1
|
Wang C, Xie Z, Wang Y, Ding Y, Leung MKH, Ng YH. Defects of Metal Halide Perovskites in Photocatalytic Energy Conversion: Friend or Foe? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402471. [PMID: 38828743 PMCID: PMC11304286 DOI: 10.1002/advs.202402471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Photocatalytic solar-to-fuel conversion over metal halide perovskites (MHPs) has recently attracted much attention, while the roles of defects in MHPs are still under debate. Specifically, the mainstream viewpoint is that the defects are detrimental to photocatalytic performance, while some recent studies show that certain types of defects contribute to photoactivity enhancement. However, a systematic summary of why it is contradictory and how the defects in MHPs affect photocatalytic performance is still lacking. In this review, the innovative roles of defects in MHP photocatalysts are highlighted. First, the origins of defects in MHPs are elaborated, followed by clarifying certain benefits of defects in photocatalysts including optical absorption, charge dynamics, and surface reaction. Afterward, the recent progress on defect-related MHP photocatalysis, i.e., CO2 reduction, H2 generation, pollutant degradation, and organic synthesis is systematically discussed and critically appraised, putting emphasis on their beneficial effects. With defects offering peculiar sets of merits and demerits, the personal opinion on the ongoing challenges is concluded and outlining potentially promising opportunities for engineering defects on MHP photocatalysts. This critical review is anticipated to offer a better understanding of the MHP defects and spur some inspiration for designing efficient MHP photocatalysts.
Collapse
Affiliation(s)
- Chunhua Wang
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Zhirun Xie
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Yannan Wang
- Department of Materials EngineeringKU LeuvenKasteelpark Arenberg 44Leuven3001Belgium
| | - Yang Ding
- College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhou310018China
| | - Michael K. H. Leung
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Yun Hau Ng
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| |
Collapse
|
2
|
Jing X, Yu S, Zhang G, Tang Y, Yin J, Peng J, Lai W. Sensitive fluorescence ELISA for the detection of zearalenone based on self-assembly DNA nanocomposites and copper nanoclusters. Anal Bioanal Chem 2024; 416:983-992. [PMID: 38127274 DOI: 10.1007/s00216-023-05088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Zearalenone (ZEN), produced by Fusarium species, is a potential risk to human health. Traditional enzyme-linked immunosorbent assay (ELISA) is restricted due to low sensitivity for the detection of ZEN. Herein, enzyme nanocomposites (ALP-SA-Bio-ssDNA, ASBD) were prepared with the self-assembly strategy based on streptavidin-labeled alkaline phosphatase (SA-ALP) and dual-biotinylated ssDNA (B2-ssDNA). The enzyme nanocomposites improved the loading amount of ALP and catalyzed more ascorbic acid 2-phosphate to generate ascorbic acid (AA). Subsequently, Cu2+ could be reduced to copper nanoclusters (CuNCs) having strong fluorescence signal by AA with poly T. Benefiting from the high enzyme load of nanocomposites and the strong signal of CuNCs, the fluorescence ELISA was successfully established for the detection of ZEN. The proposed method exhibited lower limit of detection (0.26 ng mL-1) than traditional ELISA (1.55 ng mL-1). The recovery rates ranged from 92.00% to 108.38% (coefficient of variation < 9.50%) for the detection of zearalenone in corn and wheat samples. In addition, the proposed method exhibited no cross reaction with four other mycotoxins. This proposed method could be used in trace detection for food safety.
Collapse
Affiliation(s)
- Xudong Jing
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China
| | - Sha Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Yanyan Tang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China
| | - Jiaqi Yin
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China.
| |
Collapse
|
3
|
Pan M, Wang M, Yang L, Song Y, Jiang M, Yu X, Xu L. Construction of Metal Organic Framework-Derived Fe-N-C Oxidase Nanozyme for Rapid and Sensitive Detection of Alkaline Phosphatase. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2496. [PMID: 37764526 PMCID: PMC10537703 DOI: 10.3390/nano13182496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Alkaline phosphatase (ALP) is a phosphomonoester hydrolase and serves as a biomarker in various diseases. However, current detection methods for ALP rely on bulky instruments, extended time, and complex operations, which are particularly challenging in resource-limited regions. Herein, we synthesized a MOF-derived Fe-N-C nanozyme to create biosensors for the coulometric and visual detection of ALP. Specifically, we found the Fe-N-C nanozyme can efficiently oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue-colored tetramethyl benzidine (TMBox) without the need for H2O2. To construct the biosensor, we incorporated the ALP enzymatic catalytic reaction to inhibit the oxidation of TMB by Fe-N-C oxidase nanozyme. This biosensor showed rapid and highly sensitive detection of ALP in both buffer and clinical samples. The limit of detection (LOD) of our approach could be achieved at 3.38 U L-1, and the linear range was from 5 to 60 U L-1. Moreover, we also developed a visual detection for ALP by using a smartphone-based assay and facilitated practical and accessible point-and-care testing (POCT) in resource-limited areas. The visual detection method also achieved a similar LOD of 2.12 U L-1 and a linear range of 5-60 U L-1. Our approach presents potential applications for other biomarker detections by using ALP-based ELISA methods.
