1
|
Cheng Y, Huangfu Y, Zhao T, Wang L, Yang J, Liu J, Feng Z, Que K. Thermosensitive hydrogel with programmed dual-octenidine release combating biofilm for the treatment of apical periodontitis. Regen Biomater 2024; 11:rbae031. [PMID: 38605850 PMCID: PMC11007118 DOI: 10.1093/rb/rbae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
The utilization of intracanal medicaments is an indispensable procedure in root-canal treatment. However, the conventional intracanal medicaments still need improvement regarding antimicrobial efficacy and ease of clinical operation. To address the above issues, OCT/PECT@OCT + ALK composite hydrogel characterized by programming sequential release of dual antimicrobial agents has been proposed. Thanks to the self-assemble ability of amphiphilic copolymer poly(ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT), dual hydrophilic and hydrophobic antimicrobial agents could be easily encapsulated in the hydrogel system and tailored for sequential drug release for a better antibiofilm effect. The hydrophilic octenidine (Octenidine dihydrochloride, OCT-HCl) is encapsulated in the hydrophilic part of hydrogel for instantaneous elevating the drug concentration through bursting release, and the hydrophobic octenidine (Octenidine, OCT) is further loaded into the PECT nanoparticles to achieve a slower and sustained-release profile. Additionally, calcium hydroxide (Ca(OH)2) was incorporated into the system and evenly dispersed among PECT nanoparticles to create an alkaline (ALK) environment, synergistically enhancing the antibiofilm effect with higher efficiency and prolonged duration. The antibiofilm effect has been demonstrated in root-canal models and apical periodontitis rats, exhibiting superior performance compared to clinically used Ca(OH)2 paste. This study demonstrates that OCT/PECT@OCT + ALK composite thermosensitive hydrogel is a potential intracanal medicament with excellent antibiofilm effect and clinical operability.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yini Huangfu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Tingyuan Zhao
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Linxian Wang
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Jing Yang
- Department of Oral Implantology, Tianjin Stomatological Hospital, Tianjin 300041, China
| | - Jie Liu
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Kehua Que
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
2
|
Liu Y, Zhao J, Chen J, Miao X. Nanocrystals in cosmetics and cosmeceuticals by topical delivery. Colloids Surf B Biointerfaces 2023; 227:113385. [PMID: 37270904 DOI: 10.1016/j.colsurfb.2023.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The main issues with local delivery of cosmetics are their high sensitivity and limited drug loading of active pharmaceutical ingredient. Nanocrystal technology offers consumers cutting-edge and effective products and exhibits enormous development potential in the beauty business as a new delivery method to address the issue of low solubility and low permeability of sensitive chemicals. In this review, we described the processes for making NCs, along with the impacts of loading and the uses of different carriers. Among them, nanocrystalline loaded gel and emulsion are widely used and may further improve the stability of the system. Then, we introduced the beauty efficacy of drug NCs from five aspects: anti-inflammation and acne, anti-bacterial, lightening and freckle removal, anti-aging as well as UV protection. Following that, we presented the current scenario about stability and safety. Finally, the challenges and vacancy were discussed along with the potential uses of NCs in the cosmetics industry. This review serves as a resource for the advancement of nanocrystal technology in the cosmetics sector.
