1
|
|
2
|
Qian T, Zhao C, Wang R, Chen X, Hou J, Wang H, Zhang H. Synthetic azobenzene-containing metal-organic framework ion channels toward efficient light-gated ion transport at the subnanoscale. NANOSCALE 2021; 13:17396-17403. [PMID: 34642709 DOI: 10.1039/d1nr04595d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial nanochannels with diverse responsive properties have been widely developed to replicate the smart gating functionalities of biological ion channels. However, in these traditional nanochannels, common responsive molecules are usually too small to efficiently block the large channels under the closed states, leading to weak gating performances. Herein, we report carboxylated azobenzene-coordinated metal-organic-framework (AZO-MOF) ion channels with impressive light-gating properties. The AZO-MOF ion channels were synthesized by the confined growth of AZO-MOFs, composed of light-responsive AZO-containing ligands, non-responsive ligands and metal clusters, into ion-track-etched polymer nanochannels. The AZO-MOF ion channels with an appropriate number of AZO ligands showed a well-maintained crystalline and three-dimensional porous structure, including nanoscale cavities and subnanoscale windows for LiCl conduction. Meanwhile, the AZO-containing ligands bend and stretch upon light irradiation to open and close the pathways, thus gating the ion flux through the AZO-MOF ion channels with high on-off ratios up to 40.2, which is ∼2.3-30 times those of AZO-encapsulated MOF ion channels and AZO-modified nanochannels. This work suggests ways to achieve subnanoscaled gating of ion transport by angstrom-porous MOFs coordinated by stimuli-responsive ligands.
Collapse
Affiliation(s)
- Tianyue Qian
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Ruoxin Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Xiaofang Chen
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
3
|
Qian T, Zhang H, Li X, Hou J, Zhao C, Gu Q, Wang H. Efficient Gating of Ion Transport in Three-Dimensional Metal-Organic Framework Sub-Nanochannels with Confined Light-Responsive Azobenzene Molecules. Angew Chem Int Ed Engl 2020; 59:13051-13056. [PMID: 32343468 DOI: 10.1002/anie.202004657] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/09/2022]
Abstract
1D nanochannels modified with responsive molecules are fabricated to replicate gating functionalities of biological ion channels, but gating effects are usually weak because small molecular gates cannot efficiently block the large channels in the closed states. Now, 3D metal-organic framework (MOF) sub-nanochannels (SNCs) confined with azobenzene (AZO) molecules achieve efficient light-gating functionalities. The 3D MOFSNCs consisting of a MOF UiO66 with ca. 9-12 Å cavities connected by ca. 6 Å triangular windows work as angstrom-scale ion channels, while confined AZO within the MOF cavities function as light-driven molecular gates to efficiently regulate the ion flux. The AZO-MOFSNCs show good cyclic gating performance and high on-off ratios up to 17.8, an order of magnitude higher than ratios observed in conventional 1D AZO-modified nanochannels (1.3-1.5). This work provides a strategy to develop highly efficient switchable ion channels based on 3D porous MOFs and small responsive molecules.
Collapse
Affiliation(s)
- Tianyue Qian
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Jue Hou
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Chen Zhao
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Qinfen Gu
- Australian Synchrotron ANSTO, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
4
|
|
5
|
Qian T, Zhang H, Li X, Hou J, Zhao C, Gu Q, Wang H. Efficient Gating of Ion Transport in Three‐Dimensional Metal–Organic Framework Sub‐Nanochannels with Confined Light‐Responsive Azobenzene Molecules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tianyue Qian
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Huacheng Zhang
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Xingya Li
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Jue Hou
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Chen Zhao
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Qinfen Gu
- Australian Synchrotron ANSTO 800 Blackburn Rd Clayton VIC 3168 Australia
| | - Huanting Wang
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| |
Collapse
|
6
|
Pérez-Mitta G, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. Molecular Design of Solid-State Nanopores: Fundamental Concepts and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901483. [PMID: 31267585 DOI: 10.1002/adma.201901483] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Solid-state nanopores are fascinating objects that enable the development of specific and efficient chemical and biological sensors, as well as the investigation of the physicochemical principles ruling the behavior of biological channels. The great variety of biological nanopores that nature provides regulates not only the most critical processes in the human body, including neuronal communication and sensory perception, but also the most important bioenergetic process on earth: photosynthesis. This makes them an exhaustless source of inspiration toward the development of more efficient, selective, and sophisticated nanopore-based nanofluidic devices. The key point responsible for the vibrant and exciting advance of solid nanopore research in the last decade has been the simultaneous combination of advanced fabrication nanotechnologies to tailor the size, geometry, and application of novel and creative approaches to confer the nanopore surface specific functionalities and responsiveness. Here, the state of the art is described in the following critical areas: i) theory, ii) nanofabrication techniques, iii) (bio)chemical functionalization, iv) construction of nanofluidic actuators, v) nanopore (bio)sensors, and vi) commercial aspects. The plethora of potential applications once envisioned for solid-state nanochannels is progressively and quickly materializing into new technologies that hold promise to revolutionize the everyday life.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| |
