1
|
McLean B, Yarovsky I. Structure, Properties, and Applications of Silica Nanoparticles: Recent Theoretical Modeling Advances, Challenges, and Future Directions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405299. [PMID: 39380429 DOI: 10.1002/smll.202405299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/06/2024] [Indexed: 10/10/2024]
Abstract
Silica nanoparticles (SNPs), one of the most widely researched materials in modern science, are now commonly exploited in surface coatings, biomedicine, catalysis, and engineering of novel self-assembling materials. Theoretical approaches are invaluable to enhancing fundamental understanding of SNP properties and behavior. Tremendous research attention is dedicated to modeling silica structure, the silica-water interface, and functionalization of silica surfaces for tailored applications. In this review, the range of theoretical methodologies are discussed that have been employed to model bare silica and functionalized silica. The evolution of silica modeling approaches is detailed, including classical, quantum mechanical, and hybrid methods and highlight in particular the last decade of theoretical simulation advances. It is started with discussing investigations of bare silica systems, focusing on the fundamental interactions at the silica-water interface, following with a comprehensively review of the modeling studies that examine the interaction of silica with functional ligands, peptides, ions, surfactants, polymers, and carbonaceous species. The review is concluded with the perspective on existing challenges in the field and promising future directions that will further enhance the utility and importance of the theoretical approaches in guiding the rational design of SNPs for applications in engineering and biomedicine.
Collapse
Affiliation(s)
- Ben McLean
- School of Engineering, RMIT University, Melbourne, 3001, Australia
- ARC Research Hub for Australian Steel Innovation, Wollongong, 2500, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, 3001, Australia
- ARC Research Hub for Australian Steel Innovation, Wollongong, 2500, Australia
| |
Collapse
|
2
|
Balaji A, Bell CA, Houston ZH, Bridle KR, Genz B, Fletcher NL, Ramm GA, Thurecht KJ. Exploring the impact of severity in hepatic fibrosis disease on the intrahepatic distribution of novel biodegradable nanoparticles targeted towards different disease biomarkers. Biomaterials 2023; 302:122318. [PMID: 37708659 DOI: 10.1016/j.biomaterials.2023.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Nanoparticle-based drug delivery systems (DDS) have shown promising results in reversing hepatic fibrosis, a common pathological basis of chronic liver diseases (CLDs), in preclinical animal models. However, none of these nanoparticle formulations has transitioned to clinical usage and there are currently no FDA-approved drugs available for liver fibrosis. This highlights the need for a better understanding of the challenges faced by nanoparticles in this complex disease setting. Here, we have systematically studied the impact of targeting strategy, the degree of macrophage infiltration during fibrosis, and the severity of fibrosis, on the liver uptake and intrahepatic distribution of nanocarriers. When tested in mice with advanced liver fibrosis, we demonstrated that the targeting ligand density plays a significant role in determining the uptake and retention of the nanoparticles in the fibrotic liver whilst the type of targeting ligand modulates the trafficking of these nanoparticles into the cell population of interest - activated hepatic stellate cells (aHSCs). Engineering the targeting strategy indeed reduced the uptake of nanoparticles in typical mononuclear phagocyte (MPS) cell populations, but not the infiltrated macrophages. Meanwhile, additional functionalization may be required to enhance the efficacy of DDS in end-stage fibrosis/cirrhosis compared to early stages.
Collapse
Affiliation(s)
- Arunpandian Balaji
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia
| | - Craig A Bell
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zachary H Houston
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia
| | - Kim R Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland 4120, Australia
| | - Berit Genz
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
3
|
Shafaei N, Khorshidi S, Karkhaneh A. The immune-stealth polymeric coating on drug delivery nanocarriers: In vitro engineering and in vivo fate. J Biomater Appl 2023:8853282231185352. [PMID: 37480331 DOI: 10.1177/08853282231185352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Although essential nanosystems such as nanoparticles and nanocarriers are desirable options for transporting various drug molecules into the biological environment, they rapidly remove from the circulatory system due to their interaction with multiple in vivo barriers, especially the immune barrier, which will result in their short-term effects. In order to improve their effectiveness and durability in the circulatory system, the polymer coatings can use to cover the surface of nanoparticles and nanocarriers to conceal them from the immune system. Due to their different properties (like charge, elasticity, and hydrophilicity/hydrophobicity), these coatings can improve drug delivery nanosystem durability and therapeutic applications. The mentioned coatings have different types and are divided into various categories, such as synthetic polymers, polysaccharides, and zwitterionic polymers. Each of these polymers has unique properties based on its category, origin, and chemical structure that make them suitable for producing stealth drug delivery nanocarriers. In this review article, we have tried to explain the importance of these diverse polymer coatings in determining the fate of drug nanocarriers and then introduced the different types of these coatings and, finally, described various methods that directly and indirectly analyze the nanocoatings to determine the stability of nanoparticles in the body.