Collapse
Affiliation(s)
- Yi Liu
- Marine College, Shandong University, Weihai 264209, China; SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Jingru Zhao
- Marine College, Shandong University, Weihai 264209, China
| | - Jing Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
3
|
Exploration of hemocompatibility and intratumoral accumulation of paclitaxel after loco-regional administration of thermoresponsive hydrogel composed of poloxamer and xanthan gum: An application to dose-dense chemotherapy. Int J Biol Macromol 2023; 226:746-759. [PMID: 36495991 DOI: 10.1016/j.ijbiomac.2022.11.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Although paclitaxel is a front-line chemotherapeutic agent for the treatment of metastatic breast cancer, its intravenous therapy produces deleterious adverse effects. In an attempt to address the issue, the present study aimed to develop a paclitaxel loaded thermosensitive/thermoresponsive hydrogel (PTXNp-TGel) for loco-regional administration to breast tumors to provide dose-dense chemotherapy. Poloxamer and xanthan gum were used to prepare TGel by the cold method. In vitro and in vivo performance of PTXNp-TGel was compared with TGel, pure drug loaded TGel (PTX-TGel) and marketed formulation, Taxol®. The formulated PTXNp-TGel showed acceptable gelation temperature and time (37 °C and 57 s), lower viscosity at room temperature and higher viscosity at body temperature to support sol-gel transition with increasing temperature, and sustained drug release up to 21 days. Additionally, PTXNp-TGel showed negligible hemolytic toxicity as compared to PTX-TGel and Taxol®. Intratumoral administration of PTXNp-TGel produced significantly higher antitumor activity as indicated by lowest relative tumor volume (1.50) and relative antitumor proliferation rate (27.71 %) in comparison with PTX-TGel, Taxol®, and PTXNp (p < 0.05). Finally, insignificant body weight loss during the experimental period, lack of hematotoxicity, nephrotoxicity, and hepatotoxicity imply improved therapeutic performance of the locally administrated dose-dense therapy of PTXNp-TGel as compared to Taxol®.
Collapse
|
4
|
Shahriar SMS, Andrabi SM, Islam F, An JM, Schindler SJ, Matis MP, Lee DY, Lee YK. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics 2022; 14:2712. [PMID: 36559206 PMCID: PMC9784306 DOI: 10.3390/pharmaceutics14122712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the leading cause of death after cardiovascular disease. Despite significant advances in cancer research over the past few decades, it is almost impossible to cure end-stage cancer patients and bring them to remission. Adverse effects of chemotherapy are mainly caused by the accumulation of chemotherapeutic agents in normal tissues, and drug resistance hinders the potential therapeutic effects and curing of this disease. New drug formulations need to be developed to overcome these problems and increase the therapeutic index of chemotherapeutics. As a chemotherapeutic delivery platform, three-dimensional (3D) scaffolds are an up-and-coming option because they can respond to biological factors, modify their properties accordingly, and promote site-specific chemotherapeutic deliveries in a sustainable and controlled release manner. This review paper focuses on the features and applications of the variety of 3D scaffold-based nano-delivery systems that could be used to improve local cancer therapy by selectively delivering chemotherapeutics to the target sites in future.
Collapse
Affiliation(s)
- S. M. Shatil Shahriar
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery—Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Syed Muntazir Andrabi
- Department of Surgery—Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Farhana Islam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | | | - Mitchell P. Matis
- Kansas City Internal Medicine Residency Program, HCA Healthcare, Overland Park, KS 66215, USA
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Yong-kyu Lee
- 4D Biomaterials Center, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
5
|
Paclitaxel Drug Delivery Systems: Focus on Nanocrystals' Surface Modifications. Polymers (Basel) 2022; 14:polym14040658. [PMID: 35215570 PMCID: PMC8875890 DOI: 10.3390/polym14040658] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent that belongs to the taxane family and which was approved to treat various kinds of cancers including breast cancer, ovarian cancer, advanced non-small-cell lung cancer, and acquired immunodeficiency syndrome (AIDS)-related Kaposi’s sarcoma. Several delivery systems for PTX have been developed to enhance its solubility and pharmacological properties involving liposomes, nanoparticles, microparticles, micelles, cosolvent methods, and the complexation with cyclodextrins and other materials that are summarized in this article. Specifically, this review discusses deeply the developed paclitaxel nanocrystal formulations. As PTX is a hydrophobic drug with inferior water solubility properties, which are improved a lot by nanocrystal formulation. Based on that, many studies employed nano-crystallization techniques not only to improve the oral delivery of PTX, but IV, intraperitoneal (IP), and local and intertumoral delivery systems were also developed. Additionally, superior and interesting properties of PTX NCs were achieved by performing additional modifications to the NCs, such as stabilization with surfactants and coating with polymers. This review summarizes these delivery systems by shedding light on their route of administration, the methods used in the preparation and modifications, the in vitro or in vivo models used, and the advantages obtained based on the developed formulations.
Collapse
|
6
|
Kesharwani P, Bisht A, Alexander A, Dave V, Sharma S. Biomedical applications of hydrogels in drug delivery system: An update. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102914] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Karami K, Anbari K. Breast Cancer: A Review of Risk Factors and New Insights into Treatment. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717999210120195208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Today, despite significant advances in cancer treatment have been made, breast cancer
remains one of the main health problems and considered a top biomedical investigation urgency.
