1
|
Arumugam N, Darshan V M D, Venketesh V, Pradhan SS, Garg A, Sivaramakrishnan V, Kanchi S, Mahalingam SM. Synthesis, computational docking and molecular dynamics studies of a new class of spiroquinoxalinopyrrolidine embedded chromanone hybrids as potent anti-cholinesterase agents. RSC Adv 2024; 14:18815-18831. [PMID: 38867740 PMCID: PMC11167517 DOI: 10.1039/d4ra02432j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Novel structurally intriguing heterocycles embedded with spiropyrrolidine, quinoxaline and chromanone units were synthesized in good yields using a [Bmim]Br accelerated multicomponent reaction strategy. The key step of the reaction is 1,3-dipolar cycloaddition involving highly functionalized dipolarophile, viz. 3-benzylidenechroman-4-one, to afford spiroquinoxalinopyrrolidine embedded chromanone hybrid heterocycles. The formation of spiro products occurs via two C-C, two N-C and one C-N bonds possessing four adjoining stereogenic centers, two of which are spiro carbons. The newly synthesized spiro compounds showed potent acetylcholinesterase and butyrylcholinesterase inhibitory activities. Moreover, compounds with fluorine displayed the highest AChE (3.20 ± 0.16 μM) and BChE (18.14 ± 0.06 μM) inhibitory activities. Further, docking studies, followed by all-atom molecular dynamics, showed results that are consistent with in vitro experimental findings. Although docking scores for the synthesized derivatives were higher than those of the standard drug, MD MMPBSA results showed better binding of synthesized derivatives (-93.5 ± 11.9 kcal mol-1) compared to the standard drug galantamine (-66.2 ± 12.3 kcal mol-1) for AChE but exhibited similar values (-98.1 ± 11.2 and -97.9 ± 11.5 kcal mol-1) for BChE. These differences observed in drug binding with AChE/BChE are consistent with RMSD, RMSF, LIG plots, and FEL structural analysis. Taken together, these derivatives could be potential candidates as inhibitors of AChE and BChE.
Collapse
Affiliation(s)
- Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | - Vishal Venketesh
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | - Anuj Garg
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | | |
Collapse
|
2
|
Datta Darshan VM, Arumugam N, Almansour AI, Sivaramakrishnan V, Kanchi S. In silico energetic and molecular dynamic simulations studies demonstrate potential effect of the point mutations with implications for protein engineering in BDNF. Int J Biol Macromol 2024; 271:132247. [PMID: 38750847 DOI: 10.1016/j.ijbiomac.2024.132247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Protein engineering by directed evolution is time-consuming. Hence, in silico techniques like FoldX-Yasara for ∆∆G calculation, and SNPeffect for predicting propensity for aggregation, amyloid formation, and chaperone binding are employed to design proteins. Here, we used in silico techniques to engineer BDNF-NTF3 interaction and validated it using mutations with known functional implications for NGF dimer. The structures of three mutants representing a positive, negative, or neutral ∆∆G involving two interface residues in BDNF and two mutations representing a neutral and positive ∆∆G in NGF, which is aligned with BDNF, were selected for molecular dynamics (MD) simulation. Our MD results conclude that the secondary structure of individual protomers of the positive and negative mutants displayed a similar or different conformation from the NTF3 monomer, respectively. The positive mutants showed fewer hydrophobic interactions and higher hydrogen bonds compared to the wild-type, negative, and neutral mutants with similar SASA, suggesting solvent-mediated disruption of hydrogen-bonded interactions. Similar results were obtained for mutations with known functional implications for NGF and BDNF. The results suggest that mutations with known effects in homologous proteins could help in validation, and in silico directed evolution experiments could be a viable alternative to the experimental technique used for protein engineering.