Collapse
Affiliation(s)
- Nadia Shafaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajedeh Khorshidi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
4
|
In Vitro Studies of Pegylated Magnetite Nanoparticles in a Cellular Model of Viral Oncogenesis: Initial Studies to Evaluate Their Potential as a Future Theranostic Tool. Pharmaceutics 2023; 15:pharmaceutics15020488. [PMID: 36839809 PMCID: PMC9967771 DOI: 10.3390/pharmaceutics15020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Magnetic nanosystems represent promising alternatives to the traditional diagnostic and treatment procedures available for different pathologies. In this work, a series of biological tests are proposed, aiming to validate a magnetic nanoplatform for Kaposi's sarcoma treatment. The selected nanosystems were polyethylene glycol-coated iron oxide nanoparticles (MAG.PEG), which were prepared by the hydrothermal method. Physicochemical characterization was performed to verify their suitable physicochemical properties to be administered in vivo. Exhaustive biological assays were conducted, aiming to validate this platform in a specific biomedical field related to viral oncogenesis diseases. As a first step, the MAG.PEG cytotoxicity was evaluated in a cellular model of Kaposi's sarcoma. By phase contrast microscopy, it was found that cell morphology remained unchanged regardless of the nanoparticles' concentration (1-150 µg mL-1). The results, arising from the crystal violet technique, revealed that the proliferation was also unaffected. In addition, cell viability analysis by MTS and neutral red assays revealed a significant increase in metabolic and lysosomal activity at high concentrations of MAG.PEG (100-150 µg mL-1). Moreover, an increase in ROS levels was observed at the highest concentration of MAG.PEG. Second, the iron quantification assays performed by Prussian blue staining showed that MAG.PEG cellular accumulation is dose dependent. Furthermore, the presence of vesicles containing MAG.PEG inside the cells was confirmed by TEM. Finally, the MAG.PEG steering was achieved using a static magnetic field generated by a moderate power magnet. In conclusion, MAG.PEG at a moderate concentration would be a suitable drug carrier for Kaposi's sarcoma treatment, avoiding adverse effects on normal tissues. The data included in this contribution appear as the first stage in proposing this platform as a suitable future theranostic to improve Kaposi's sarcoma therapy.
Collapse
|
5
|
Sahu S, Ghosh KK. Selective detection of tartaric acid using amino acid interlinked silver nanoparticles as a colorimetric probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3323-3334. [PMID: 35969181 DOI: 10.1039/d2ay01088g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A variety of biomolecules with different functional groups play critical roles in almost all the processes occurring in living cells. Interaction of metallic nanoparticles (NPs) with various biomolecules generates a layer of molecules on their surface, and this biomolecular rich layer formed on the NP surface is described as a "biomolecular corona". The physicochemical properties of the NPs, including size, adsorption affinity, and charge on the particles' surfaces are the major factors influencing the characteristics of this corona. The formation of various biomolecular corona has been studied well, whereas the amino acid corona is relatively new by exploring their stability. In the present study, a novel formation of an amino acid corona with a fundamental interaction mechanism for a selective detection procedure using a colorimetric platform has been proposed. Herein, amino acid-coated silver NPs (AgNPs) have been used as a template with spectroscopic (steady state UV-Vis, FTIR) and imaging (HR-TEM, DLS) techniques. Our findings demonstrated that among different amino acid coronas, glutathione (GSH) stabilized AgNPs show a rapid reaction with tartaric acid. The extent and thermodynamics of the formed complex between the GSH/AgNPs and tartaric acid have also been studied and this suggested that the complex formed is spontaneous and energy releasing in nature.
Collapse
Affiliation(s)
- Sushama Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India.