Collapse
Affiliation(s)
- Mengmeng Pan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (M.P.); (Y.S.); (M.J.)
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Linjiao Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (M.P.); (Y.S.); (M.J.)
| | - Yongli Song
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (M.P.); (Y.S.); (M.J.)
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (M.P.); (Y.S.); (M.J.)
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (M.P.); (Y.S.); (M.J.)
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (M.P.); (Y.S.); (M.J.)
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| |
Collapse
|
4
|
Jing X, Shan S, Xing K, Cao W, Xiao X, Liu D, Lai W. Sensitive fluorescence ELISA with streptavidin scaffolded DNA tetrads for the detection of Escherichia coli O157:H7. J Dairy Sci 2023; 106:5930-5939. [PMID: 37474367 DOI: 10.3168/jds.2022-23015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/28/2023] [Indexed: 07/22/2023]
Abstract
Escherichia coli O157:H7 poses a threat to humans. Traditional ELISA is not a sensitive method for the detection of E. coli O157:H7. Here, an efficient method was designed for improving the load capacity of alkaline phosphatase (ALP) with streptavidin scaffolded DNA tetrad (SS-DNAt). With more ALP, more ascorbic acid 2-phosphate was catalyzed to ascorbic acid that was used to synthesize fluorescence poly adenine-thymine-templated copper nanoclusters. Based on SS-DNAt, fluorescence ELISA was successfully proposed for improving the sensitivity for detection of E. coli O157:H7 in milk samples. The method showed a linear range of 104 to 106 cfu/mL. The limit of detection of fluorescence ELISA was 3.75 × 103 cfu/mL and 6.16-fold better than that of traditional ELISA. The recovery of the fluorescence ELISA was 86.7 to 93.6% with the coefficient of variation of 5.6 to 10.5% in milk. This method could be used to detect hazardous material in food.
Collapse
Affiliation(s)
- Xudong Jing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shan Shan
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, Nanchang 330029, China
| | - Keyu Xing
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wenkai Cao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyue Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, Nanchang 330029, China.
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
5
|
Tong W, Fang H, Xiong H, Wei D, Leng Y, Hu X, Huang X, Xiong Y. Eco-Friendly Fluorescent ELISA Based on Bifunctional Phage for Ultrasensitive Detection of Ochratoxin A in Corn. Foods 2021; 10:2429. [PMID: 34681477 PMCID: PMC8536128 DOI: 10.3390/foods10102429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023] Open
Abstract
Conventional enzyme-linked immunosorbent assay (ELISA) is commonly used for Ochratoxin A (OTA) screening, but it is limited by low sensitivity and harmful competing antigens of enzyme-OTA conjugates. Herein, a bifunctional M13 bacteriophage with OTA mimotopes fused on the p3 protein and biotin modified on major p8 proteins was introduced as an eco-friendly competing antigen and enzyme container for enhanced sensitivity. Mercaptopropionic acid-modified quantum dots (MPA-QDs), which are extremely sensitive to hydrogen peroxide, were chosen as fluorescent signal transducers that could manifest glucose oxidase-induced fluorescence quenching in the presence of glucose. On these bases, a highly sensitive and eco-friendly fluorescent immunoassay for OTA sensing was developed. Under optimized conditions, the proposed method demonstrates a good linear detection of OTA from 4.8 to 625 pg/mL and a limit of detection (LOD) of 5.39 pg/mL. The LOD is approximately 26-fold lower than that of a conventional horse radish peroxidase (HRP) based ELISA and six-fold lower than that of a GOx-OTA conjugate-based fluorescent ELISA. The proposed method also shows great specificity and accepted accuracy for analyzing OTA in real corn samples. The detection results are highly consistent with those obtained using the ultra-performance liquid chromatography-fluorescence detection method, indicating the high reliability of the proposed method for OTA detection. In conclusion, the proposed method is an excellent OTA screening platform over a conventional ELISA and can be easily extended for sensing other analytes by altering specific mimic peptide sequences in phages.