Collapse
Affiliation(s)
- V M Datta Darshan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India.
| | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India.
| |
Collapse
|
3
|
Siva Sankari G, James R, Payva F, Sivaramakrishnan V, Vineeth Kumar TV, Kanchi S, Santhy KS. Computational analysis of sodium-dependent phosphate transporter SLC20A1/PiT1 gene identifies missense variations C573F, and T58A as high-risk deleterious SNPs. J Biomol Struct Dyn 2024; 42:4072-4086. [PMID: 37286379 DOI: 10.1080/07391102.2023.2218939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
SLC20A1/PiT1 is a sodium-dependent inorganic phosphate transporter, initially recognized as the retroviral receptor for Gibbon Ape Leukemia Virus in humans. SNPs in SLC20A1 is associated with Combined Pituitary Hormone Deficiency and Sodium Lithium Counter transport. Using in silico techniques, we have screened the nsSNPs for their deleterious effect on the structure and function of SLC20A1. Screening with sequence and structure-based tools on 430 nsSNPs, filtered 17 nsSNPs which are deleterious. To evaluate the role of these SNPs, protein modeling and MD simulations were performed. A comparative analysis of model generated with SWISS-MODEL and AlphaFold shows that many residues are in the disallowed region of Ramachandran plot. Since SWISS-MODEL structure has a 25-residue deletion, the AlphaFold structure was used to perform MD simulation for equilibration and structure refinement. Further, to understand perturbation of energetics, we performed in silico mutagenesis and ΔΔG calculation using FoldX on MD refined structures, which yielded SNPs that are neutral (3), destabilizing (12) and stabilizing (2) on protein structure. Furthermore, to elucidate the impact of SNPs on structure, we performed MD simulations to discern the changes in RMSD, Rg, RMSF and LigPlot of interacting residues. RMSF profiles of representative SNPs revealed that A114V (neutral) and T58A (positive) were more flexible & C573F (negative) was more rigid compared to wild type, which is also reflected in the changes in number of local interacting residues in LigPlot and ΔΔG. Taken together, our results show that SNPs can lead to structural perturbations and impact the function of SLC20A1 with potential implications for disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Siva Sankari
- Centre for Wildlife Studies, Kerala Veterinary and Animal Sciences University, Wayanad, Kerala, India
| | - Remya James
- St. Joseph's College for Women, Alappuzha, Kerala, India
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Febby Payva
- St. Joseph's College for Women, Alappuzha, Kerala, India
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, India
| | | | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, India
| | - K S Santhy
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Sankar Ganesan T, Elangovan N, Thirumavalavan M, Seenan S, Sowrirajan S, Chandrasekar S, Arumugam N, Almansour AI, Mahalingam SM, V M DD, Kanchi S, Sivaramakrishnan V. Synthesis, topology, molecular docking and dynamics studies of o-phenylenediamine derivative. J Biomol Struct Dyn 2024:1-20. [PMID: 38577881 DOI: 10.1080/07391102.2024.2317981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024]
Abstract
The N, N'-(1,2-phenylene) bis (1- (4- chlorophenyl) methanimine) (CS4) was synthesized and characterized by infrared (IR), absorption (UV-vis) and NMR (1H and 13C) spectral analyses. The structural parameters, vibrational frequencies, potential energy and the distribution analysis (PED) were calculated by using DFT with the basis set of B3LYP/cc-pVDZ and these spectral values were compared to the experimental values. HOMO and LUMO studied were performed in order to understand the stability and biological activity of the compound. The most reactive sites on the compound were investigated by utilizing MEP energy surface and Fukui function descriptor with the natural population analysis (NPA) of the charges. The study of the natural bond orbitals (NBO) reveals the delocalization of the intramolecular interaction of the charges in the compound. Additionally, topological investigations (ELF, LOL), determination of thermodynamic parameters and noncovalent interaction (NCI) study by using topology (RDG) analysis were also carried out. Finally, the molecular docking and molecular dynamics simulations was carried out by examining against glycosylphosphatidylinositol phospholipase D inhibitor receptor for distinct protein targets (3MZG).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- T Sankar Ganesan