The present study reviewed the common conventional chemotherapy agents and also some alternative
and complementary approaches such as oncolytic virotherapy, bacteriotherapy, nanotherapy,
immunotherapy, and natural products, which are recommended for breast cancer treatment. In addition
to current surgery approaches such as mastectomy, in recent years, a number of novel techniques
such as robotic mastectomies, nipple-sparing mastectomy, skin-sparing mastectomy, daycase
mastectomy were used in breast cancer surgery. In this review, we summarize new insights
into risk factors, surgical and non-surgical treatments for breast cancer.
Collapse
Affiliation(s)
- Kimia Karami
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Khatereh Anbari
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
8
|
Guo Z, Bai Y, Zhang Z, Mei H, Li J, Pu Y, Zhao N, Gao W, Wu F, He B, Xie J. Thermosensitive polymer hydrogel as a physical shield on colonic mucosa for colitis treatment. J Mater Chem B 2021; 9:3874-3884. [PMID: 33928321 DOI: 10.1039/d1tb00499a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis (UC), is a chronic disease characterized by diffuse mucosal inflammation limited to the colon. Topical drug delivery systems that could be facilely performed and efficiently retained at colon sites are attractive for clinical IBD treatment. Herein, we report the exploration of an injectable thermosensitive copolymer hydrogel as a topical formulation for IBD treatment and demonstrate its feasibility in UC treatment by shielding ulcer sites from the external environment and being a drug reservoir for sustained release. Poly(aliphatic ester)-based triblock copolymer, poly(dl-lactic acid)-poly(ethylene glycol)-poly(dl-lactic acid) (PDLLA-PEG-PDLLA), adopts the solution state at room temperature yet a gel state at body temperature when the polymer concentration is more than 11%. The gel acts not only as a physical mucosal barrier for protecting ulcer sites from microorganisms like bacteria but also as a mesalazine depot for enhanced drug retention in the colon for localized, sustained drug release. In vivo UC treatment reveals that blank gel as a mucosal protector shows nearly the same treatment effect to mesalazine SR granules. Mesalazine-loaded gel significantly suppresses inflammation and has the best outcomes of indices such as colonic length, mucosal injury index, pathological tissue, and inflammatory factor. The injectable thermosensitive polymer hydrogel represents a novel, robust platform for the efficient treatment of IBD by acting as a physical shield to block out the pro-inflammatory factors as well as a drug depot for enhanced drug retention and controlled delivery.
Collapse
Affiliation(s)
- Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yun Bai
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Heng Mei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Nan Zhao
- Puliyan (Nanjing) Medical Science & Technology Co. LTD, Nanjing 210042, China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jing Xie
- Department of Stomatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
9
|
Rafael D, Melendres MMR, Andrade F, Montero S, Martinez-Trucharte F, Vilar-Hernandez M, Durán-Lara EF, Schwartz S, Abasolo I. Thermo-responsive hydrogels for cancer local therapy: Challenges and state-of-art. Int J Pharm 2021; 606:120954. [PMID: 34332061 DOI: 10.1016/j.ijpharm.2021.120954] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Despite the enormous efforts done by the scientific community in the last decades, advanced cancer is still considered an incurable disease. New formulations are continuously under investigation to improve drugs therapeutic index, i.e., increase chemotherapeutic efficacy and reduce adverse effects. In this context, hydrogels-based systems for drug local sustained/controlled release have been proposed to reduce off-target effects caused by the repeated administration of systemic/oral anticancer drugs and improve their therapeutic effectiveness. Moreover, it increases the patient welfare by reducing the number of administrations needed. Among the several types of existing hydrogels, the thermo-responsive ones, which are able to change their physical state from liquid at 25 °C to a gel at the body temperature, i.e., 37 °C, gained special attention as in situ sustained drug release depot-systems in cancer treatment. To date, several thermo-responsive hydrogels have been used for drugs and/or genetic material delivery, yielding promising results both at preclinical and clinical evaluation stages. This culminates in the market authorization of Jelmyto® for the treatment of urothelial cancer. Here are summarized and discussed the last 10 years advances regarding the application of thermo-responsive hydrogels in local cancer treatment.