Collapse
Affiliation(s)
- Weipeng Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hanpeng Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Daixian Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xinyu Hu
- School of Qianhu, Nanchang University, Nanchang 330031, China;
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
6
|
Li S, Hu X, Li Y, Tan H. Fluorescent enzyme-linked immunosorbent assay based on alkaline phosphatase-responsive coordination polymer composite. Mikrochim Acta 2021; 188:263. [PMID: 34287706 DOI: 10.1007/s00604-021-04920-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/27/2021] [Indexed: 11/24/2022]
Abstract
The fabrication of alkaline phosphatase (ALP)-responsive coordination polymer (CP) composite is demonstrated for establishing a fluorescent immunoassay. The CP composite (ThT@GMP/Eu) was synthesized by encapsulating thioflavin T (ThT) into the CP host that was composed of europium ion (Eu3+) and guanine monophosphate (GMP). The ThT@GMP/Eu composite shows a strong fluorescence in aqueous solution due to the confinement effect of GMP/Eu CPs, which restricts the conformational rotation of ThT. However, upon the addition of ALP, the structure of GMP/Eu CPs was disrupted to release ThT into solution. This results in the quenching of the fluorescence of ThT@GMP/Eu. The fluorescence of ThT@GMP/Eu has a linear response that covers 0.8 to 120 mU/mL ALP with a detection limit of 0.26 mU/mL and exhibits excellent specificity towards ALP against other enzymes. On this basis, inspired by the wide application of ALP as an enzyme label in enzyme-linked immunosorbent assay (ELISA), an ALP-based fluorescent immunoassay was further developed for the detection of mouse immunoglobulin G (mIgG). The developed immunoassay displays a linear fluorescent response towards mIgG from 0.8 to 100 ng/mL, and the detection limit is 0.16 ng/mL. The fluorescent immunoassay was successfully applied to the determination of mIgG in serum samples. Schematic of the responsivity of ThT@GMP/Eu to ALP that hydrolyzes GMP to release ThT, which leads to fluorescent quenching, and its application in the construction of a fluorescent immunoassay for mIgG determination.
Collapse
Affiliation(s)
- Shenghua Li
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, People's Republic of China
| | - Xing Hu
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, People's Republic of China
| | - Yong Li
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Hongliang Tan
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, People's Republic of China.
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| |
Collapse
|
7
|
He Y, Tian F, Zhou J, Zhao Q, Fu R, Jiao B. Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121758. [PMID: 31796354 DOI: 10.1016/j.jhazmat.2019.121758] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
An innovative colorimetric method based on enzyme-induced gold nanoparticle aggregation was developed to detect the activity of alkaline phosphatase (ALP), and it was further applied to construct an aptasensor to monitor ochratoxin A (OTA) concentrations. In the presence of ALP, the substrate ascorbic acid 2-phosphate was hydrolyzed to generate ascorbic acid (AA). Subsequently, reduction of MnO2 nanosheets by AA produced manganese ions, which mediated gold nanoparticle aggregation. The color of the detection solution changed from brown-red to purple to blue as the ALP concentration increased, and a detection limit of 0.05 U·L-1 was achieved. Furthermore, this strategy was successfully utilized to devise a target-responsive aptasensor for colorimetric detection of an important mycotoxin, OTA, which causes food poisoning and has various toxic effects on humans. The proposed method offers high sensitivity with a detection limit as low as 5.0 nM together with high specificity. When applied to analyze red wine and grape juice samples, no complex sample pretreatment or bulky instruments were required. Overall, a colorimetric platform based on enzyme-induced gold nanoparticle aggregation was successfully established to improve the simplicity and sensitivity of ALP and OTA detection. This platform appears highly promising for mycotoxin-related food safety monitoring.
Collapse
Affiliation(s)
- Yue He
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China.
| | - Fengyu Tian
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Jing Zhou
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Qiyang Zhao
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Ruijie Fu
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Bining Jiao
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China.
| |
Collapse
|
8
|
In situ formation of fluorescent silicon-containing polymer dots for alkaline phosphatase activity detection and immunoassay. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9690-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Li J, Heng H, Lv J, Jiang T, Wang Z, Dai Z. Graphene Oxide-Assisted and DNA-Modulated SERS of AuCu Alloy for the Fabrication of Apurinic/Apyrimidinic Endonuclease 1 Biosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901506. [PMID: 31062520 DOI: 10.1002/smll.201901506] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Fabrication of high-performance surface-enhanced Raman scattering (SERS) biosensors relies on the coordination of SERS substrates and sensing strategies. Herein, a SERS active AuCu alloy with a starfish-like structure is prepared using a surfactant-free method. By covering the anisotropic AuCu alloy with graphene oxide (GO), enhanced SERS activity is obtained owing to graphene-enhanced Raman scattering and assembly of Raman reporters. Besides, stability of SERS is promoted based on the protection of GO to the AuCu alloy. Meanwhile, it is found that SERS activity of AuCu/GO can be regulated by DNA. The regulation is sequence and length dual-dependent, and short polyT reveals the strongest ability of enhancing the SERS activity. Relying on this phenomenon, a SERS biosensor is designed to quantify apurinic/apyrimidinic endonuclease 1 (APE1). Because of the APE1-induced cycling amplification, the biosensor is able to detect APE1 sensitively and selectively. In addition, APE1 in human serum is analyzed by the SERS biosensor and enzyme-linked immunosorbent assay (ELISA). The data from the SERS method are superior to that from ELISA, indicating great potential of this biosensor in clinical applications.