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - N Elangovan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamilnadu, India
| | | | - Shanthi Seenan
- Department of Chemistry, Saveetha Engineering College, Chennai, Tamil Nadu, India
| | - S Sowrirajan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamilnadu, India
| | - S Chandrasekar
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, Andhra Pradesh, India
| | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, Andhra Pradesh, India
| |
Collapse
|
5
|
Yamini G, Kanchi S, Kalu N, Momben Abolfath S, Leppla SH, Ayappa KG, Maiti PK, Nestorovich EM. Hydrophobic Gating and 1/ f Noise of the Anthrax Toxin Channel. J Phys Chem B 2021; 125:5466-5478. [PMID: 34015215 DOI: 10.1021/acs.jpcb.0c10490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
"Pink" or 1/f noise is a natural phenomenon omnipresent in physics, economics, astrophysics, biology, and even music and languages. In electrophysiology, the stochastic activity of a number of biological ion channels and artificial nanopores could be characterized by current noise with a 1/f power spectral density. In the anthrax toxin channel (PA63), it appears as fast voltage-independent current interruptions between conducting and nonconducting states. This behavior hampers potential development of PA63 as an ion-channel biosensor. On the bright side, the PA63 flickering represents a mesmerizing phenomenon to investigate. Notably, similar 1/f fluctuations are observed in the channel-forming components of clostridial binary C2 and iota toxins, which share functional and structural similarities with the anthrax toxin channel. Similar to PA63, they are evolved to translocate the enzymatic components of the toxins into the cytosol. Here, using high-resolution single-channel lipid bilayer experiments and all-atom molecular dynamic simulations, we suggest that the 1/f noise in PA63 occurs as a result of "hydrophobic gating" at the ϕ-clamp region, the phenomenon earlier observed in several water-filled channels "fastened" inside by the hydrophobic belts. The ϕ-clamp is a narrow "hydrophobic ring" in the PA63 lumen formed by seven or eight phenylalanine residues at position 427, conserved in the C2 and iota toxin channels, which catalyzes protein translocation. Notably, the 1/f noise remains undetected in the F427A PA63 mutant. This finding can elucidate the functional purpose of 1/f noise and its possible role in the transport of the enzymatic components of binary toxins.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Subbarao Kanchi
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India.,Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Nnanya Kalu
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Sanaz Momben Abolfath
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| |
Collapse
|
6
|
Desikan R, Behera A, Maiti PK, Ayappa KG. Using multiscale molecular dynamics simulations to obtain insights into pore forming toxin mechanisms. Methods Enzymol 2021; 649:461-502. [PMID: 33712196 DOI: 10.1016/bs.mie.2021.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pore forming toxins (PFTs) are virulent proteins released by several species, including many strains of bacteria, to attack and kill host cells. In this article, we focus on the utility of molecular dynamics (MD) simulations and the molecular insights gleaned from these techniques on the pore forming pathways of PFTs. In addition to all-atom simulations which are widely used, coarse-grained MARTINI models and structure-based models have also been used to study PFTs. Here, the emphasis is on methods and techniques involved while setting up, monitoring, and evaluating properties from MD simulations of PFTs in a membrane environment. We draw from several case studies to illustrate how MD simulations have provided molecular insights into protein-protein and protein-lipid interactions, lipid dynamics, conformational transitions and structures of both the oligomeric intermediates and assembled pore structures.