Collapse
Affiliation(s)
- Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Maria Mercè Roca Melendres
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernanda Andrade
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Barcelona, Spain.
| | - Sara Montero
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Martinez-Trucharte
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Vilar-Hernandez
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Francisco Durán-Lara
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile.
| | - Simó Schwartz
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ibane Abasolo
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111581. [DOI: 10.1016/j.colsurfb.2021.111581] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
11
|
Tang RZ, Liu ZZ, Gu SS, Liu XQ. Multiple local therapeutics based on nano-hydrogel composites in breast cancer treatment. J Mater Chem B 2021; 9:1521-1535. [PMID: 33474559 DOI: 10.1039/d0tb02737e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The locoregional recurrence of breast cancer after tumor resection represents several clinical challenges, and conventional post-surgical adjuvant therapeutics always bring about significant systemic side effects. Thus, the local therapy strategy has received considerable interest in breast cancer treatment, and hydrogels can function as ideal platforms due to their remarkable properties such as good biocompatibility, biodegradability, flexibility, and multifunctionality. The nano-hydrogel composites can further incorporate the advantages of nanomaterials into the hydrogel system, to fabricate hierarchical structures for stimulating controlled multi-stage release of different therapeutic agents and improving the synergistic effects of combination therapy. In this review, the problems of clinical treatments of breast cancer and properties of hydrogels in current biomedical applications are briefly overviewed. The focus is on recent advances in local therapy based on nano-hydrogel composites for both monotherapy (chemotherapy, photothermal and photodynamic therapy) and combination therapy (dual chemotherapy, photothermal chemotherapy, photothermal immunotherapy, radio-chemotherapy). Moreover, the challenges and perspectives in the development of advanced nano-hydrogel systems are also discussed.
Collapse
Affiliation(s)
- Rui-Zhi Tang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Zhen-Zhen Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| | - Sai-Sai Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| |
Collapse
|
12
|
Zhai Z, Xu P, Yao J, Li R, Gong L, Yin Y, Lin Z. Erythrocyte-mimicking paclitaxel nanoparticles for improving biodistributions of hydrophobic drugs to enhance antitumor efficacy. Drug Deliv 2020; 27:387-399. [PMID: 32098525 PMCID: PMC7054973 DOI: 10.1080/10717544.2020.1731862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent decades have witnessed several nanocrystal-based hydrophobic drug formulations because of their excellent performance in improving drug loading and controlling drug release as mediate drug forms in tablets or capsules. However, the intravenous administration of drug nanocrystals was usually hampered by their hydrophobic surface properties, causing short half-life time in circulation and low drug distribution in tumor. Here, we proposed to enclose nanocrystals (NC) of hydrophobic drug, such as paclitaxel (PTX) into erythrocyte membrane (EM). By a series of formulation optimizations, spherical PTX nanoparticles (PN) with the particle size of around 280 nm were successfully cloaked in erythrocyte membrane, resulting in a PTX-NP-EM (PNM) system. The PNM could achieve high drug loading of PTX (>60%) and stabilize the particle size significantly compared to PN alone. Besides, the fluorescence-labeling PNM presented better tumor cell uptake, stronger cytotoxicity, and higher drug accumulation in tumor compared to PN. Finally, the PNM was found to be the most effective against tumor growth among all PTX formulations in tumor-bearing mice models, with much lower system toxicity than control formulation. In general, the PNM system with high drug-loading as well as superior bio-distributions in vivo could be served as a promising formulation.