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India.
| |
Collapse
|
6
|
Mao L, Russell AJ, Carmali S. Moving Protein PEGylation from an Art to a Data Science. Bioconjug Chem 2022; 33:1643-1653. [PMID: 35994522 PMCID: PMC9501918 DOI: 10.1021/acs.bioconjchem.2c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
PEGylation is a well-established and clinically proven
half-life
extension strategy for protein delivery. Protein modification with
amine-reactive poly(ethylene glycol) (PEG) generates heterogeneous
and complex bioconjugate mixtures, often composed of several PEG positional
isomers with varied therapeutic efficacy. Laborious and costly experiments
for reaction optimization and purification are needed to generate
a therapeutically useful PEG conjugate. Kinetic models which accurately
predict the outcome of so-called “random” PEGylation
reactions provide an opportunity to bypass extensive wet lab experimentation
and streamline the bioconjugation process. In this study, we propose
a protein tertiary structure-dependent reactivity model that describes
the rate of protein-amine PEGylation and introduces “PEG chain
coverage” as a tangible metric to assess the shielding effect
of PEG chains. This structure-dependent reactivity model was implemented
into three models (linear, structure-based, and machine-learned) to
gain insight into how protein-specific molecular descriptors (exposed
surface areas, pKa, and surface charge)
impacted amine reactivity at each site. Linear and machine-learned
models demonstrated over 75% prediction accuracy with butylcholinesterase.
Model validation with Somavert, PEGASYS, and phenylalanine ammonia
lyase showed good correlation between predicted and experimentally
determined degrees of modification. Our structure-dependent reactivity
model was also able to simulate PEGylation progress curves and estimate
“PEGmer” distribution with accurate predictions across
different proteins, PEG linker chemistry, and PEG molecular weights.
Moreover, in-depth analysis of these simulated reaction curves highlighted
possible PEG conformational transitions (from dumbbell to brush) on the surface of lysozyme, as a function
of PEG molecular weight.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J Russell
- Amgen Inc., Thousand Oaks, California 91320, United States
| | - Sheiliza Carmali
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL United Kingdom
| |
Collapse
|
7
|
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213:166-194. [PMID: 35644315 DOI: 10.1016/j.ijbiomac.2022.05.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey.
| |
Collapse
|
8
|
García-Melero J, López-Mitjavila JJ, García-Celma MJ, Rodriguez-Abreu C, Grijalvo S. Rosmarinic Acid-Loaded Polymeric Nanoparticles Prepared by Low-Energy Nano-Emulsion Templating: Formulation, Biophysical Characterization, and In Vitro Studies. MATERIALS 2022; 15:ma15134572. [PMID: 35806696 PMCID: PMC9267406 DOI: 10.3390/ma15134572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Rosmarinic acid (RA), a caffeic acid derivative, has been loaded in polymeric nanoparticles made up of poly(lactic-co-glycolic acid) (PLGA) through a nano-emulsion templating process using the phase-inversion composition (PIC) method at room temperature. The obtained RA-loaded nanoparticles (NPs) were colloidally stable exhibiting average diameters in the range of 70–100 nm. RA was entrapped within the PLGA polymeric network with high encapsulation efficiencies and nanoparticles were able to release RA in a rate-controlled manner. A first-order equation model fitted our experimental data and confirmed the prevalence of diffusion mechanisms. Protein corona formation on the surface of NPs was assessed upon incubation with serum proteins. Protein adsorption induced an increase in the hydrodynamic diameter and a slight shift towards more negative surface charges of the NPs. The radical scavenging activity of RA-loaded NPs was also studied using the DPPH·assay and showed a dose–response relationship between the NPs concentration and DPPH inhibition. Finally, RA-loaded NPs did not affect the cellular proliferation of the human neuroblastoma SH-SY5Y cell line and promoted efficient cellular uptake. These results are promising for expanding the use of O/W nano-emulsions in biomedical applications.
Collapse
Affiliation(s)
- Jessica García-Melero
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - Joan-Josep López-Mitjavila
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - María José García-Celma
- Department of Pharmacy, Pharmaceutical Technology, and Physical-Chemistry, R+D Associated Unit to CSIC Pharmaceutical Nanotechnology, IN2UB, University of Barcelona, Joan XXIII 27-31, E-08028 Barcelona, Spain;
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Carlos Rodriguez-Abreu
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| | - Santiago Grijalvo
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| |
Collapse
|
9
|
Marikar SN, El-Osta A, Johnston A, Such G, Al-Hasani K. Microencapsulation-based cell therapies. Cell Mol Life Sci 2022; 79:351. [PMID: 35674842 PMCID: PMC9177480 DOI: 10.1007/s00018-022-04369-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Mapping a new therapeutic route can be fraught with challenges, but recent developments in the preparation and properties of small particles combined with significant improvements to tried and tested techniques offer refined cell targeting with tremendous translational potential. Regenerating new cells through the use of compounds that regulate epigenetic pathways represents an attractive approach that is gaining increased attention for the treatment of several diseases including Type 1 Diabetes and cardiomyopathy. However, cells that have been regenerated using epigenetic agents will still encounter immunological barriers as well as limitations associated with their longevity and potency during transplantation. Strategies aimed at protecting these epigenetically regenerated cells from the host immune response include microencapsulation. Microencapsulation can provide new solutions for the treatment of many diseases. In particular, it offers an advantageous method of administering therapeutic materials and molecules that cannot be substituted by pharmacological substances. Promising clinical findings have shown the potential beneficial use of microencapsulation for islet transplantation as well as for cardiac, hepatic, and neuronal repair. For the treatment of diseases such as type I diabetes that requires insulin release regulated by the patient's metabolic needs, microencapsulation may be the most effective therapeutic strategy. However, new materials need to be developed, so that transplanted encapsulated cells are able to survive for longer periods in the host. In this article, we discuss microencapsulation strategies and chart recent progress in nanomedicine that offers new potential for this area in the future.
