1
|
Bunno A, Shigemitsu H, Yoshikawa A, Osakada Y, Fujitsuka M, Ishiwari F, Saeki A, Ohkubo K, Mori T, Kida T. Supramolecular nanosheet formation-induced photosensitisation mechanism change of Rose Bengal dye in aqueous media. Chem Commun (Camb) 2024; 60:889-892. [PMID: 38165640 DOI: 10.1039/d3cc05731c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Development of two-dimensional materials and exploration of their functionalities are significant challenges due to their potential. In this study, we successfully fabricated a supramolecular nanosheet composed of amphiphilic Rose Bengal dyes in an aqueous medium. Furthermore, we elucidated a distinct change in the photosensitisation mechanism induced by nanosheet formation.
Collapse
Affiliation(s)
- Asuka Bunno
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hajime Shigemitsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Aya Yoshikawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yasuko Osakada
- Institute for Advanced Co-creation Studies, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-creation Studies, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshiyuki Kida
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Zhao X, Wang X, Dong Y, Zhang H, Zhao W, Wang J, Wang L. New graphitic carbon nitride-based composite membranes: Fast water transport through the synergistic effect of tannic acid and tris(hydroxymethyl) aminomethane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Zheng Y, Wang D, Cui J, Mezger M, Auernhammer GK, Koynov K, Butt HJ, Ikeda T. Redox-Responsive and Thermoresponsive Supramolecular Nanosheet Gels with High Young's Moduli. Macromol Rapid Commun 2018; 39:e1800282. [PMID: 29900622 DOI: 10.1002/marc.201800282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Indexed: 01/10/2023]
Abstract
Supramolecular gels made from 2D building blocks are emerging as one of the novel multifunctional soft materials for various applications. This study reports on a class of supramolecular nanosheet gels formed through a reversible self-assembly process involving both intramolecular folding and intermolecular self-assembly of poly[oligo(ethylene glycol)-co-(phenyl-capped bithiophenes)]. Such hierarchical self-assembled structure allows the gels to switch between sol and gel states under either redox or thermostimulus. Moreover, the gels illustrate high Young's moduli, compared to their controls that are made from the same oligo(ethylene glycol) and phenyl-capped bithiophenes blocks but have highly covalent-crosslinked structures. The example might open a window for emerging supramolecular 2D materials to develop mechanically robust and stimuli-responsive soft materials without compromising their intrinsic functions.
Collapse
Affiliation(s)
- Yijun Zheng
- INM - Leibniz Institute for New Materials (INM), Campus D2 2, 66123, Saarbrücken, Germany.,Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, 55128, Mainz, Germany
| | - Dapeng Wang
- Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, 55128, Mainz, Germany.,State Key Laboratory of Polymer Physics and Chemistry, Chinese Academy of Sciences, 7520 Renmin Street, 130022, Changchun, P. R. China
| | - Jiaxi Cui
- INM - Leibniz Institute for New Materials (INM), Campus D2 2, 66123, Saarbrücken, Germany
| | - Markus Mezger
- Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, 55128, Mainz, Germany.,Institute of Physics, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Günter K Auernhammer
- Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, 55128, Mainz, Germany.,Leibnitz Institute for Polymer Research Dresden e. V. (IPF), Hohe Straße 6, 01169, Dresden, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, 55128, Mainz, Germany
| | - Taichi Ikeda
- Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, 55128, Mainz, Germany.,Research Center for Functional Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, 305-0044, Japan
| |
Collapse
|
4
|
Ishiwari F, Shoji Y, Fukushima T. Supramolecular scaffolds enabling the controlled assembly of functional molecular units. Chem Sci 2018; 9:2028-2041. [PMID: 29719683 PMCID: PMC5896469 DOI: 10.1039/c7sc04340f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
To assemble functional molecular units into a desired structure while controlling positional and orientational order is a key technology for the development of high-performance organic materials that exhibit electronic, optoelectronic, biological and even dynamic functions. For this purpose, we cannot rely simply on the inherent self-assembly properties of the target functional molecular units, since it is difficult to predict, based solely on the molecular structure, what structure will be achieved upon assembly. To address this issue, it would be useful to employ molecular building blocks with self-assembly structures that can be clearly predicted and defined, to make target molecular units assemble into a desired structure. To date, various motifs of molecular assemblies, polymers, discrete and/or three-dimensional metal-organic