Collapse
Affiliation(s)
- Junyao Li
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hang Heng
- Center for Analysis and Testing, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jianlin Lv
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Tingting Jiang
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhaoyin Wang
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Center for Analysis and Testing, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
10
|
An indirect ELISA-inspired dual-channel fluorescent immunoassay based on MPA-capped CdTe/ZnS QDs. Anal Bioanal Chem 2019; 411:5437-5444. [PMID: 31300858 DOI: 10.1007/s00216-019-01917-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/22/2019] [Accepted: 05/14/2019] [Indexed: 01/11/2023]
Abstract
To meet the need for high-throughput immunoassays, many multiplex fluorescent immunoassays have been proposed. Most of them need different kinds of fluorescent label indicators during the test. In this work, a novel indirect ELISA-inspired dual-channel fluorescent immunoassay based on 3-mercaptopropionic acid capped CdTe/ZnS quantum dots (QDs) was constructed. The ELISA wells were coated with two kinds of antigen-QD complex. When the primary antibodies were present in a sample, they mediated the binding of a secondary antibody-DNA-gold nanoparticle complex to the antigen-QD complex. Then the gold nanoparticles quenched the fluorescence of the QDs and a decrease in fluorescence intensity was observed. Thus, the amount of primary antibody could be estimated from the decrease of fluorescence intensity. Owing to the wide absorption range and the relatively narrow emission band of the QDs, the dual-channel fluorescent immunoassay system could work at the same excitation wavelength and the emission wavelengths of each channel had no interference. As a result, two different kinds of primary antibody could be detected at the same time in one ELISA well, which simplified the operation and greatly improved the efficiency. Besides, only one type of secondary antibody needs to be added to the prepared microtiter plates, which further simplified the operation during the detection procedure. This dual-channel fluorescent immunoassay system will provide new insights into high-throughput immunodetection. Graphical abstract.
Collapse
|
11
|
Chen C, Chen S, Shiddiky MJA, Chen C, Wu KC. DNA‐Templated Copper Nanoprobes: Overview, Feature, Application, and Current Development in Detection Technologies. CHEM REC 2019; 20:174-186. [DOI: 10.1002/tcr.201900022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/22/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Chung‐An Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Shih‐Chia Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Muhammad J. A. Shiddiky
- School of Environment and Science & Queensland Micro- and Nanotechnology CentreNathan campus, Griffith University 170 Kessels Road QLD 4111 Australia
| | - Chien‐Fu Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Kevin C.‐W. Wu
- Department of Chemical EngineeringNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
- Division of Medical Engineering Research, National Health
| |
Collapse
|
12
|
Liu R, Hu J, Chen Y, Jiang M, Lv Y. Label-Free Nuclease Assay with Long-Term Stability. Anal Chem 2019; 91:8691-8696. [DOI: 10.1021/acs.analchem.9b02467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jianyu Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yongxin Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Min Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Chen P, Yan S, Sawyer E, Ying B, Wei X, Wu Z, Geng J. Rapid and simple detection of ascorbic acid and alkaline phosphatase via controlled generation of silver nanoparticles and selective recognition. Analyst 2019; 144:1147-1152. [PMID: 30534723 DOI: 10.1039/c8an01925h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ascorbic acid (AA) and alkaline phosphatase (ALP) serve as an important coenzyme and enzyme in multiple biological metabolism reactions, respectively, and abnormal levels of these substrates have been associated with several diseases. Herein, a new and simple fluorescence strategy has been developed for AA and ALP sensing by exploiting CdTe quantum dots (QDs) as an effective signal indicator. This method is mainly based on the selective fluorescence-quenching reaction between Ag+ and CdTe QDs, as opposed to silver nanoparticles (Ag NPs); Ag+ can be reduced to Ag NPs by AA. Furthermore, by taking advantage of AA as a mediator, this strategy is further exploited for ALP assay given that ALP can cause