Collapse
Affiliation(s)
- Safiya Naina Marikar
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Angus Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Georgina Such
- School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keith Al-Hasani
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
10
|
Khedri M, Afsharchi F, Souderjani AH, Rezvantalab S, Didandeh M, Maleki R, Musaie K, Santos HA, Shahbazi M. Molecular scale study on the interactions of biocompatible nanoparticles with macrophage membrane and blood proteins. NANO SELECT 2022. [DOI: 10.1002/nano.202200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Fatemeh Afsharchi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan Iran
| | - Amirhosein Hasanpour Souderjani
- Department of Pharmaceutical Engineering, School of Chemical Engineering College of Engineering, University of Tehran Tehran Iran
| | - Sima Rezvantalab
- Renewable Energies Department Faculty of Chemical Engineering Urmia University of Technology Urmia Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering Tarbiat Modares University Tehran Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Kiyan Musaie
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan Iran
| | - Hélder A. Santos
- Department of Biomedical Engineering University Medical Center Groningen University of Groningen Groningen The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science University of Groningen/University Medical Center Groningen Groningen The Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Mohammad‐Ali Shahbazi
- Department of Biomedical Engineering University Medical Center Groningen University of Groningen Groningen The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science University of Groningen/University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
11
|
Paun RA, Dumut DC, Centorame A, Thuraisingam T, Hajduch M, Mistrik M, Dzubak P, De Sanctis JB, Radzioch D, Tabrizian M. One-Step Synthesis of Nanoliposomal Copper Diethyldithiocarbamate and Its Assessment for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14030640. [PMID: 35336014 PMCID: PMC8952320 DOI: 10.3390/pharmaceutics14030640] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
The metal complex copper diethyldithiocarbamate (CuET) induces cancer cell death by inhibiting protein degradation and induces proteotoxic stress, making CuET a promising cancer therapeutic. However, no clinical formulation of CuET exists to date as the drug is insoluble in water and exhibits poor bioavailability. To develop a scalable formulation, nanoliposomal (LP) CuET was synthesized using ethanol injection as a facile one-step method that is suitable for large-scale manufacturing. The nanoparticles are monodispersed, colloidally stable, and approximately 100 nm in diameter with an encapsulation efficiency of over 80%. LP-CuET demonstrates excellent stability in plasma, minimal size change, and little drug release after six-month storage at various temperatures. Additionally, melanoma cell lines exhibit significant sensitivity to LP-CuET and cellular uptake occurs predominantly through endocytosis in YUMM 1.7 cancer cells. Intracellular drug delivery is mediated by vesicle acidification with more nanoparticles being internalized by melanoma cells compared with RAW 264.7 macrophages. Additionally, the nanoparticles preferentially accumulate in YUMM 1.7 tumors where they induce cancer cell death in vivo. The development and characterization of a stable and scalable CuET formulation illustrated in this study fulfils the requirements needed for a potent clinical grade formulation.
Collapse
Affiliation(s)
- Radu A. Paun
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 Rue University, Montreal, QC H3A 2B6, Canada;
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada; (D.C.D.); (A.C.); (D.R.)
| | - Daciana C. Dumut
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada; (D.C.D.); (A.C.); (D.R.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Amanda Centorame
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada; (D.C.D.); (A.C.); (D.R.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Thusanth Thuraisingam
- Division of Dermatology, Department of Medicine, Jewish General Hospital, McGill University, 3755 Cote Ste-Catherine, Montreal, QC H3T 1E2, Canada;
- Division of Dermatology, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic; (M.H.); (M.M.); (P.D.); (J.B.D.S.)
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Krizkovskeho 511/8, 77900 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic; (M.H.); (M.M.); (P.D.); (J.B.D.S.)