complexes, nanoparticles and metal/metal oxide substrates have been developed to create materials with particular structures and dimensionalities. In this perspective, we define such assembly motifs as "supramolecular scaffolds". The structure of supramolecular scaffolds can be classified in terms of dimensionality, and they range in size from nano- to macroscopic scales. Functional molecular units, when attached to supramolecular scaffolds either covalently or non-covalently, can be assembled into specific structures, thus enabling the exploration of new properties, which cannot be achieved with the target molecular units alone. Through the classification and overview of reported examples, we shed new light on supramolecular scaffolds for the rational design of organic and polymeric materials.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| |
Collapse
|
5
|
Sakurai T, Yoneda S, Sakaguchi S, Kato K, Takata M, Seki S. Donor/Acceptor Segregated π-Stacking Arrays by Use of Shish-Kebab-Type Polymeric Backbones: Highly Conductive Discotic Blends of Phthalocyaninatopolysiloxanes and Perylenediimides. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tsuneaki Sakurai
- Department
of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satoru Yoneda
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shugo Sakaguchi
- Department
of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Kato
- Materials
Visualization Photon Science Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Masaki Takata
- Materials
Visualization Photon Science Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shu Seki
- Department
of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
6
|
Méndez-Ardoy A, Markandeya N, Li X, Tsai YT, Pecastaings G, Buffeteau T, Maurizot V, Muccioli L, Castet F, Huc I, Bassani DM. Multi-dimensional charge transport in supramolecular helical foldamer assemblies. Chem Sci 2017; 8:7251-7257. [PMID: 29147547 PMCID: PMC5633016 DOI: 10.1039/c7sc03341a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/04/2017] [Indexed: 11/21/2022] Open
Abstract
Aromatic foldamers are bioinspired architectures whose potential use in materials remains largely unexplored. Here we report our investigation of vertical and horizontal charge transport over long distances in helical oligo-quinolinecarboxamide foldamers organized as single monolayers on Au or SiO2. Conductive atomic force microscopy showed that vertical conductivity is efficient and that it displays a low attenuation with foldamer length (0.06 Å-1). In contrast, horizontal charge transport is found to be negligible, demonstrating the strong anisotropy of foldamer monolayers. Kinetic Monte Carlo calculations were used to probe the mechanism of charge transport in these helical molecules and revealed the presence of intramolecular through-space charge transfer integrals approaching those found in pentacene and rubrene crystals, in line with experimental results. Kinetic Monte Carlo simulations of charge hopping along the foldamer chain evidence the strong contribution of multiple 1D and 3D pathways in these architectures and their dependence on conformational order. These findings show that helical foldamer architectures may provide a route for achieving charge transport over long distance by combining multiple charge transport pathways.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Nagula Markandeya
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Xuesong Li
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Yu-Tang Tsai
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Gilles Pecastaings
- Inst. Polytechnique de Bordeaux CNRS UMR 5629 LCPO , 16, Av. Pey-Berland , 33600 Pessac , France
| | - Thierry Buffeteau
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Victor Maurizot
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Luca Muccioli
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Frédéric Castet
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Ivan Huc
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Dario M Bassani
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| |
Collapse
|
7
|
Yu H, Alexander DTL, Aschauer U, Häner R. Synthesis of Responsive Two-Dimensional Polymers via Self-Assembled DNA Networks. Angew Chem Int Ed Engl 2017; 56:5040-5044. [PMID: 28370933 DOI: 10.1002/anie.201701342] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/08/2017] [Indexed: 11/08/2022]
Abstract
Despite a growing interest in two-dimensional polymers, their rational synthesis remains a challenge. The solution-phase synthesis of a two-dimensional polymer is reported. A DNA-based monomer self-assembles into a supramolecular network, which is further converted into the covalently linked two-dimensional polymer by anthracene dimerization. The polymers appear as uniform monolayers, as shown by AFM and TEM imaging. Furthermore, they exhibit a pronounced solvent responsivity. The results demonstrate the value of DNA-controlled self-assembly for the formation of two-dimensional polymers in solution.