the hydrolysis of l-ascorbic acid-2-phosphate (AAP), which yields AA. Under optimal conditions, controlled generation of Ag NPs and the selective recognition-based sensing system exhibit high sensitivity toward AA and ALP with limits of detection (LODs) of 3 μM and 0.25 U L-1 and linear ranges of detection from 0 to 800 μM and 1 to 1000 U L-1, respectively. Moreover, the sensor was successfully used for assaying AA in fruit juice and ALP in human serum. The results demonstrate that the proposed fluorescence strategy has significant advantages, such as its simplicity, cost-effectiveness, and rapid runtime, and the operational convenience of this label-free method further demonstrates its potential for constructing effective sensors with biochemical and clinical applications.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
He Y, Tian F, Zhou J, Jiao B. Alkaline phosphatase determination via regulation of enzymatically generated poly(thymine) as a template for fluorescent copper nanoparticle formation. Anal Bioanal Chem 2019; 411:3811-3818. [PMID: 31104084 DOI: 10.1007/s00216-019-01851-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 11/28/2022]
Abstract
We propose a new fluorometric method for alkaline phosphatase (ALP) determination. This method is based on the regulation of enzymatically generated poly(thymine) for the preparation of copper nanoparticles (CuNPs). 2'-Deoxythymidine 5'-triphosphate (dTTP) serves as the source for polymerization mediated by terminal deoxynucleotidyl transferase (TdT). This process generates poly(thymine), which acts as the template for synthesis of fluorescent CuNPs. However, if ALP catalyzes the hydrolysis of dTTP, the TdT-mediated polymerization will be disabled. This prevents the formation of CuNPs and causes a drop in fluorescence. The findings were used to design a sensitive and selective fluorometric method for ALP determination. A linear response in the activity range from 0.1 to 20 U L-1 and a limit of quantification of 0.3 U L-1 were obtained. The results indicate that the proposed method can be successfully applied to ALP assay in spiked diluted serum. This demonstrates the method's reliability and practicability. Graphical abstract A fluoromoetric method for alkaline phosphatase assay has been developed based on regulation of enzymatically generated poly(thymine) as template for the formation of fluorescent CuNPs.
Collapse
Affiliation(s)
- Yue He
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China. .,College of Food Science, Southwest University, Chongqing, 400712, China.
| | - Fengyu Tian
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,College of Food Science, Southwest University, Chongqing, 400712, China
| | - Jing Zhou
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,College of Food Science, Southwest University, Chongqing, 400712, China
| | - Bining Jiao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,College of Food Science, Southwest University, Chongqing, 400712, China
| |
Collapse
|
15
|
Qing Z, Bai A, Xing S, Zou Z, He X, Wang K, Yang R. Progress in biosensor based on DNA-templated copper nanoparticles. Biosens Bioelectron 2019; 137:96-109. [PMID: 31085403 DOI: 10.1016/j.bios.2019.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 02/01/2023]
Abstract
During the last decades, by virtue of their unique physicochemical properties and potential application in microelectronics, biosensing and biomedicine, metal nanomaterials (MNs) have attracted great research interest and been highly developed. Deoxyribonucleic acid (DNA) is a particularly interesting ligand for templating bottom-up nanopreparation, by virtue of its excellent properties including nanosized geometry structure, programmable and artificial synthesis, DNA-metal ion interaction and powerful molecular recognition. DNA-templated copper nanoparticles (DNA-CuNPs) has been developed in recent years. Because of its advantages including simple and rapid preparation, high efficiency, MegaStokes shifting and low biological toxicity, DNA-CuNPs has been highly exploited for biochemical sensing from 2010, especially as a label-free detection manner, holding advantages in multiple analytical technologies including fluorescence, electrochemistry, surface plasmon resonance, inductively coupled plasma mass spectrometry and surface enhanced Raman spectroscopy. This review comprehensively tracks the preparation of DNA-CuNPs and its application in biosensing, and highlights the potential development and challenges regarding this field, aiming to promote the advance of this fertile research area.