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Krizkovskeho 511/8, 77900 Olomouc, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic; (M.H.); (M.M.); (P.D.); (J.B.D.S.)
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Krizkovskeho 511/8, 77900 Olomouc, Czech Republic
| | - Juan B. De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic; (M.H.); (M.M.); (P.D.); (J.B.D.S.)
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Krizkovskeho 511/8, 77900 Olomouc, Czech Republic
| | - Danuta Radzioch
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada; (D.C.D.); (A.C.); (D.R.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 Rue University, Montreal, QC H3A 2B6, Canada;
- Faculty of Dentistry and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
- Correspondence:
| |
Collapse
|
12
|
Berger S, Berger M, Bantz C, Maskos M, Wagner E. Performance of nanoparticles for biomedical applications: The in vitro/ in vivo discrepancy. BIOPHYSICS REVIEWS 2022; 3:011303. [PMID: 38505225 PMCID: PMC10903387 DOI: 10.1063/5.0073494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 03/21/2024]
Abstract
Nanomedicine has a great potential to revolutionize the therapeutic landscape. However, up-to-date results obtained from in vitro experiments predict the in vivo performance of nanoparticles weakly or not at all. There is a need for in vitro experiments that better resemble the in vivo reality. As a result, animal experiments can be reduced, and potent in vivo candidates will not be missed. It is important to gain a deeper knowledge about nanoparticle characteristics in physiological environment. In this context, the protein corona plays a crucial role. Its formation process including driving forces, kinetics, and influencing factors has to be explored in more detail. There exist different methods for the investigation of the protein corona and its impact on physico-chemical and biological properties of nanoparticles, which are compiled and critically reflected in this review article. The obtained information about the protein corona can be exploited to optimize nanoparticles for in vivo application. Still the translation from in vitro to in vivo remains challenging. Functional in vitro screening under physiological conditions such as in full serum, in 3D multicellular spheroids/organoids, or under flow conditions is recommended. Innovative in vivo screening using barcoded nanoparticles can simultaneously test more than hundred samples regarding biodistribution and functional delivery within a single mouse.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Martin Berger
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christoph Bantz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
13
|
Liu Y, Zhu G, Shen Z, Chen Y. Sequence Effect of Peptide-Based Materials on Delivering Interferon-α (IFN-α): A Molecular Dynamic Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:680-688. [PMID: 34986309 DOI: 10.1021/acs.langmuir.1c02515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide-based biomaterials exhibit great potentials in developing drug delivery platforms due to their biocompatibility and biodegradability beyond poly(ethylene glycol). How different amino acids in peptides used for delivery play their roles is still unclear at the microscopic level. This work compared the assembly behaviors of a series of peptides around interferon-α (IFN-α). Through all-atom molecular simulations, the sequence effect of peptides on delivering interferon-α was quantitively characterized. The hydrophobic elastin-like peptide (VPGAG)n preferred to self-aggregate into dense clusters, rather than encapsulate IFN-α. The hydrophilic zwitterionic peptides with repeating unit "KE" tended to phase-separate from IFN-α in the mixture. In contrast, peptides with a hybrid sequence, i.e., (VPKEG)n, exhibited the highest contact preference, and the formed protective shell endowed IFN-α with better thermal stability and stealth property and achieved a subtle balance between protecting IFN-α and subsequent releasing. Further energy decomposition analysis revealed that the positively charged Lys contributed most to the binding affinity while the negatively charged Glu contributed most to the hydrophilic property of peptide-based materials. In summary, this article reveals why peptides composed of repeating hydrophobic and charged residues could be a potential choice for delivering therapeutic proteins in the form of solution.