Collapse
Affiliation(s)
- Hao Yu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Duncan T L Alexander
- Interdisciplinary Centre for Electron Microscopy (CIME), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 12, 1015, Lausanne, Switzerland
| | - Ulrich Aschauer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
8
|
Yu H, Alexander DTL, Aschauer U, Häner R. Synthesis of Responsive Two-Dimensional Polymers via Self-Assembled DNA Networks. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701342] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hao Yu
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Duncan T. L. Alexander
- Interdisciplinary Centre for Electron Microscopy (CIME); Ecole Polytechnique Fédérale de Lausanne (EPFL); Station 12 1015 Lausanne Switzerland
| | - Ulrich Aschauer
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
9
|
Ghosh S, Philips DS, Saeki A, Ajayaghosh A. Nanosheets of an Organic Molecular Assembly from Aqueous Medium Exhibit High Solid-State Emission and Anisotropic Charge-Carrier Mobility. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605408. [PMID: 28009463 DOI: 10.1002/adma.201605408] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/19/2016] [Indexed: 06/06/2023]
Abstract
A π-conjugated amphiphilic diketopyrrolopyrrole (PDPP-Amphi) forms crystalline 2D supramolecular nanosheets in water when compared to that from methyl cyclohexane. These nanosheets exhibit high fluorescence quantum yield in the solid-state with anisotropic charge-carrier mobility of 0.33 cm2 V-1 s-1 .
Collapse
Affiliation(s)
- Samrat Ghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, and Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, India
| | - Divya Susan Philips
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, and Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, India
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, and Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, India
| |
Collapse
|
10
|
Wu ZS, Zheng Y, Zheng S, Wang S, Sun C, Parvez K, Ikeda T, Bao X, Müllen K, Feng X. Stacked-Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for High-Rate All-Solid-State Pseudocapacitors with Enhanced Volumetric Capacitance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1602960. [PMID: 27862390 DOI: 10.1002/adma.201602960] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/28/2016] [Indexed: 06/06/2023]
Abstract
Stacked-layer heterostructure films of 2D thiophene nanosheets and electrochemically exfoliated graphene are constructed for ultrahigh-rate all-solid-state flexible pseudocapacitors and micro-supercapacitors with superior volumetric capacitance due to the synergetic effect of the ultrathin pseudocapacitive thiophene nanosheets and the capacitive electrochemically exfoliated graphene.
Collapse
Affiliation(s)
- Zhong-Shuai Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yijun Zheng
- Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Shuanghao Zheng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100039, China
| | - Sen Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100039, China
| | - Chenglin Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Khaled Parvez
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, Germany
| | - Taichi Ikeda
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Namiki 1-1, TsukubaIbaraki, 305-0044, Japan
| | - Xinhe Bao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Klaus Müllen
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
11
|
Tamura H. Diabatization for Time-Dependent Density Functional Theory: Exciton Transfers and Related Conical Intersections. J Phys Chem A 2016; 120:9341-9347. [PMID: 27801581 DOI: 10.1021/acs.jpca.6b09854] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intermolecular exciton transfers and related conical intersections are analyzed by diabatization for time-dependent density functional theory. The diabatic states are expressed as a linear combination of the adiabatic states so as to emulate the well-defined reference states. The singlet exciton coupling calculated by the diabatization scheme includes contributions from the Coulomb (Förster) and electron exchange (Dexter) couplings. For triplet exciton transfers, the Dexter coupling, charge transfer integral, and diabatic potentials of stacked molecules are calculated for analyzing direct and superexchange pathways. We discuss some topologies of molecular aggregates that induce conical intersections on the vanishing points of the exciton coupling, namely boundary of H- and J-aggregates and T-shape aggregates, as well as canceled exciton coupling to the bright state of H-aggregate, i.e., selective exciton transfer to the dark state. The diabatization scheme automatically accounts for the Berry phase by fixing the signs of reference states while scanning the coordinates.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo , 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|