Collapse
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| | - Ailing Bai
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Shuohui Xing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
16
|
|
17
|
Yu W, Li Y, Xie B, Ma M, Chen C, Li C, Yu X, Wang Z, Wen K, Tang BZ, Shen J. An Aggregation-Induced Emission-Based Indirect Competitive Immunoassay for Fluorescence "Turn-On" Detection of Drug Residues in Foodstuffs. Front Chem 2019; 7:228. [PMID: 31069213 PMCID: PMC6491695 DOI: 10.3389/fchem.2019.00228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 12/31/2022] Open
Abstract
A new fluorescent "turn-on" probe-based immunosensor for detecting drug residues in foodstuffs was established by combining the mechanism of aggregation-induced emission (AIE) and an indirect competitive enzyme-linked immunosorbent assay (ELISA). In this study, a luminogen, with negligible fluorescence emission (TPE-HPro), aggregated in the presence of H2O2, and exhibited astrong yellow emission based on its AIE characteristics. This AIE process was further configured into an immunoassay for analyzing drug residues in foodstuffs. In this approach, glucose oxidase (GOx) was used as an enzyme label for the immunoassay and triggered GOx/glucose-mediated H2O2 generation, which caused oxidation of TPE-HPro and a "turn-on" fluorescence response at 540 nm. To quantitatively analyze the drug residues in foodstuffs, we used amantadine (AMD) as an assay model. By combining the AIE-active "turn-on" fluorescent signal generation mechanism with conventional ELISAs, quantifying AMD concentrations in chicken muscle samples was realized with an IC50 (50% inhibitory concentration) value of 0.38 ng/mL in buffer and a limited detection of 0.06 μg/kg in chicken samples. Overall, the conceptual integration of AIE with ELISA represents a potent and sensitive strategy that broadens the applicability of the AIE-based fluorometric assays.
Collapse
Affiliation(s)
- Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Li
- Division of Life Science, Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, China
| | - Bing Xie
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mingfang Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chaochao Chen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chenglong Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ben Zhong Tang
- Division of Life Science, Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Prereduction-promoted enhanced growth of silver nanoparticles for ultrasensitive colorimetric detection of alkaline phosphatase and carbohydrate antigen 125. Talanta 2018; 189:129-136. [DOI: 10.1016/j.talanta.2018.06.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
|
19
|
Xiong Y, Gao B, Wu K, Wu Y, Chai Y, Huang X, Xiong Y. Fluorescence immunoassay based on the enzyme cleaving ss-DNA to regulate the synthesis of histone-ds-poly(AT) templated copper nanoparticles. NANOSCALE 2018; 10:19890-19897. [PMID: 30345445 DOI: 10.1039/c8nr06175k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, for the first time we report a novel competitive fluorescence immunoassay for the ultrasensitive detection of aflatoxin B1 (AFB1) using histone-ds-poly(AT) templated copper nanoparticles (His-pAT CuNPs) as the fluorescent indicator. In this immunoassay, glucose oxidase (Gox) was used as the carrier of the competing antigen to catalyze the formation of hydrogen peroxide (H2O2) from glucose. H2O2 was converted to a hydroxyl radical using Fenton's reagent, which further regulated the fluorescence signals of His-pAT CuNPs. Owing to the ultrahigh sensitivity of the ss-DNA to the hydroxyl radical, the proposed fluorescence immunoassay exhibited a favorable dynamic linear detection of AFB1 ranging from 0.46 pg mL-1 to 400 pg mL-1 with an good half maximal inhibitory concentration and limit of detection of 6.13 and 0.15 pg mL-1, respectively. The intra- and inter-assay showed that the average recoveries for AFB1 spiked corn samples ranged from 96.87% to 100.73% and 96.67% to 114.92%, respectively. The reliability of this method was further confirmed by adopting ultra-performance liquid chromatography coupled with the fluorescence detector method. In summary, this work offers a novel screening strategy with high sensitivity and robustness for the quantitative detection of mycotoxins or other pollutants for food safety and clinical diagnosis.
Collapse
Affiliation(s)
- Ying Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Liu R, Wang C, Hu J, Su Y, Lv Y. DNA-templated copper nanoparticles: Versatile platform for label-free bioassays. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Sun J, Zhao J, Bao X, Wang Q, Yang X. Alkaline Phosphatase Assay Based on the Chromogenic Interaction of Diethanolamine with 4-Aminophenol. Anal Chem 2018; 90:6339-6345. [DOI: 10.1021/acs.analchem.8b01371] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingfu Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qifeng Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
22
|
Zhao J, Wang S, Lu S, Sun J, Yang X. A luminescent europium-dipicolinic acid nanohybrid for the rapid and selective sensing of pyrophosphate and alkaline phosphatase activity. NANOSCALE 2018; 10:7163-7170. [PMID: 29620114 DOI: 10.1039/c8nr00223a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As a ubiquitous hydrolysis enzyme in phosphate metabolism, alkaline phosphatase (ALP) is a significant biomarker in laboratory research and clinic diagnosis. Herein, we report a highly water-soluble Eu(DPA)3@Lap nanohybrid material for the rapid and selective assay of PPi and ALP through a luminescence off-on recognition process. Eu(DPA)3@Lap was successfully prepared in an aqueous solution, and it exhibited strong luminescence emission, high photostability, and long lifetime. More interestingly, the strong luminescence of Eu(DPA)3@Lap can be remarkably quenched by Cu2+ due to the high impetus of coordination between the DPA ligand and Cu2+ ion. Using Cu2+ as a signal transducer, the luminescence could be recovered upon the addition of PPi ion owing to the formation of a Cu2+-PPi complex; thus, a luminescence turn-on assay for PPi ions was realized. Utilizing the ability of Cu2+ to differentiate between PPi and Pi, a convenient and straightforward luminescence assay for ALP activity was accomplished based on the specific dephosphorylation of PPi to Pi. To the best of our knowledge, this elaborate luminescence sensing system constitutes the first luminescent nanohybrid material based on a europium organic complex for ALP activity assay. Furthermore, the recognition process of PPi and ALP was completed in a convenient and facile mix-and-readout manner, and it revealed significant potential in point of care testing.