Collapse
Affiliation(s)
- Yuting Liu
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Guoliang Zhu
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhuanglin Shen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yantao Chen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
14
|
Jo Y, Jang J, Song D, Park H, Jung Y. Determinants for intrinsically disordered protein recruitment into phase-separated protein condensates. Chem Sci 2022; 13:522-530. [PMID: 35126984 PMCID: PMC8729795 DOI: 10.1039/d1sc05672g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Multivalent interactions between amino acid residues of intrinsically disordered proteins (IDPs) drive phase separation of these proteins into liquid condensates, forming various membrane-less organelles in cells. These interactions between often biased residues of IDPs are also likely involved in selective recruitment of many other IDPs into condensates. However, determining factors for this IDP recruitment into protein condensates are not understood yet. Here, we quantitatively examined recruitment tendencies of various IDPs with different sequence compositions into IDP-clustered condensates both in vitro as well as in cells. Condensate-forming IDP scaffolds, recruited IDP clients, and phase separation conditions were carefully varied to find key factors for selective IDP partitioning in protein condensates. Regardless of scaffold sequences, charged residues in client IDPs assured potent IDP recruitment, likely via strong electrostatic interactions, where positive residues could further enhance recruitment, possibly with cation–pi interactions. Notably, poly-ethylene glycol, a widely used crowding reagent for in vitro phase separation, abnormally increased IDP recruitment, indicating the need for careful use of crowding conditions. Tyrosines of IDP clients also strongly participated in recruitment both in vitro and in cells. Lastly, we measured recruitment degrees by more conventional interactions between folded proteins instead of disordered proteins. Surprisingly, recruitment forces by an even moderate protein interaction (Kd ∼ 5 μM) were substantially stronger than those by natural IDP–IDP interactions. The present data offer valuable information on how cells might organize protein partitioning on various protein condensates. Diverse interactions between folded and disordered proteins collectively dictate selective protein recruitment into bimolecular condensates.![]()
Collapse
Affiliation(s)
- Yongsang Jo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinyoung Jang
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesun Song
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyoin Park
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yongwon Jung
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Settanni G, Brill W, Haas H, Schmid F. pH-Dependent Behavior of Ionizable Cationic Lipids in mRNA-Carrying Lipoplexes Investigated by Molecular Dynamics Simulations. Macromol Rapid Commun 2021; 43:e2100683. [PMID: 34874591 DOI: 10.1002/marc.202100683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lipid-based nanoparticles and lipoplexes containing ionizable lipids are among the most successful nanocarriers for mRNA-based therapies. The molecular structure of these assemblies is still not fully understood, as well as the role played by the ionizable lipids. SAXS experiments have shown that lipoplexes including the ionizable lipid 2-dioleyloxy-N,N-dimethyl-3-aminopropane (DODMA), under specific conditions, have a lamellar structure, where lipid bilayers are separated by mRNA-rich layers, with an overall spacing between 6.5 and 8.0 nm and a complex pH-dependence. Here, the structure and dynamics of these lipoplexes are investigated at varying pH and mRNA concentration using multiscale molecular dynamics simulations. It is observed that the interaction between DODMA and RNA is slightly attractive only at low pH levels, while it becomes effectively repulsive at high and intermediate pH. This results into a pH-dependent relocation of the RNA inside the multilayers, from the lipid head groups at low pH to a more uniform distribution inside the hydrophilic slabs of the multilayers at high pH. It is also observed that at high pH, DODMA lipids shift toward the hydrophobic part of the bilayer, consequently increasing their leaflet-flipping rate, a phenomenon which may ultimately affect the fusion process of the lipoplex with the endosomal membrane.
Collapse
Affiliation(s)
- Giovanni Settanni
- Department of Physics, Johannes-Gutenberg University, Staudingerweg 7, Mainz, 55099, Germany
| | | | - Heinrich Haas
- BioNTech SE, An der Goldgrube 12, Mainz, 55131, Germany
| | - Friederike Schmid
- Department of Physics, Johannes-Gutenberg University, Staudingerweg 7, Mainz, 55099, Germany
| |
Collapse
|
16
|
Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, Song M. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int J Mol Sci 2021; 22:9118. [PMID: 34502028 PMCID: PMC8431379 DOI: 10.3390/ijms22179118] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the primary causes of worldwide human deaths. Most cancer patients receive chemotherapy and radiotherapy, but these treatments are usually only partially efficacious and lead to a variety of serious side effects. Therefore, it is necessary to develop new therapeutic strategies. The emergence of nanotechnology has had a profound impact on general clinical treatment. The application of nanotechnology has facilitated the development of nano-drug delivery systems (NDDSs) that are highly tumor selective and allow for the slow release of active anticancer drugs. In recent years, vehicles such as liposomes, dendrimers and polymer nanomaterials have been considered promising carriers for tumor-specific drug delivery, reducing toxicity and improving biocompatibility. Among them, polymer nanoparticles (NPs) are one of the most innovative methods of non-invasive drug delivery. Here, we review the application of polymer NPs in drug delivery, gene therapy, and early diagnostics for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| |
Collapse
|
17
|
Gorbet MJ, Singh A, Mao C, Fiering S, Ranjan A. Using nanoparticles for in situ vaccination against cancer: mechanisms and immunotherapy benefits. Int J Hyperthermia 2021; 37:18-33. [PMID: 33426995 DOI: 10.1080/02656736.2020.1802519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy to treat cancer is now an established clinical approach. Immunotherapy can be applied systemically, as done with checkpoint blockade antibodies, but it can also be injected directly into identified tumors, in a strategy of in situ vaccination (ISV). ISV is designed to stimulate a strong local antitumor immune response involving both innate and adaptive immune cells, and through this generate a systemic antitumor immune response against metastatic tumors. A variety of ISVs have been utilized to generate an immunostimulatory tumor microenvironment (TME). These include attenuated microorganisms, recombinant proteins, small molecules, physical disruptors of TME (alternating magnetic and focused ultrasound heating, photothermal therapy, and radiotherapy), and more recently nanoparticles (NPs). NPs are attractive and unique since they can load multiple drugs or other reagents to influence immune and cancer cell functions in the TME, affording a unique opportunity to stimulate antitumor immunity. Here, we describe the NP-ISV therapeutic mechanisms, review chemically synthesized NPs (i.e., liposomes, polymeric, chitosan-based, inorganic NPs, etc.), biologically derived NPs (virus and bacteria-based NPs), and energy-activated NP-ISVs in the context of their use as local ISV. Data suggests that NP-ISVs can enhance outcomes of immunotherapeutic regimens including those utilizing tumor hyperthermia and checkpoint blockade therapies.