Collapse
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Amit Behera
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
7
|
Sathyanarayana P, Visweswariah SS, Ayappa KG. Mechanistic Insights into Pore Formation by an α-Pore Forming Toxin: Protein and Lipid Bilayer Interactions of Cytolysin A. Acc Chem Res 2021; 54:120-131. [PMID: 33291882 DOI: 10.1021/acs.accounts.0c00551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pore forming toxins (PFTs) are the largest class of bacterial toxins playing a central role in bacterial pathogenesis. They are proteins specifically designed to form nanochannels in the membranes of target cells, ultimately resulting in cell death and establishing infection. PFTs are broadly classified as α- and β-PFTs, depending on secondary structures that form the transmembrane channel. A unique feature about this class of proteins is the drastic conformational changes and complex oligomerization pathways that occur upon exposure to the plasma membrane. A molecular understanding of pore formation has implications in designing novel intervention strategies to combat rising antimicrobial resistance, targeted-cancer therapy, as well as designing nanopores for specialized technologies. Central to unraveling the pore formation pathway is the availability of high resolution crystal structures. In this regard, β-toxins are better understood, when compared with α-toxins whose pore forming mechanisms are complicated by an incomplete knowledge of the driving forces for amphiphatic membrane-inserted helices to organize into functional pores. With the publication of the first crystal structure for an α-toxin, cytolysin A (ClyA), in 2009 we embarked on an extensive multiscale study to unravel its pore forming mechanism. This Account represents the collective mechanistic knowledge gained in our laboratories using a variety of experimental and theoretical techniques which include large scale molecular dynamics (MD) simulations, kinetic modeling studies, single-molecule fluorescence imaging, and super-resolution spectroscopy. We reported MD simulations of the ClyA protomer, oligomeric intermediates, and full pore complex in a lipid bilayer and mapped the conformational transitions that accompany membrane binding. Using single-molecule fluorescence imaging, the conformational transition was experimentally verified by analysis of various diffusion states of membrane bound ClyA. Importantly, we have uncovered a hitherto unknown putative cholesterol binding motif in the membrane-inserted helix of ClyA. Distinct binding pockets for cholesterol formed by adjacent membrane-inserted helices are revealed in MD simulations. Cholesterol appears to play a dual role by stabilizing both the membrane-inserted protomer as well as oligomeric intermediates. Molecular dynamics simulations and kinetic modeling studies suggest that the membrane-inserted arcs oligomerize reversibly to form the predominant transmembrane oligomeric intermediates during pore formation. We posit that this mechanistic understanding of the complex action of α-PFTs has implications in unraveling pore assembly across the wider family of bacterial toxins. With emerging antimicrobial resistance, alternate therapies may rely on disrupting pore functionality or oligomerization of these pathogenic determinants utilized by bacteria, and our study includes assessing the potential for dendrimers as pore blockers.
Collapse
Affiliation(s)
- Pradeep Sathyanarayana
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
| | - Sandhya S. Visweswariah
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India 560012
| | - K. Ganapathy Ayappa
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
8
|
Desikan R, Maiti PK, Ayappa KG. Predicting interfacial hot-spot residues that stabilize protein-protein interfaces in oligomeric membrane-toxin pores through hydrogen bonds and salt bridges. J Biomol Struct Dyn 2020; 39:20-34. [DOI: 10.1080/07391102.2020.1711806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Prabal K. Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - K. Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Wu X, Li M, Ying Y, Long Y. The Effects of Tetramethylammonium Cation on Oligonucleotide Analysis with Aerolysin Nanopore. ChemElectroChem 2019. [DOI: 10.1002/celc.201901376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xue‐Yuan Wu
- School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Meng‐Yin Li
- School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Yi‐Lun Ying
- School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
- School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China 163 Xianlin Road, Qixia District, Nanjing, Jiangsu Province
| | - Yi‐Tao Long
- School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
- School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China 163 Xianlin Road, Qixia District, Nanjing, Jiangsu Province
| |
Collapse
|
10
|
Semenyuk P, Muronetz V. Protein Interaction with Charged Macromolecules: From Model Polymers to Unfolded Proteins and Post-Translational Modifications. Int J Mol Sci 2019; 20:E1252. [PMID: 30871103 PMCID: PMC6429204 DOI: 10.3390/ijms20051252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Interaction of proteins with charged macromolecules is involved in many processes in cells. Firstly, there are many naturally occurred charged polymers such as DNA and RNA, polyphosphates, sulfated glycosaminoglycans, etc., as well as pronouncedly charged proteins such as histones or actin. Electrostatic interactions are also important for "generic" proteins, which are not generally considered as polyanions or polycations. Finally, protein behavior can be altered due to post-translational modifications such as phosphorylation, sulfation, and glycation, which change a local charge of the protein region. Herein we review molecular modeling for the investigation of such interactions, from model polyanions and polycations to unfolded proteins. We will show that electrostatic interactions are ubiquitous, and molecular dynamics simulations provide an outstanding opportunity to look inside binding and reveal the contribution of electrostatic interactions. Since a molecular dynamics simulation is only a model, we will comprehensively consider its relationship with the experimental data.