Collapse
Affiliation(s)
- Zheng Zhai
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Pengcheng Xu
- School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia, China
| | - Jun Yao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ridong Li
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
13
|
Wang Z, Feng T, Zhou L, Jiang D, Zhang Y, He G, Lin J, Huang P, Lu D. Salinomycin nanocrystals for colorectal cancer treatment through inhibition of Wnt/β-catenin signaling. NANOSCALE 2020; 12:19931-19938. [PMID: 32990713 DOI: 10.1039/d0nr04552g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Salinomycin (SAL) is one of the first discovered inhibitors of human cancer stem cells (CSCs), which acts via blocking the Wnt/β-catenin pathway. However, SAL has not been clinically used to treat human diseases due to its poor aqueous solubility and considerable toxicity. In this study, we developed salinomycin nanocrystals (SAL NCs) to treat colorectal cancer through the inhibitory enhancement of Wnt/β-catenin signaling. The as-prepared SAL NCs exhibited excellent size distribution, stability, and improved water solubility. In vitro cellular uptake and in vivo fluorescence imaging studies showed that SAL NCs increased cellular uptake efficiency compared with free SAL. As a result, SAL NCs exhibited significant higher cytotoxicity, 1.5-3 times better Wnt inhibitory effect, and 10 times better cancer stem cell inhibitory effect than free SAL. Furthermore, compared with free SAL, SAL NCs exhibited 2 times better anti-colon tumor effect in APCmin/+ transgenic mice through oral administration. Our results indicated that SAL NCs with enhanced cellular internalization and tumor tissue accumulation may be a promising agent for colorectal cancer management.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mei D, Gong L, Zou Y, Yang D, Liu H, Liang Y, Sun N, Zhao L, Zhang Q, Lin Z. Platelet membrane-cloaked paclitaxel-nanocrystals augment postoperative chemotherapeutical efficacy. J Control Release 2020; 324:341-353. [DOI: 10.1016/j.jconrel.2020.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
|
15
|
Guo J, Feng Z, Liu X, Wang C, Huang P, Zhang J, Deng L, Wang W, Dong A. An injectable thermosensitive hydrogel self-supported by nanoparticles of PEGylated amino-modified PCL for enhanced local tumor chemotherapy. SOFT MATTER 2020; 16:5750-5758. [PMID: 32529197 DOI: 10.1039/d0sm00147c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We synthesized amino-modified poly(ε-caprolactone) PCN-b-PEG-b-PCN (PECN) triblock copolymers and studied the contribution of the introduced amino groups to the drug delivery efficiency of PECN nanoparticles (NPs) and their injectable thermosensitive hydrogels. PECN15 with an optimal amino group content was obtained. Firstly, the hydrophobic drug paclitaxel (PTX) was loaded into PECN15 up to 5.91% and formed PTX/PECN NPs 90 nm in size and with a slightly positive charge (7.3 mV). Furthermore, the injectable PTX/PECN NPs aqueous solution (25 wt%) at ambient temperature could undergo fast gelation at 37 °C and sustainedly release PTX/PECN NPs in 10 days. More importantly, compared with our previously reported PECT NPs, the PECN NPs without an increase in toxicity could improve the cell uptake and enhance intracellular drug release by responding to the acidic environment of the endosome. Thus, the PTX/PECN NPs presented a lower IC50 of 3.14 μg mL-1 than that of the PTX/PECT NPs (7.67 μg mL-1) and free PTX (4.65 μg mL-1). Moreover, through peritumoral injection, the PTX/PECNGel showed 94.27% inhibition rate of tumor growth on day 19, higher than PTX/PECTGel (72.28%) and Taxol® (47.03%). Therefore, the PECN NPs hydrogel provided a more effective injectable platform to enhance local cancer chemotherapy, and also provided the possibility of further functionalization by the reactive amino groups.
Collapse
Affiliation(s)
- Jinxuan Guo
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zujian Feng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiang Liu
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Changrong Wang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Jianhua Zhang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
16
|
Hu J, Wang M, Xiao X, Zhang B, Xie Q, Xu X, Li S, Zheng Z, Wei D, Zhang X. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. NANOSCALE 2020; 12:10799-10808. [PMID: 32391836 DOI: 10.1039/d0nr01308k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical immunosuppressants have been widely used for the treatment of systemic lupus erythematosus (SLE). However, these small chemical drugs suffer from poor solubility, short circulating half-life and adverse side effects. One of the most effective strategies to extend the circulating time is loading drugs into nanocarriers to form nanomedicines, which is of particular interest for the treatment of cancer and viral diseases but has seldom been applied to autoimmune disorders. Herein, we successfully developed an easy but general drug delivery platform based on the new biocompatible polyhydroxyalkanoate (PHA) terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx). In this proof of concept study, we loaded the PHBVHHx nanocarrier with the immunosuppressant azathioprine (AZA) for SLE therapy for the first time. The AZA-PHA nanoparticles possessed ∼30% cytotoxicity and slow clearance from the kidneys. In a murine SLE model, AZA-PHA nanoparticles exhibited superior therapeutic efficacy to AZA and AZA-polylactic acid (PLA) nanoparticles without appreciable toxicity. This delivery system may provide a new and general platform for the development of nanomedicines with enhanced therapeutic efficacy and reduced side effects in SLE therapy.
