1
|
Li J, Jiang Q, Xu H, Li M, Hussain MA, Jiang Z, Hou J. Exploring the role of γ-Oryzanol on stabilization mechanism of Pickering emulsion gels loaded by α-Lactalbumin or β-Lactoglobulin via multiscale approaches. Food Chem 2024; 457:140096. [PMID: 38905830 DOI: 10.1016/j.foodchem.2024.140096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
The research explored the role of γ-oryzanol (γs) on stabilization behavior of Pickering emulsion gels (PEGs) loaded by α-lactalbumin (α-LA) or β-lactoglobulin (β-LG), being analyzed by experimental and computer methods (molecular dynamic simulation, MD). Primarily, the average particle size of β-LG-γS was expressed 100.07% decrease over that of α-LA-γS. In addition, γs decreased the dynamic interfacial tension of two proteins with the order of β-LG < α-LA. Meanwhile, quartz crystal microbalance with dissipation proved that β-LG-γS exhibited higher adsorption mass and denser rigid interface layer than α-LA-γS. Moreover, the hydrophobic group of γS had electrostatic repulsion with polar water molecules in the aqueous phase, which spread to the oil phase. β-LG-γS had lower RMSD/Rg value and narrower fluctuation compared with α-LA-γS. This work strength the exploration of interfacial stabilization mechanism of whey protein-based PEGs, which enriched its theoretical research for industrial-scale production as the replacement of trans fat and cholesterol.
Collapse
Affiliation(s)
- Jinzhe Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China; College of Food Science and Engineering, Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang University, Guiyang 550005, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China
| | - Qiuwan Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Heyang Xu
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meng Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Muhammad Altaf Hussain
- Faculty of veterinary and Animal science Lasbela university of Agriculture water and Marine sciences uthal, 90159, Balochistan, Pakistan
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Juncai Hou
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China; College of Food Science and Engineering, Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang University, Guiyang 550005, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China.
| |
Collapse
|
2
|
Park R, Jeon S, Jeong J, Park SY, Han DW, Hong SW. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing. BIOSENSORS 2022; 12:136. [PMID: 35323406 PMCID: PMC8946830 DOI: 10.3390/bios12030136] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 05/11/2023]
Abstract
Recent developments of point-of-care testing (POCT) and in vitro diagnostic medical devices have provided analytical capabilities and reliable diagnostic results for rapid access at or near the patient's location. Nevertheless, the challenges of reliable diagnosis still remain an important factor in actual clinical trials before on-site medical treatment and making clinical decisions. New classes of POCT devices depict precise diagnostic technologies that can detect biomarkers in biofluids such as sweat, tears, saliva or urine. The introduction of a novel molecularly imprinted polymer (MIP) system as an artificial bioreceptor for the POCT devices could be one of the emerging candidates to improve the analytical performance along with physicochemical stability when used in harsh environments. Here, we review the potential availability of MIP-based biorecognition systems as custom artificial receptors with high selectivity and chemical affinity for specific molecules. Further developments to the progress of advanced MIP technology for biomolecule recognition are introduced. Finally, to improve the POCT-based diagnostic system, we summarized the perspectives for high expandability to MIP-based periodontal diagnosis and the future directions of MIP-based biosensors as a wearable format.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Jeonghwa Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Shin-Young Park
- Department of Dental Education and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
3
|
Wang Z, Li Y, Li Z, Yan R, Fu X, Wang G, Wang Y, Zhang X, Hou J. The fabrication of molecularly imprinted polymer microspheres via Pickering emulsion polymerization stabilized with novel ferric hydroxide colloid. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Mostafa AM, Barton SJ, Wren SP, Barker J. Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Goudarzi F, Hejazi P. Comprehensive study on the effects of total monomers' content and polymerization temperature control on the formation of the polymer-layer in preparation of insulin-imprinted magnetic nanoparticles. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Wang P, Tang X, Hu L, Yin Y, Chen S, Xu J, Wang H. Preparation of bovine hemoglobin surface molecularly imprinted cotton for selective protein recognition. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Anal Bioanal Chem 2018; 410:3991-4014. [DOI: 10.1007/s00216-018-1013-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/08/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
|
8
|
Richter A, Feitosa J, Paula H, Goycoolea F, de Paula R. Pickering emulsion stabilized by cashew gum- poly-l-lactide copolymer nanoparticles: Synthesis, characterization and amphotericin B encapsulation. Colloids Surf B Biointerfaces 2018; 164:201-209. [DOI: 10.1016/j.colsurfb.2018.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/27/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022]
|
9
|
Sun Y, Zhong S. Molecularly imprinted polymers fabricated via Pickering emulsions stabilized solely by food-grade casein colloidal nanoparticles for selective protein recognition. Anal Bioanal Chem 2018; 410:3133-3143. [PMID: 29582119 DOI: 10.1007/s00216-018-1006-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 11/26/2022]
Abstract
Novel molecularly imprinted polymers (MIPs) based on denatured casein nanoparticle (DCP)-stabilized Pickering emulsions were developed for the first time. Casein, a phosphoprotein, is the main protein in milk. In this work, DCPs were solely used as Pickering-type interfacial emulsifiers for fabrication of MIPs for the selective recognition of proteins for the first time. DCPs were prepared by acidification and heat denaturation (at 80 °C) of casein. Their dispersions have satisfactory colloidal stability over a wide pH range. The DCPs acted as natural, food-grade, and edible interfacial emulsifiers, and adsorbed at the oil-water interface to form Pickering emulsions. After the polymerization of monomers, the template protein was removed by elution. During the elution, the interfacial DCPs were also removed, allowing more imprinted cavities to become exposed. The interfacial imprinting technology causes nearly all the imprinted sites to locate on the surface of the polymeric material. Therefore, the MIPs obtained exhibit fast rebinding and excellent specific recognition ability toward the analytes. Overall, this work provides a promising method for designing and fabricating natural-protein-based structured emulsions to prepare MIPs and thus offers new insight into protein separation and purification. Graphical Abstract Pickering emulsions stabilized by denatured casein particles.