Collapse
Affiliation(s)
- Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
11
|
Kanchi S, Gosika M, Ayappa KG, Maiti PK. Dendrimer Interactions with Lipid Bilayer: Comparison of Force Field and Effect of Implicit vs Explicit Solvation. J Chem Theory Comput 2018; 14:3825-3839. [DOI: 10.1021/acs.jctc.8b00119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Subbarao Kanchi
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Department of Chemical Engineering, Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mounika Gosika
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - K. G. Ayappa
- Department of Chemical Engineering, Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Joshi H, Maiti PK. Structure and electrical properties of DNA nanotubes embedded in lipid bilayer membranes. Nucleic Acids Res 2018; 46:2234-2242. [PMID: 29136243 PMCID: PMC5861442 DOI: 10.1093/nar/gkx1078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/25/2017] [Accepted: 11/03/2017] [Indexed: 01/18/2023] Open
Abstract
Engineering the synthetic nanopores through lipid bilayer membrane to access the interior of a cell is a long persisting challenge in biotechnology. Here, we demonstrate the stability and dynamics of a tile-based 6-helix DNA nanotube (DNT) embedded in POPC lipid bilayer using the analysis of 0.2 μs long equilibrium MD simulation trajectories. We observe that the head groups of the lipid molecules close to the lumen cooperatively tilt towards the hydrophilic sugar-phosphate backbone of DNA and form a toroidal structure around the patch of DNT protruding in the membrane. Further, we explore the effect of ionic concentrations to the in-solution structure and stability of the lipid-DNT complex. Transmembrane ionic current measurements for the constant electric field MD simulation provide the I-V characteristics of the water filled DNT lumen in lipid membrane. With increasing salt concentrations, the measured values of transmembrane ionic conductance of the porous DNT lumen vary from 4.3 to 20.6 nS. Simulations of the DNTs with ssDNA and dsDNA overhangs at the mouth of the pore show gating effect with remarkable difference in the transmembrane ionic conductivities for open and close state nanopores.
Collapse
Affiliation(s)
- Himanshu Joshi
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Sahoo AK, Kanchi S, Mandal T, Dasgupta C, Maiti PK. Translocation of Bioactive Molecules through Carbon Nanotubes Embedded in the Lipid Membrane. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6168-6179. [PMID: 29373024 DOI: 10.1021/acsami.7b18498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the major challenges of nanomedicine and gene therapy is the effective translocation of drugs and genes across cell membranes. In this study, we describe a systematic procedure that could be useful for efficient drug and gene delivery into the cell. Using fully atomistic molecular dynamics (MD) simulations, we show that molecules of various shapes, sizes, and chemistries can be spontaneously encapsulated in a single-walled carbon nanotube (SWCNT) embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer, as we have exemplified with dendrimers, asiRNA, ssDNA, and ubiquitin protein. We compute the free energy gain by the molecules upon their entry inside the SWCNT channel to quantify the stability of these molecules inside the channel as well as to understand the spontaneity of the process. The free energy profiles suggest that all molecules can enter the channel without facing any energy barrier but experience a strong energy barrier (≫kBT) to translocate across the channel. We propose a theoretical model for the estimation of encapsulation and translocation times of the molecules. Whereas the model predicts the encapsulation time to be of the order of few nanoseconds, which match reasonably well with those obtained from the simulations, it predicts the translocation time to be astronomically large for each molecule considered in this study. This eliminates the possibility of passive diffusion of the molecules through the CNT-nanopore spanning across the membrane. To counter this, we put forward a mechanical method of ejecting the encapsulated molecules by pushing them with other free-floating SWCNTs of diameter smaller than the pore diameter. The feasibility of the proposed method is also demonstrated by performing MD simulations. The generic strategy described here should work for other molecules as well and hence could be potentially useful for drug- and gene-delivery applications.