Collapse
Affiliation(s)
- Jin Hu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fan DY, Tian Y, Liu ZJ. Injectable Hydrogels for Localized Cancer Therapy. Front Chem 2019; 7:675. [PMID: 31681729 PMCID: PMC6797556 DOI: 10.3389/fchem.2019.00675] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional intravenous chemotherapy is relative to many systemic side effects, including myelosuppression, liver or kidney dysfunction, and neurotoxicity. As an alternative method, the injectable hydrogel can efficiently avoid these problems by releasing drugs topically at the tumor site. With advantages of localized drug toxicity in the tumor site, proper injectable hydrogel as the drug delivery system has become a research hotspot. Based on different types and stages of cancer, a variety of hydrogel drug delivery systems were developed, including thermosensitive, pH-sensitive, photosensitive, and dual-sensitive hydrogel. In this review, the latest developments of these hydrogels and related drug delivery systems were summarized. In summary, our increasing knowledge of injectable hydrogel for localized cancer therapy ensures us that it is a more durable and effective approach than traditional chemotherapy. Smart release system reacting to different stimuli at different time according to the micro-environment changes in the tumor site is a promising tendency for further studies.
Collapse
Affiliation(s)
- Dao-Yang Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhong-Jun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Wang B, Wu S, Lin Z, Jiang Y, Chen Y, Chen ZS, Yang X, Gao W. A personalized and long-acting local therapeutic platform combining photothermal therapy and chemotherapy for the treatment of multidrug-resistant colon tumor. Int J Nanomedicine 2018; 13:8411-8427. [PMID: 30587968 PMCID: PMC6294077 DOI: 10.2147/ijn.s184728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Local photothermal therapy (PTT) provides an easily applicable, noninvasive adjunctive therapy for colorectal cancer (CRC), especially when multidrug resistance (MDR) occurs. However, using PTT alone does not result in complete tumor ablation in many cases, thus resulting in tumor recurrence and metastasis. MATERIALS AND METHODS In this study, we aim to develop a personalized local therapeutic platform combining PTT with long-acting chemotherapy for the treatment of MDR CRC. The platform consists of polyethylene glycol (PEG)-coated gold nanorods (PEG-GNRs) and D-alpha-tocopheryl PEG 1000 succinate (TPGS)-coated paclitaxel (PTX) nanocrystals (TPGS-PTX NC), followed by the incorporation into an in situ hydrogel (gel) system (GNRs-TPGS-PTX NC-gel) before injection. After administration, PEG-GNRs can exert quick and efficient local photothermal response under near-infrared laser irradiation to shrink tumor; TPGS-PTX NC then provides a long-acting chemotherapy due to the sustained release of PTX along with the P-glycoprotein inhibitor TPGS to reverse the drug resistance. RESULTS The cytotoxicity studies showed that the IC50 of GNRs-TPGS-PTX NC-gel with laser irradiation decreased to ~178-folds compared with PTX alone in drug-resistant SW620 AD300 cells. In the in vivo efficacy test, after laser irradiation, the GNRs-TPGS-PTX NC-gel showed similar tumor volume inhibition compared with GNRs-gel at the beginning. However, after 14 days, the tumor volume of the mice treated with GNRs-gel quickly increased, while that of the mice treated with GNRs-TPGS-PTX NC-gel remained controllable due to the long-term chemotherapeutic effect of TPGS-PTX NC. The mice treated with GNRs-TPGS-PTX NC-gel also showed no weight loss and obvious organ damages and lesions during the treatment, indicating a low systemic side effect profile and a good biocompatibility. CONCLUSION Overall, the nano-complex may serve as a promising local therapeutic patch against MDR CRC with one-time dosing to achieve a long-term tumor control. The doses of PEG-GNRs and TPGS-PTX NC can be easily adjusted before use according to patient-specific characteristics potentially making it a personalized therapeutic platform.
