1
|
Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications. MATERIALS 2021; 14:ma14154152. [PMID: 34361346 PMCID: PMC8348132 DOI: 10.3390/ma14154152] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Polyelectrolyte multilayers are versatile materials that are used in a large number of domains, including biomedical and environmental applications. The fabrication of polyelectrolyte multilayers using the layer-by-layer technique is one of the simplest methods to obtain composite functional materials. The properties of the final material can be easily tuned by changing the deposition conditions and the used building blocks. This review presents the main characteristics of polyelectrolyte multilayers, the fabrication methods currently used, and the factors influencing the layer-by-layer assembly of polyelectrolytes. The last section of this paper presents some of the most important applications of polyelectrolyte multilayers, with a special focus on biomedical and environmental applications.
Collapse
|
2
|
Zheng K, Li S, Chen Z, Chen Y, Hong Y, Lan W. Highly stable graphene oxide composite nanofiltration membrane. NANOSCALE 2021; 13:10061-10066. [PMID: 34042916 DOI: 10.1039/d1nr01823j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) based membranes are promising for advanced nanofiltration in water treatments but there is a need to improve water flux and membrane stability. Although the interlayer distance of GO membranes can be expanded using intercalants to improve permeability, achieving uniform intercalation without the added complication of water-induced swelling is challenging. Herein, we report the fabrication of GO hybrid lamellar membranes with controllable layer structures to achieve high performance in nanofiltration. The interlayer spacing of the GO hybrid membrane is regulated using TiO2 intercalants of different sizes, while the stability of GO membranes is enhanced by encapsulating with polyethyleneimine (PEI). The optimal composite membrane delivers a pure water-flux up to 26.0 L m-2 h-1 bar-1 with a 99.9% rejection of methylene blue and eosin under an ultra-low pressure nanofiltration condition. More importantly, the composite membrane sustains good cycling stability after 5 filtration cycles of dye, which enables the potential industrial application in realizing ultra-stable GO based membranes.
Collapse
Affiliation(s)
- Kaiqiang Zheng
- Xiamen University Center for Membrane Application and Advancement, College of Materials, Xiamen University, Xiamen 361005, Fujian, China.
| | | | | | | | | | | |
Collapse
|
3
|
Shen YJ, Kong QR, Fang LF, Qiu ZL, Zhu BK. Construction of covalently-bonded tannic acid/polyhedral oligomeric silsesquioxanes nanochannel layer for antibiotics/salt separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Liu J, Liu J, Attarilar S, Wang C, Tamaddon M, Yang C, Xie K, Yao J, Wang L, Liu C, Tang Y. Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Front Bioeng Biotechnol 2020; 8:576969. [PMID: 33330415 PMCID: PMC7719827 DOI: 10.3389/fbioe.2020.576969] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Titanium and its alloys have superb biocompatibility, low elastic modulus, and favorable corrosion resistance. These exceptional properties lead to its wide use as a medical implant material. Titanium itself does not have antibacterial properties, so bacteria can gather and adhere to its surface resulting in infection issues. The infection is among the main reasons for implant failure in orthopedic surgeries. Nano-modification, as one of the good options, has the potential to induce different degrees of antibacterial effect on the surface of implant materials. At the same time, the nano-modification procedure and the produced nanostructures should not adversely affect the osteogenic activity, and it should simultaneously lead to favorable antibacterial properties on the surface of the implant. This article scrutinizes and deals with the surface nano-modification of titanium implant materials from three aspects: nanostructures formation procedures, nanomaterials loading, and nano-morphology. In this regard, the research progress on the antibacterial properties of various surface nano-modification of titanium implant materials and the related procedures are introduced, and the new trends will be discussed in order to improve the related materials and methods.