Collapse
Affiliation(s)
- Yanhua Sun
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Shian Zhong
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
10
|
Xu G, Hao C, Zhang L, Sun R. The interaction between BSA and DOTAP at the air-buffer interface. Sci Rep 2018; 8:407. [PMID: 29321490 PMCID: PMC5762638 DOI: 10.1038/s41598-017-18689-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022] Open
Abstract
In this article, the interaction between bovine serum albumin (BSA) and the cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) at the air-buffer interface was investigated at different subphase's pH values (pH = 3, 5 and 10). Surface pressure measurements (π - A) and penetration kinetics process (π - t) were carried out to reveal the interaction mechanism and the dynamical behavior. The data showed that π - A isotherms moved towards larger mean molecular area when the concentration of BSA ([BSA]) increased, the amount of BSA adsorbed onto DOTAP monolayer reached a threshold value at a [BSA] of 5 × 10-8 M, and BSA desorbed from the lipid monolayer as time goes by. The results revealed that the association of BSA with DOTAP at the air-buffer interface was affected by the subphase's pH value. When pH = 10, the interaction mechanism between them was a combination of hydrophobic interaction and electrostatic attraction, so BSA molecules could be well separated and purified from complex mixtures. AFM images demonstrated that pH value and [BSA] could affect the morphology feature of DOTAP monolayer and the adsorption and desorption processes of BSA. So the study provides an important experimental basis and theoretical support for learning the interaction mechanism among biomolecules in separation and purification of biomolecules and biosensor.
Collapse
Affiliation(s)
- Guoqing Xu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China.
| | - Lei Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
11
|
Xu J, Sun Y, Chen J, Zhong S. Novel application of amphiphilic block copolymers in Pickering emulsions and selective recognition of proteins. NEW J CHEM 2018. [DOI: 10.1039/c7nj04154c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amphiphilic block copolymer stabilized Pickering high internal phase emulsions and was mildly exfoliated to improve imprinting efficiency.
Collapse
Affiliation(s)
- Jiangfeng Xu
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Yanhua Sun
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Jian Chen
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Shian Zhong
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| |
Collapse
|
12
|
Sun Y, Ren T, Deng Z, Yang Y, Zhong S. Molecularly imprinted polymers fabricated using Janus particle-stabilized Pickering emulsions and charged monomer polymerization. NEW J CHEM 2018. [DOI: 10.1039/c8nj00282g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Janus particle-stabilized Pickering emulsions and their applications in protein interfacial imprinting.
Collapse
Affiliation(s)
- Yanhua Sun
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Tao Ren
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Zhiwei Deng
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Yanjing Yang
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Shian Zhong
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| |
Collapse
|
13
|
Nanoscale trifunctional bovine hemoglobin for fabricating molecularly imprinted polydopamine via Pickering emulsions-hydrogels polymerization. Colloids Surf B Biointerfaces 2017; 159:131-138. [DOI: 10.1016/j.colsurfb.2017.07.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/19/2022]
|
14
|
Sun Y, Li Y, Xu J, Huang L, Qiu T, Zhong S. Interconnectivity of macroporous molecularly imprinted polymers fabricated by hydroxyapatite-stabilized Pickering high internal phase emulsions-hydrogels for the selective recognition of protein. Colloids Surf B Biointerfaces 2017; 155:142-149. [DOI: 10.1016/j.colsurfb.2017.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/25/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
|