Collapse
Affiliation(s)
- Beibei Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China, ;
| | - Sunyi Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China, ;
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yajun Jiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China, ;
| | - Yan Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China, ;
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, New York, NY 11439, USA
| | - Xiaoying Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China, ;
| | - Wei Gao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China, ;
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA,
| |
Collapse
|
19
|
Li X, Su X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 2018; 6:4714-4730. [PMID: 32254299 DOI: 10.1039/c8tb01078a] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, clinical applications have been proposed for various hydrogel products. Hydrogels can be derived from animal tissues, plant extracts and/or adipose tissue extracellular matrices; each type of hydrogel presents significantly different functional properties and may be used for many different applications, including medical therapies, environmental pollution treatments, and industrial materials. Due to complicated preparation techniques and the complexities associated with the selection of suitable materials, the applications of many host-guest supramolecular polymeric hydrogels are limited. Thus, improvements in the design and construction of smart materials are highly desirable in order to increase the lifetimes of functional materials. Here, we summarize different functional hydrogels and their varied preparation methods and source materials. The multifunctional properties of hydrogels, particularly their unique ability to adapt to certain environmental stimuli, are chiefly based on the incorporation of smart materials. Smart materials may be temperature sensitive, pH sensitive, pH/temperature dual sensitive, photoresponsive or salt responsive and may be used for hydrogel wound repair, hydrogel bone repair, hydrogel drug delivery, cancer therapy, and so on. This review focuses on the recent development of smart hydrogels for tissue engineering applications and describes some of the latest advances in using smart materials to create hydrogels for cancer therapy.
Collapse
Affiliation(s)
- Xian Li
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China.
| | | |
Collapse
|
20
|
Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, Santos HA. Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703740. [PMID: 29534311 DOI: 10.1002/adma.201703740] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/16/2017] [Indexed: 05/24/2023]
Abstract
In the past two decades, porous silicon (PSi) has attracted increasing attention for its potential biomedical applications. With its controllable geometry, tunable nanoporous structure, large pore volume/high specific surface area, and versatile surface chemistry, PSi shows significant advantages over conventional drug carriers. Here, an overview of recent progress in the use of PSi in drug delivery and cancer immunotherapy is presented. First, an overview of the fabrication of PSi with various geometric structures is provided, with particular focus on how the unique geometry of PSi facilitates its biomedical applications, especially for drug delivery. Second, surface chemistry and modification of PSi are discussed in relation to the strengthening of its performance in drug delivery and bioimaging. Emerging technologies for engineering PSi-based composites are then summarized. Emerging PSi advances in the context of cancer immunotherapy are also highlighted. Overall, very promising research results encourage further exploration of PSi for biomedical applications, particularly in drug delivery and cancer immunotherapy, and future translation of PSi into clinical applications.
Collapse
Affiliation(s)
- Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yaping Ding
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
21
|
Miao X, Yang W, Feng T, Lin J, Huang P. Drug nanocrystals for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1499. [PMID: 29044971 DOI: 10.1002/wnan.1499] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/26/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023]
Abstract
Drug nanocrystals (NCs) with fascinating physicochemical properties have attracted great attention in drug delivery. High drug-loading efficiency, great structural stability, steady dissolution, and long circulation time are a few examples of these properties, which makes drug NCs an excellent formulation for efficient cancer therapy. In the last two decades, there are a lot of hydrophobic or lipophilic drugs, such as paclitaxel (PTX), camptothecin (CPT), thymectacin, busulfan, cyclosporin A, 2-devinyl-2-(1-hexyloxyethyl) pyropheophorbide (HPPH), and so on, which have been formulated into drug NCs for cancer therapy. In this review, we summarized the recent advances in drug NCs-based cancer treatment. So far, there are main three methods to synthesize drug NCs, including top-down, bottom-up, and combination methods. The characterization methods of drug NCs were also elaborated. Furthermore, the applications and mechanisms of drug NCs were introduced by their administration routes. At the end, we gave a brief conclusion and discussed the future perspectives of drug NCs in cancer therapy. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Xiaoqing Miao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wuwei Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Tao Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|