Collapse
Affiliation(s)
- Jianqiao Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Maryam Tamaddon
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jinguang Yao
- Youjiang Medical University for Nationalities, Baise, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
5
|
Yuan W, Weng GM, Lipton J, Li CM, Van Tassel PR, Taylor AD. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Adv Colloid Interface Sci 2020; 282:102200. [PMID: 32585489 DOI: 10.1016/j.cis.2020.102200] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Layer-by-layer (LbL) assembly is a nanoscale technique with great versatility, simplicity and molecular-level processing of various nanoscopic materials. Weak polyelectrolytes have been used as major building blocks for LbL assembly providing a fundamental and versatile tool to study the underlying mechanisms and practical applications of LbL assembly due to its pH-responsive charge density and molecular conformation. Because of high-density uncompensated charges and high-chain mobility, weak polyelectrolyte exponential multilayer growth is considered one of the fastest developing areas for organized molecular films. In this article, we systematically review the current status and developments of weak polyelectrolyte-based multilayers including all-weak-polyelectrolyte multilayers, weak polyelectrolytes/other components (e.g. strong polyelectrolytes, neutral polymers, and nanoparticles) multilayers, and exponentially grown weak polyelectrolyte multilayers. Several key aspects of weak polyelectrolytes are highlighted including the pH-controllable properties, the responsiveness to environmental pH, and synergetic functions obtained from weak polyelectrolyte/other component multilayers. Throughout this review, useful applications of weak polyelectrolyte-based multilayers in drug delivery, tunable biointerfaces, nanoreactors for synthesis of nanostructures, solid state electrolytes, membrane separation, and sensors are highlighted, and promising future directions in the area of weak polyelectrolyte-based multilayer assembly such as fabrication of multi-responsive materials, adoption of unique building blocks, investigation of internal molecular-level structure and mechanism of exponentially grown multilayers, and exploration of novel biomedical and energy applications are proposed.
Collapse
|
6
|
Preparation of biofiltration membranes by coating electrospun polyacrylonitrile fiber membranes with layer-by-layer supermolecular polyelectrolyte films. Colloids Surf B Biointerfaces 2020; 190:110953. [DOI: 10.1016/j.colsurfb.2020.110953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 01/20/2023]
|
7
|
Single-step coating of polyethylenimine on gradient nanoporous phenolics for tight membranes with ultrahigh permeance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Rajesh S, Bose AB. Development of Graphene Oxide Framework Membranes via the "from" and "to" Cross-Linking Approach for Ion-Selective Separations. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27706-27716. [PMID: 31305985 DOI: 10.1021/acsami.9b05465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) membranes with well-defined nanochannels formed between the stacked GO nanosheets find great interest in molecular separations. However, GO membranes are unstable in aqueous solution environments because of weak interactions between the stacked nanosheets. Herein, we developed a preparation method by diminishing the self-contained oxidized functional groups in GO and subsequent cross-linking to form GO framework (GOF) membranes with excellent aqueous solution stability. GOF membranes were fabricated by alternate deposition of branched polyethylenimine (BPEI) and a mixed solution of GO and thiourea (TU). Structural elucidation illustrated that the TU partially reduced the GO molecules and acted as a "to" cross-linker by bridging adjacent GO nanosheets through in-plane and out-of-plane of interactions. During the GO deposition, BPEI performed the role as a "from" cross-linker by binding the TU-linked GO laminates to form stable GOF membranes with well-defined nanochannels. Morphological studies confirmed the formation of the tightly packed structure for BPEI/GO_TU membranes due to the high Π-Π interactions between the GO nanosheets and bridging effect of TU. The GOF membranes exhibited a rejection of 99.5% for anionic dye methyl orange and cationic dye rhodamine B. The BPEI/GO_TU membranes fabricated from 12 bilayers using 0.25 mg/mL of GO solution have a pure water flux of 24 L m-2 h-1 and a Na2SO4 rejection of 94%; this permeability is 2.5 times higher than that of commercial nanofiltration membranes. Moreover, (BPEI/GO_TU)12 GOF membranes exhibited excellent aqueous solution stability in acidic and basic conditions. The excellent separation performance and aqueous solution stability of the BPEI/GO_TU membranes are intricately linked to the partial reduction and cross-linking of GO nanosheets in GOF membranes. Thus, the "from" and "to" cross-linking approach developed in this work can be extended for the fabrication of structurally stable membranes from other 2D materials.