Collapse
Affiliation(s)
| | - Akansha Singh
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center at Dartmouth and Dartmouth Hitchcock, Lebanon, NH, USA
| | - Ashish Ranjan
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
18
|
Söder D, Garay-Sarmiento M, Rahimi K, Obstals F, Dedisch S, Haraszti T, Davari MD, Jakob F, Heß C, Schwaneberg U, Rodriguez-Emmenegger C. Unraveling the Mechanism and Kinetics of Binding of an LCI-eGFP-Polymer for Antifouling Coatings. Macromol Biosci 2021; 21:e2100158. [PMID: 34145970 DOI: 10.1002/mabi.202100158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Indexed: 11/07/2022]
Abstract
The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications.
Collapse
Affiliation(s)
- Dominik Söder
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Khosrow Rahimi
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Fabian Obstals
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Sarah Dedisch
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Felix Jakob
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Heß
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533, Kleve, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | | |
Collapse
|
19
|
Szatkowski L, Varikoti RA, Dima RI. Modeling the Mechanical Response of Microtubule Lattices to Pressure. J Phys Chem B 2021; 125:5009-5021. [PMID: 33970630 DOI: 10.1021/acs.jpcb.1c01770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microtubules, the largest and stiffest filaments of the cytoskeleton, have to be well adapted to the high levels of crowdedness in cells to perform their multitude of functions. Furthermore, fundamental processes that involve microtubules, such as the maintenance of the cellular shape and cellular motion, are known to be highly dependent on external pressure. In light of the importance of pressure for the functioning of microtubules, numerous studies interrogated the response of these cytoskeletal filaments to osmotic pressure, resulting from crowding by osmolytes, such as poly(ethylene glycol)/poly(ethylene oxide) (PEG/PEO) molecules, or to direct applied pressure. The interpretation of experiments is usually based on the assumptions that PEG molecules have unfavorable interactions with the microtubule lattices and that the behavior of microtubules under pressure can be described by using continuous models. We probed directly these two assumptions. First, we characterized the interaction between the main interfaces in a microtubule filament and PEG molecules of various sizes using a combination of docking and molecular dynamics simulations. Second, we studied the response of a microtubule filament to compression using a coarse-grained model that allows for the breaking of lattice interfaces. Our results show that medium length PEG molecules do not alter the energetics of the lateral interfaces in microtubules but rather target and can penetrate into the voids between tubulin monomers at these interfaces, which can lead to a rapid loss of lateral interfaces under pressure. Compression of a microtubule under conditions corresponding to high osmotic pressure results in the formation of the deformed phase found in experiments. Our simulations show that the breaking of lateral interfaces, rather than the buckling of the filament inferred from the continuous models, accounts for the deformation.