Collapse
|
7
|
Deng M, Yang M, Xu Y, Sun Y, Wang Q, Liu J, Huang J, Yang X, Wang K. Biomimetic nanochannel membrane for cascade response of borate and cis-hydroxyl compounds: An IMP logic gate device. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Pérez-Mitta G, Peinetti AS, Cortez ML, Toimil-Molares ME, Trautmann C, Azzaroni O. Highly Sensitive Biosensing with Solid-State Nanopores Displaying Enzymatically Reconfigurable Rectification Properties. NANO LETTERS 2018; 18:3303-3310. [PMID: 29697265 DOI: 10.1021/acs.nanolett.8b01281] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Molecular design of biosensors based on enzymatic processes taking place in nanofluidic elements is receiving increasing attention by the scientific community. In this work, we describe the construction of novel ultrasensitive enzymatic nanopore biosensors employing "reactive signal amplifiers" as key elements coupled to the transduction mechanism. The proposed framework offers innovative design concepts not only to amplify the detected ionic signal and develop ultrasensitive nanopore-based sensors but also to construct nanofluidic diodes displaying specific chemo-reversible rectification properties. The integrated approach is demonstrated by electrostatically assembling poly(allylamine) on the anionic pore walls followed by the assembly of urease. We show that the cationic weak polyelectrolyte acts as a "reactive signal amplifier" in the presence of local pH changes induced by the enzymatic reaction. These bioinduced variations in proton concentration ultimately alter the protonation degree of the polyamine resulting in amplifiable, controlled, and reproducible changes in the surface charge of the pore walls, and consequently on the generated ionic signals. The "iontronic" response of the as-obtained devices is fully reversible, and nanopores are reused and assayed with different urea concentrations, thus ensuring reliable design. The limit of detection (LOD) was 1 nM. To the best of our knowledge, this value is the lowest LOD reported to date for enzymatic urea detection. In this context, we envision that this approach based on the use of "reactive signal amplifiers" into solid-state nanochannels will provide new alternatives for the molecular design of highly sensitive nanopore biosensors as well as (bio)chemically addressable nanofluidic elements.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , Boulevard 113 y 64 , 1900 La Plata , Argentina
| | - Ana S Peinetti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , Boulevard 113 y 64 , 1900 La Plata , Argentina
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , Boulevard 113 y 64 , 1900 La Plata , Argentina
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Technische Universität Darmstadt , 64287 Darmstadt , Germany
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , Boulevard 113 y 64 , 1900 La Plata , Argentina
| |
Collapse
|
9
|
Abstract
Bioinspired smart asymmetric nanochannel membranes (BSANM) have been explored extensively to achieve the delicate ionic transport functions comparable to those of living organisms. The abiotic system exhibits superior stability and robustness, allowing for promising applications in many fields. In view of the abundance of research concerning BSANM in the past decade, herein, we present a systematic overview of the development of the state-of-the-art BSANM system. The discussion is focused on the construction methodologies based on raw materials with diverse dimensions (i.e. 0D, 1D, 2D, and bulk). A generic strategy for the design and construction of the BSANM system is proposed first and put into context with recent developments from homogeneous to heterogeneous nanochannel membranes. Then, the basic properties of the BSANM are introduced including selectivity, gating, and rectification, which are associated with the particular chemical and physical structures. Moreover, we summarized the practical applications of BSANM in energy conversion, biochemical sensing and other areas. In the end, some personal opinions on the future development of the BSANM are briefly illustrated. This review covers most of the related literature reported since 2010 and is intended to build up a broad and deep knowledge base that can provide a solid information source for the scientific community.
Collapse
Affiliation(s)
- Zhen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | | | | |
Collapse
|
10
|
The iNAPO Project: Biomimetic Nanopores for a New Generation of Lab-on-Chip Micro Sensors. ACTA ACUST UNITED AC 2018. [DOI: 10.11159/ijtan.2018.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Ali M, Ramirez P, Duznovic I, Nasir S, Mafe S, Ensinger W. Label-free histamine detection with nanofluidic diodes through metal ion displacement mechanism. Colloids Surf B Biointerfaces 2017; 150:201-208. [DOI: 10.1016/j.colsurfb.2016.11.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
12
|
|