Collapse
Affiliation(s)
- Sahadevan Rajesh
- Department of Engineering Technology and Texas Center for Superconductivity (TcSUH) , University of Houston , Houston , Texas 77204 , United States
| | - Anima B Bose
- Department of Engineering Technology and Texas Center for Superconductivity (TcSUH) , University of Houston , Houston , Texas 77204 , United States
| |
Collapse
|
9
|
Gil-Castell O, Galindo-Alfaro D, Sánchez-Ballester S, Teruel-Juanes R, Badia JD, Ribes-Greus A. Crosslinked Sulfonated Poly(vinyl alcohol)/Graphene Oxide Electrospun Nanofibers as Polyelectrolytes. NANOMATERIALS 2019; 9:nano9030397. [PMID: 30857239 PMCID: PMC6474007 DOI: 10.3390/nano9030397] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/25/2022]
Abstract
Taking advantage of the high functionalization capacity of poly(vinyl alcohol) (PVA), bead-free homogeneous nanofibrous mats were produced. The addition of functional groups by means of grafting strategies such as the sulfonation and the addition of nanoparticles such as graphene oxide (GO) were considered to bring new features to PVA. Two series of sulfonated and nonsulfonated composite nanofibers, with different compositions of GO, were prepared by electrospinning. The use of sulfosuccinic acid (SSA) allowed crosslinked and functionalized mats with controlled size and morphology to be obtained. The functionalization of the main chain of the PVA and the determination of the optimum composition of GO were analyzed in terms of the nanofibrous morphology, the chemical structure, the thermal properties, and conductivity. The crosslinking and the sulfonation treatment decreased the average fiber diameter of the nanofibers, which were electrical insulators regardless of the composition. The addition of small amounts of GO contributed to the retention of humidity, which significantly increased the proton conductivity. Although the single sulfonation of the polymer matrix produced a decrease in the proton conductivity, the combination of the sulfonation, the crosslinking, and the addition of GO enhanced the proton conductivity. The proposed nanofibers can be considered as good candidates for being exploited as valuable components for ionic polyelectrolyte membranes.
Collapse
Affiliation(s)
- Oscar Gil-Castell
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain.
- Department of Chemical Engineering, School of Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain.
| | - Diana Galindo-Alfaro
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain.
| | - Soraya Sánchez-Ballester
- Packaging, Transport, & Logistics Research Institute (ITENE), C/Albert Einstein, 1, Parque Tecnológico, 46980 Paterna, Spain.
| | - Roberto Teruel-Juanes
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain.
| | - José David Badia
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain.
- Department of Chemical Engineering, School of Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain.
| | - Amparo Ribes-Greus
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
10
|
Rajesh S, Schneiderman S, Crandall C, Fong H, Menkhaus TJ. Synthesis of Cellulose-graft-Polypropionic Acid Nanofiber Cation-Exchange Membrane Adsorbers for High-Efficiency Separations. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41055-41065. [PMID: 29111637 DOI: 10.1021/acsami.7b13459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fabrication of membrane adsorbers with elevated binding capacity and high throughput is highly desired for simplifying and improving purification efficiencies of bioproducts (biotherapeutics, vaccines, etc.) in the biotechnological and biopharmaceutical industries. Here we demonstrate the preparation of a novel class of self-supported, cellulose-graft-polypropionic acid (CL-g-PPA) cation-exchange nanofiber membrane adsorbers under mild reaction conditions for the purification of positively charged therapeutic proteins. In our fabrication method, acrylonitrile was first polymerized and surface grafted onto cellulose nanofibers using cerium ammonium nitrate as a redox initiator to form cellulose-g-polyacrylonitrile (CL-g-PAN). CL-g-PAN was then submitted to a hydrolyzation reaction to form CL-g-PPA cationic membrane adsorbers. Morphology and structural characterization illustrated the formation of CL-g-PPA membranes with uniform coating of polyacid nanolayers along the individual nanofibers without disturbing the nanofiber structure. Benefiting from these numerous cationic polyacid binding sites and inherent large surface area and open porous structure, CL-g-PPA nanofiber membrane adsorbers showed a lysozyme static adsorption capacity of 1664 mg/g of nanofibers. These membranes showed a lysozyme dynamic binding capacity of 508 mg/g of nanofibers at 10% breakthrough (equivalent to 206 g/L capacity), with a residence time of less than 6 s. Moreover, CL-g-PPA self-supported nanofibers displayed excellent structural stability and reversibility after several cycles of protein binding studies. This dynamic binding capacity of the CL-g-PPA nanofiber membranes was 3.2 times higher than that of macroporous cellulose membranes and 8.5 times higher than that of the Sartobind S commercial membrane adsorber. Considering the simple fabrication method employed, excellent protein adsorption capacity, remarkable structural stability, and reusability, CL-g-PPA nanofiber membranes provided a versatile platform for the chromatographic separations of biomolecules (e.g., proteins, nucleic acids, and viral vaccines) as well as water purification and similar ion-exchange applications.