Collapse
Affiliation(s)
- Anil Kumar Sahoo
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Subbarao Kanchi
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Taraknath Mandal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Chandan Dasgupta
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
14
|
Desikan R, Maiti PK, Ayappa KG. Assessing the Structure and Stability of Transmembrane Oligomeric Intermediates of an α-Helical Toxin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11496-11510. [PMID: 28930630 DOI: 10.1021/acs.langmuir.7b02277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein membrane interactions play an important role in our understanding of diverse phenomena ranging from membrane-assisted protein aggregation to oligomerization and folding. Pore-forming toxins (PFTs) are the primary vehicle for infection by several strains of bacteria. These proteins which are expressed in a water-soluble form (monomers) bind to the target membrane and conformationally transform (protomers) and self-assemble to form a multimer transmembrane pore complex through a process of oligomerization. On the basis of the structure of the transmembrane domains, PFTs are broadly classified into β or α toxins. In contrast to β-PFTs, the paucity of available crystal structures coupled with the amphipathic nature of the transmembrane domains has hindered our understanding of α-PFT pore formation. In this article, we use molecular dynamics (MD) simulations to examine the process of pore formation of the bacterial α-PFT, cytolysin A from Escherichia coli (ClyA) in lipid bilayer membranes. Using atomistic MD simulations ranging from 50 to 500 ns, we show that transmembrane oligomeric intermediates or "arcs" form stable proteolipidic complexes consisting of protein arcs with toroidal lipids lining the free edges. By creating initial conditions where the lipids are contained within the arcs, we study the dynamics of spontaneous lipid evacuation and toroidal edge formation. This process occurs on the time scale of tens of nanoseconds, suggesting that once protomers oligomerize, transmembrane arcs are rapidly stabilized to form functional water channels capable of leakage. Using umbrella sampling with a coarse-grained molecular model, we obtain the free energy of insertion of a single protomer into the membrane. A single inserted protomer has a stabilization free energy of -52.9 ± 1.2 kJ/mol and forms a stable transmembrane water channel capable of leakage. Our simulations reveal that arcs are stable and viable intermediates that can occur during the pore-formation pathway for ClyA.
Collapse
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, ‡Centre for Condensed Matter Theory, Department of Physics, and §Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru, India 560012
| | - Prabal K Maiti
- Department of Chemical Engineering, ‡Centre for Condensed Matter Theory, Department of Physics, and §Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru, India 560012
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, ‡Centre for Condensed Matter Theory, Department of Physics, and §Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru, India 560012
| |
Collapse
|
15
|
Abstract
Using fully atomistic molecular dynamics simulation that are several hundred nanoseconds long, we demonstrate the pH-controlled sponge action of PAMAM dendrimer. We show how at varying pH levels, the PAMAM dendrimer acts as a wet sponge; at neutral or low pH levels, the dendrimer expands noticeably and the interior of the dendrimer opens up to host several hundreds to thousands of water molecules depending on the generation number. Increasing the pH (i.e., going from low pH to high pH) leads to the collapse of the dendrimer size, thereby expelling the inner water, which mimics the ‘sponge’ action. As the dendrimer size swells up at a neutral pH or low pH due to the electrostatic repulsion between the primary and tertiary amines that are protonated at this pH, there is dramatic increase in the available solvent accessible surface area (SASA), as well as solvent accessible volume (SAV).