Collapse
Affiliation(s)
- Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | |
Collapse
|
23
|
Sun J, Zhao J, Wang L, Li H, Yang F, Yang X. Inner Filter Effect-Based Sensor for Horseradish Peroxidase and Its Application to Fluorescence Immunoassay. ACS Sens 2018; 3:183-190. [PMID: 29260859 DOI: 10.1021/acssensors.7b00830] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Being an important model peroxidase, horseradish peroxidase (HRP) has been thoroughly understood, and the detection of HRP is not only directly related to peroxidase-triggered catalytic process, but also linked to the development of HRP-based enzyme-linked immunosorbent assay (ELISA). Herein, we have reported an unconventional fluorescent sensor for convenient assay of HRP activity based on the HRP-catalyzed specific conversion of p-phenylenediamine (PPD) into chromogenic PPDox with H2O2 as the oxidizing agent, accompanied by the fluorescence quenching effect on fluorescein. By combining UV-vis absorption spectrum, isothermal titration calorimetry, and fluorescence lifetime analysis, we have confirmed the inner filter effect as a main quenching mechanism in our proposed fluorescent assay. According to the intrinsic sensitivity of fluorescent sensor and high selectivity, our PPD/fluorescein-based sensing system can be utilized for real-time monitoring of the HRP activity in real biological samples. Furthermore, the unambiguous response mechanism and excellent sensing performance encourage us to extend such HRP assay into the HRP-based fluorescent ELISA, which has a broad prospect of application in fluorescent diagnosis of hepatocellular carcinoma (HCC) by sensing alpha-fetoprotein, the well-known serologic HCC marker.
Collapse
Affiliation(s)
- Jian Sun
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jiahui Zhao
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongwei Li
- State
Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Fan Yang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
24
|
A rapid method for the detection of humic acid based on the poly(thymine)-templated copper nanoparticles. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Chen M, Xiang X, Wu K, He H, Chen H, Ma C. A Novel Detection Method of Human Serum Albumin Based on the Poly(Thymine)-Templated Copper Nanoparticles. SENSORS 2017; 17:s17112684. [PMID: 29160831 PMCID: PMC5712895 DOI: 10.3390/s17112684] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
In this work, we developed a facile fluorescence method for quantitative detection of human serum albumin (HSA) based on the inhibition of poly(thymine) (poly T)-templated copper nanoparticles (CuNPs) in the presence of HSA. Under normal circumstances, poly T-templated CuNPs can display strong fluorescence with excitation/emission peaks at 340/610 nm. However, in the presence of HSA, it will absorb cupric ion, which will prevent the formation of CuNPs. As a result, the fluorescence intensity will become obviously lower in the presence of HSA. The analyte HSA concentration had a proportional linear relationship with the fluorescence intensity of CuNPs. The detection limit for HSA was 8.2 × 10−8 mol·L−1. Furthermore, it was also successfully employed to determine HSA in biological samples. Thus, this method has potential applications in point-of-care medical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Mingjian Chen
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Xinying Xiang
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Kefeng Wu
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Hailun He
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Hanchun Chen
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
26
|
Lv S, Li Y, Zhang K, Lin Z, Tang D. Carbon Dots/g-C 3N 4 Nanoheterostructures-Based Signal-Generation Tags for Photoelectrochemical Immunoassay of Cancer Biomarkers Coupling with Copper Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38336-38343. [PMID: 29028294 DOI: 10.1021/acsami.7b13272] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A class of 0-dimensional/2-dimensional (0D/2D) nanoheterostructures based on carbon quantum dots (CQDs) and graphitic carbon nitride (g-C3N4) was designed as the signal-generation tags for the sensitive photoelectrochemical (PEC) immunoassay of prostate-specific antigen (PSA) coupling with the copper nanoclusters (CuNCs). Combination of CQDs with g-C3N4 promoted the photoexcited electron/hole separation and largely increased the photocurrents of the nanoheterostructures. Initially, a sandwich-type immunoreaction was carried out on monoclonal anti-PSA antibody-coated microplate by using PSA aptamer linked with CuNCs as the tracer. Accompanying the immunocomplex, the carried CuNCs were dissolved under acidic conditions. The as-released copper ions from the CuNCs could be captured onto the CQDs/g-C3N4 nanoheterostructures via the amino-group on the CQD surface as well as the -NHx (x = 1, 2, 3) of g-C3N4 nanosheets. The strong coordination of the Lewis basic sites on the CQDs/g-C3N4 with Cu2+ decreased the photocurrent of the nanoheterostructures. Under optimal conditions, CQDs/g-C3N4 nanoheterostructures displayed good photocurrent responses for the detection of PSA within the dynamic linear range of 0.02-100 ng mL-1 and a limit of detection (LOD) of 5.0 pg mL-1. This method was also evaluated for quantitative screening of human PSA serum specimens by using the referenced electrochemiluminescent enzyme-linked immunoassay (ECL-ELIA) and gave good matched results between two methods. Additionally, this system was beneficial to explore the charge-separation and photoinduced electron transfer mechanism in the photoelectrochemical sensing protocols.