Collapse
Affiliation(s)
- Sahadevan Rajesh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Steven Schneiderman
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Caitlin Crandall
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Hao Fong
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Todd J Menkhaus
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| |
Collapse
|
11
|
Ghiorghita CA, Bucatariu F, Dragan ES. Poly(N,N-dimethylamino)ethyl methacrylate/sodium alginate multilayers and their interaction with proteins/enzymes. Int J Biol Macromol 2017; 107:1584-1590. [PMID: 28993296 DOI: 10.1016/j.ijbiomac.2017.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/12/2017] [Accepted: 10/05/2017] [Indexed: 02/02/2023]
Abstract
The aim of the present work is to construct and investigate the properties of novel polyelectrolyte multilayers consisting of poly(N,N-dimethylamino)ethyl methacrylate (PDMAEMA) and sodium alginate (SA). The influence of PDMAEMA's pH dependent ionization degree on the charge balance, thickness and roughness of the multilayer films was assessed by potentiometric titrations, dye sorption and atomic force microscopy. Moreover, the cross-linking of PDMAEMA/SA films with a dihalogenated aromatic derivative with high reactivity (α,α'-dichloro-p-xylene) by means of Menshutkin reaction and the stability of the multilayer architecture to repeated treatments with NaOH are demonstrated. Also, the interaction of the obtained films with various proteins/enzymes (pepsin, bovine serum albumin, haemoglobin and lysozyme) is investigated. It was found that biomolecules with the isoelectric point in the acidic region of pH were adsorbed in a higher amount than the biomolecules with the isoelectric point in the basic region of pH.
Collapse
Affiliation(s)
| | - Florin Bucatariu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Ecaterina Stela Dragan
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania.
| |
Collapse
|
12
|
Wang Z, Crandall C, Prautzsch VL, Sahadevan R, Menkhaus TJ, Fong H. Electrospun Regenerated Cellulose Nanofiber Membranes Surface-Grafted with Water-Insoluble Poly(HEMA) or Water-Soluble Poly(AAS) Chains via the ATRP Method for Ultrafiltration of Water. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4272-4278. [PMID: 28078887 DOI: 10.1021/acsami.6b16116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrospun nanofiber membranes (ENMs) have demonstrated promising applications for water purification primarily due to high water flux and low degree of fouling. However, the equivalent/apparent pore sizes of as-electrospun ENMs are in microns/submicrons; therefore, the ENMs can only be directly utilized for microfiltration applications. To make regenerated cellulose (RC) ENMs for ultrafiltration applications, atom transfer radical polymerization (ATRP) was studied to graft polymer chains onto the surface of RC nanofibers; specifically, monomers of 2-hydroxyethyl methacrylate (HEMA) and sodium acrylate (AAS) were selected for surface-grafting water-insoluble and water-soluble polymer chains onto RC nanofibers, respectively. With prolonging of the ATRP reaction time, the resulting surface-modified RC ENMs had reduced pore sizes. The water-insoluble poly(HEMA) chains coated the surface of RC nanofibers to make the fibers thicker, thus decreasing the membrane pore size and reducing permeability. On the other hand, the water-soluble poly(AAS) chains did not coat the surface of RC nanofibers; instead, they partially filled the pores to form gel-like structures, which served to decrease the effective pore size, while still providing elevated permeability. The surface-modified RC ENMs were subsequently explored for ultrafiltration of ∼40 nm nanoparticles and ∼10 nm bovine serum albumin (BSA) molecules from water. The results indicated that the HEMA-modified RC membranes could reject/remove more than 95% of the nanoparticles while they could not reject any BSA molecules; in comparison, the AAS-modified RC membranes had complete rejection of the nanoparticles and could even reject ∼58% of the BSA molecules.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Chemistry and Applied Biological Sciences and ‡Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Caitlin Crandall
- Department of Chemistry and Applied Biological Sciences and ‡Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Vicki L Prautzsch
- Department of Chemistry and Applied Biological Sciences and ‡Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Rajesh Sahadevan
- Department of Chemistry and Applied Biological Sciences and ‡Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Todd J Menkhaus
- Department of Chemistry and Applied Biological Sciences and ‡Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Hao Fong
- Department of Chemistry and Applied Biological Sciences and ‡Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| |
Collapse
|