Collapse
Affiliation(s)
- Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Bangalore, India, 560012
- Center for Condensed Matter Theory, Department of Physics, Bangalore, India, 560012
| |
Collapse
|
16
|
Desikan R, Patra SM, Sarthak K, Maiti PK, Ayappa KG. Comparison of coarse-grained (MARTINI) and atomistic molecular dynamics simulations of $$\alpha $$ α and $$\beta $$ β toxin nanopores in lipid membranes. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1316-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Wang C, Yang H, Tian L, Wang S, Gao N, Zhang W, Wang P, Yin X, Li G. Facile fabrication of highly controllable gating systems based on the combination of inverse opal structure and dynamic covalent chemistry. NANOSCALE 2017; 9:7268-7275. [PMID: 28524916 DOI: 10.1039/c7nr00881c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A three-dimensional (3D) inverse opal with periodic and porous structures has shown great potential for applications not only in optics and optoelectronics, but also in functional membranes. In this work, the benzaldehyde group was initially introduced into a 3D nanoporous inverse opal, serving as a platform for fabricating functional membranes. By employing the dynamic covalent approach, a highly controllable gating system was facilely fabricated to achieve modulable and reversible transport features. It was found that the physical/chemical properties and pore size of the gating system could easily be regulated through post-modification with amines. As a demonstration, the gated nanopores were modified with three kinds of amines to control the wettability, surface charge and nanopore size which in turn was exploited to achieve selective mass transport, including hydrophobic molecules, cations and anions, and the transport with respect to the physical steric hindrance. In particular, the gating system showed extraordinary reversibility and could recover to its pristine state by simply changing pH values. Due to the unlimited variety provided by the Schiff base reaction, the inverse opal described here exhibits a significant extendibility and could be easily post-modified with stimuli-responsive molecules for special purposes. Furthermore, this work can be extended to employ other dynamic covalent routes, for example Diels-Alder, ester exchange and disulfide exchange-based routes.
Collapse
Affiliation(s)
- Chen Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Agrawal A, Apoorva K, Ayappa KG. Transmembrane oligomeric intermediates of pore forming toxin Cytolysin A determine leakage kinetics. RSC Adv 2017. [DOI: 10.1039/c7ra07304f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Leakage kinetics of Cytolysin A, an α pore forming toxin, occurs through stochastic insertion of oligomeric intermediates or ‘arcs’.
Collapse
Affiliation(s)
- Ayush Agrawal
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - K. Apoorva
- Department of Chemical Engineering
- Indian Institute of Technology
- Hyderabad-502205
- India
| | - K. G. Ayappa
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
- Centre for Biosystems Science and Engineering
| |
Collapse
|
19
|
Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study. Toxins (Basel) 2016; 8:toxins8110337. [PMID: 27854272 PMCID: PMC5127133 DOI: 10.3390/toxins8110337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
Nearly all the cationic molecules tested so far have been shown to reversibly block K⁺ current through the cation-selective PA63 channels of anthrax toxin in a wide nM-mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic compounds was achieved when multiple copies of positively charged ligands were covalently linked to multivalent scaffolds, such as cyclodextrins and dendrimers. Even though multivalent binding can be strong when the individual bonds are relatively weak, for drug discovery purposes we often strive to design multivalent compounds with high individual functional group affinity toward the respective binding site on a multivalent target. Keeping this requirement in mind, here we perform a single-channel/single-molecule study to investigate kinetic parameters of anthrax toxin PA63 channel blockage by second-generation (G2) poly(amido amine) (PAMAM) dendrimers functionalized with different surface ligands, including G2-NH₂, G2-OH, G2-succinamate, and G2-COONa. We found that the previously reported difference in IC50 values of the G2-OH/PA63 and G2-NH₂/PA63 binding was determined by both on- and off-rates of the reversible dendrimer/channel binding reaction. In 1 M KCl, we observed a decrease of about three folds in k o n and a decrease of only about ten times in t r e s with G2-OH compared to G2-NH₂. At the same time for both blockers, k o n and t r e s increased dramatically with transmembrane voltage increase. PAMAM dendrimers functionalized with negatively charged succinamate, but not carboxyl surface groups, still had some residual activity in inhibiting the anthrax toxin channels. At 100 mV, the on-rate of the G2-succinamate binding was comparable with that of G2-OH but showed weaker voltage dependence when compared to G2-OH and G2-NH₂. The residence time of G2-succinamate in the channel exhibited opposite voltage dependence compared to G2-OH and G2-NH₂, increasing with the cis-negative voltage increase. We also describe kinetics of the PA63 ion current modulation by two different types of the "imperfect" PAMAM dendrimers, the mixed-surface G2 75% OH 25% NH₂ dendrimer and G3-NH₂ dendron. At low voltages, both "imperfect" dendrimers show similar rate constants but significantly weaker voltage sensitivity when compared with the intact G2-NH₂ PAMAM dendrimer.
Collapse
|