanoscale. Consequently, shape-morphing particles are rapidly emerging in a variety of contexts, including photonics, microfluidics, microrobotics, and biomedicine. Herein, the key mechanisms and materials that facilitate shape changes of microscale and nanoscale particles are discussed. Recent progress in the applications made possible by these particles is summarized, and perspectives on their promise and key open challenges in the field are discussed.
Collapse
Affiliation(s)
- Nabila Tanjeem
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Montana B Minnis
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Ryan C Hayward
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Charles Wyatt Shields
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
8
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
9
|
Sun D, Zhang J, Li H, Shi Z, Meng Q, Liu S, Chen J, Liu X. Toward Application of Liquid Crystalline Elastomer for Smart Robotics: State of the Art and Challenges. Polymers (Basel) 2021; 13:1889. [PMID: 34204168 PMCID: PMC8201031 DOI: 10.3390/polym13111889] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
Liquid crystalline elastomers (LCEs) are lightly crosslinked polymers that combine liquid crystalline order and rubber elasticity. Owing to their unique anisotropic behavior and reversible shape responses to external stimulation (temperature, light, etc.), LCEs have emerged as preferred candidates for actuators, artificial muscles, sensors, smart robots, or other intelligent devices. Herein, we discuss the basic action, control mechanisms, phase transitions, and the structure-property correlation of LCEs; this review provides a comprehensive overview of LCEs for applications in actuators and other smart devices. Furthermore, the synthesis and processing of liquid crystal elastomer are briefly discussed, and the current challenges and future opportunities are prospected. With all recent progress pertaining to material design, sophisticated manipulation, and advanced applications presented, a vision for the application of LCEs in the next generation smart robots or automatic action systems is outlined.
Collapse
Affiliation(s)
- Dandan Sun
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Juzhong Zhang
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Hongpeng Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Zhengya Shi
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Qi Meng
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Shuiren Liu
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Jinzhou Chen
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Xuying Liu
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| |
Collapse
|
10
|
Nie M, Huang C, Du X. Recent advances in colour-tunable soft actuators. NANOSCALE 2021; 13:2780-2791. [PMID: 33514972 DOI: 10.1039/d0nr07907c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In nature, some creatures have the capability to change shapes to adapt to ever-changing environments, which greatly inspire researchers to develop soft actuators. To endow soft actuators with capabilities to interact with environment and integrate more feedbacks is of great significance. Colour-tunable soft actuators that provide colour change feedbacks have therefore attracted extensive attention. Based on either chemical-colour or structural-colour based materials, a variety of colour-tunable soft actuators enabling shape deformations (or locomotion) and colour changes have been prepared and hold promise for applications in soft robotics and biomedical devices. This review summarizes the recent advances of colour-tunable soft actuators, with emphasis on their colour-change mechanisms and highlighting their applications. Existing challenges and future perspectives on colour-tunable soft actuators are presented.
Collapse
Affiliation(s)
- Mingzhe Nie
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| | - Chao Huang
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| |
Collapse
|
11
|
Photoresponsive polymeric actuator cross-linked by an 8-armed polyhedral oligomeric silsesquioxane. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Isapour G, Lattuada M. Bioinspired Stimuli-Responsive Color-Changing Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707069. [PMID: 29700857 DOI: 10.1002/adma.201707069] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Stimuli-responsive colors are a unique characteristic of certain animals, evolved as either a method to hide from enemies and prey or to communicate their presence to rivals or mates. From a material science perspective, the solutions developed by Mother Nature to achieve these effects are a source of inspiration to scientists for decades. Here, an updated overview of the literature on bioinspired stimuli-responsive color-changing systems is provided. Starting from natural systems, which are the source of inspiration, a classification of the different solutions proposed is given, based on the stimuli used to trigger the color-changing effect.
Collapse
Affiliation(s)
- Golnaz Isapour
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| |
Collapse
|
13
|
Single-material solvent-sensitive fluorescent actuator from carbon dots inverse opals based on gradient dewetting. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1981-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Gogoi RK, Raidongia K. Strategic Shuffling of Clay Layers to Imbue Them with Responsiveness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701164. [PMID: 28418190 DOI: 10.1002/adma.201701164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Layers of naturally occurring clay minerals are rearranged to prepare highly sensitive multiresponsive clay-clay bilayer membrane (CCBM). The CCBM introduced here responds to the minuscule changes in the surrounding environments including temperature, humidity, and presence of solvent vapors by morphing in specific manners. Strips cut from CCBM exhibit up to 588 N kg-1 force output when exposed to temperature fluctuations. Inheriting the natural stability of clay minerals, CCBM demonstrates extreme robustness, heating up to 500 °C, cooling with liquid N2 and exposure to corrosive chemical vapors did not deteriorate its bending performance. Mechanistic studies suggest that shape transformations of CCBM are driven by the unequal response of its components to external stimuli.
Collapse
Affiliation(s)
- Raj Kumar Gogoi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Kalyan Raidongia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
15
|
Mandel K, Granath T, Wehner T, Rey M, Stracke W, Vogel N, Sextl G, Müller-Buschbaum K. Smart Optical Composite Materials: Dispersions of Metal-Organic Framework@Superparamagnetic Microrods for Switchable Isotropic-Anisotropic Optical Properties. ACS NANO 2017; 11:779-787. [PMID: 27943671 DOI: 10.1021/acsnano.6b07189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) 3∞[Eu2(BDC)3]·2DMF·2H2O (BDC2- = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.
Collapse
Affiliation(s)
- Karl Mandel
- Fraunhofer Institute for Silicate Research, ISC , Neunerplatz 2, D97082 Würzburg, Germany
- Chair of Chemical Technology of Materials Synthesis, Julius-Maximilians-University Würzburg , Röntgenring 11, D97070 Würzburg, Germany
| | - Tim Granath
- Chair of Chemical Technology of Materials Synthesis, Julius-Maximilians-University Würzburg , Röntgenring 11, D97070 Würzburg, Germany
| | - Tobias Wehner
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg , Am Hubland, 97074 Würzburg, Germany
| | | | - Werner Stracke
- Fraunhofer Institute for Silicate Research, ISC , Neunerplatz 2, D97082 Würzburg, Germany
| | | | - Gerhard Sextl
- Fraunhofer Institute for Silicate Research, ISC , Neunerplatz 2, D97082 Würzburg, Germany
- Chair of Chemical Technology of Materials Synthesis, Julius-Maximilians-University Würzburg , Röntgenring 11, D97070 Würzburg, Germany
| | - Klaus Müller-Buschbaum
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg , Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|