Collapse
Affiliation(s)
- Shuzhen Lv
- Key Laboratory of Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University , Fuzhou 35011168, People's Republic of China
| | - Yi Li
- Key Laboratory of Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University , Fuzhou 35011168, People's Republic of China
| | - Kangyao Zhang
- Key Laboratory of Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University , Fuzhou 35011168, People's Republic of China
| | - Zhenzhen Lin
- Key Laboratory of Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University , Fuzhou 35011168, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University , Fuzhou 35011168, People's Republic of China
| |
Collapse
|
27
|
Purohit P, Fortes FJ, Laserna JJ. Spectral Identification in the Attogram Regime through Laser-Induced Emission of Single Optically Trapped Nanoparticles in Air. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pablo Purohit
- Departamento de Química Analítica; Universidad de Málaga; Campus de Teatinos S/N 29071 Málaga Spain
| | - Francisco J. Fortes
- Departamento de Química Analítica; Universidad de Málaga; Campus de Teatinos S/N 29071 Málaga Spain
| | - J. Javier Laserna
- Departamento de Química Analítica; Universidad de Málaga; Campus de Teatinos S/N 29071 Málaga Spain
| |
Collapse
|
28
|
Purohit P, Fortes FJ, Laserna JJ. Spectral Identification in the Attogram Regime through Laser-Induced Emission of Single Optically Trapped Nanoparticles in Air. Angew Chem Int Ed Engl 2017; 56:14178-14182. [PMID: 28877398 DOI: 10.1002/anie.201708870] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Indexed: 11/06/2022]
Abstract
Current trends in nanoengineering are bringing along new structures of diverse chemical compositions that need to be meticulously defined in order to ensure their correct operation. Few methods can provide the sensitivity required to carry out measurements on individual nano-objects without tedious sample pre-treatment or data analysis. In the present study, we introduce a pathway for the elemental identification of single nanoparticles (NPs) that avoids suspension in liquid media by means of optical trapping and laser-induced plasma spectroscopy. We demonstrate spectroscopic detection and identification of individual 25(±3.7) to 70(±10.5) nm in diameter Cu NPs stably trapped in air featuring masses down to 73±35 attograms. We found an increase in the absolute number of photons produced as size of the particles decreased; pointing towards a more efficient excitation of ensembles of only ca. 7×105 Cu atoms in the onset plasma.
Collapse
Affiliation(s)
- Pablo Purohit
- Departamento de Química Analítica, Universidad de Málaga, Campus de Teatinos S/N, 29071, Málaga, Spain
| | - Francisco J Fortes
- Departamento de Química Analítica, Universidad de Málaga, Campus de Teatinos S/N, 29071, Málaga, Spain
| | - J Javier Laserna
- Departamento de Química Analítica, Universidad de Málaga, Campus de Teatinos S/N, 29071, Málaga, Spain
| |
Collapse
|
29
|
Lin Z, Li M, Lv S, Zhang K, Lu M, Tang D. In situ synthesis of fluorescent polydopamine nanoparticles coupled with enzyme-controlled dissolution of MnO2 nanoflakes for a sensitive immunoassay of cancer biomarkers. J Mater Chem B 2017; 5:8506-8513. [DOI: 10.1039/c7tb02291c] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new fluorescence/visual immunosensing strategy was designed for the AFP detection coupling enzyme-controlled formation of polydopamine and dissolution of MnO2 nanoflakes.
Collapse
Affiliation(s)
- Zhenzhen Lin
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Meijin Li
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Shuzhen Lv
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Kangyao Zhang
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Minghua Lu
- Institute of Environmental and Analytical Science
- School of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Dianping Tang
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|