Collapse
Affiliation(s)
- Lukasz Szatkowski
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States.,Division of Science, Mathematics, and Engineering, University of South Carolina Sumter, Sumter, South Carolina 29150, United States
| | - Rohith Anand Varikoti
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
20
|
Lee H. Molecular Modeling of Protein Corona Formation and Its Interactions with Nanoparticles and Cell Membranes for Nanomedicine Applications. Pharmaceutics 2021; 13:637. [PMID: 33947090 PMCID: PMC8145147 DOI: 10.3390/pharmaceutics13050637] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
The conformations and surface properties of nanoparticles have been modified to improve the efficiency of drug delivery. However, when nanoparticles flow through the bloodstream, they interact with various plasma proteins, leading to the formation of protein layers on the nanoparticle surface, called protein corona. Experiments have shown that protein corona modulates nanoparticle size, shape, and surface properties and, thus, influence the aggregation of nanoparticles and their interactions with cell membranes, which can increases or decreases the delivery efficiency. To complement these experimental findings and understand atomic-level phenomena that cannot be captured by experiments, molecular dynamics (MD) simulations have been performed for the past decade. Here, we aim to review the critical role of MD simulations to understand (1) the conformation, binding site, and strength of plasma proteins that are adsorbed onto nanoparticle surfaces, (2) the competitive adsorption and desorption of plasma proteins on nanoparticle surfaces, and (3) the interactions between protein-coated nanoparticles and cell membranes. MD simulations have successfully predicted the competitive binding and conformation of protein corona and its effect on the nanoparticle-nanoparticle and nanoparticle-membrane interactions. In particular, simulations have uncovered the mechanism regarding the competitive adsorption and desorption of plasma proteins, which helps to explain the Vroman effect. Overall, these findings indicate that simulations can now provide predications in excellent agreement with experimental observations as well as atomic-scale insights into protein corona formation and interactions.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si 16890, Korea
| |
Collapse
|
21
|
Bolaños K, Celis F, Garrido C, Campos M, Guzmán F, Kogan MJ, Araya E. Adsorption of bovine serum albumin on gold nanoprisms: interaction and effect of NIR irradiation on protein corona. J Mater Chem B 2021; 8:8644-8657. [PMID: 32842142 DOI: 10.1039/d0tb01246g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of their photothermal properties, gold nanoparticles (AuNPs) have gained attention regarding their use in drug delivery and therapeutic applications. In this sense, it is interesting to consider their interactions with biologically available proteins, such as serum albumin, as well as the effects of irradiation and photothermal conversion on the protein structure that can lead to a loss of function or generate an immune response. Gold nanoprisms (AuNPrs) have gained interest due to their low toxicity, ease of synthesis, and excellent stability, promoting their use in bioapplications such as surface-enhanced Raman spectroscopy (SERS), drug delivery, and photothermal therapy. The interaction between AuNPrs, with plasmon bands centred in the near-infrared region (NIR), and bovine serum albumin (BSA) has not been explored yet. UV-Vis spectroscopy, dynamic light scattering (DLS) and fluorescence spectroscopy were used to study the interaction between AuNPrs and BSA in addition to estimation of the adsorption rate and kinetic and thermodynamic parameters (K, ΔH°, ΔG°, ΔS°, and Ea) using adsorption isotherms and Langmuir and Freundlich models. The results suggest spontaneous cooperative binding in multilayer adsorption, achieved by the chemisorption of BSA on the AuNPr surface through the S-Au interaction, as confirmed by Raman spectroscopy. On the other hand, the photothermal conversion efficiency (PE) of the coated nanoparticles after NIR irradiation was assessed, resulting in a slight decrease in the PE of BSA coated on AuNPrs in comparison with that of noncapped nanoparticles. The effect of the irradiation on the protein conformation of capped nanoparticles was also assessed; circular dichroism showed BSA unfolding upon interaction with AuNPrs, with a decrease in the α-helix and β-sheet contents, as well as an increase in random coil conformations. Changes in the Raman spectrum suggest a modification of the disposition of the protein residues exposed to the gold surface after NIR irradiation; but at the secondary structure level, no relevant changes were observed. This provides possibilities for the use of NPs-BSA for bioapplications based on the photothermal effect promoted by laser irradiation, since the biological identity of the protein is preserved after NIR irradiation.
Collapse
Affiliation(s)
- Karen Bolaños
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile and Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile. and Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Casilla 34-V, Valparaíso, Chile
| | - Carlos Garrido
- Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Av. José Pedro Alessandri 774, Ñuñoa, Santiago, Chile
| | - Marcelo Campos
- Department of Chemistry, Faculty of Sciences, University of Chile, P. O. Box 653, Santiago, Chile
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontifcia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile. and Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile
| | - Eyleen Araya
- Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile and Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile.
| |
Collapse
|
22
|
Casalini T. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations. J Control Release 2021; 332:390-417. [PMID: 33675875 DOI: 10.1016/j.jconrel.2021.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
The use of methods at molecular scale for the discovery of new potential active ligands, as well as previously unknown binding sites for target proteins, is now an established reality. Literature offers many successful stories of active compounds developed starting from insights obtained in silico and approved by Food and Drug Administration (FDA). One of the most famous examples is raltegravir, a HIV integrase inhibitor, which was developed after the discovery of a previously unknown transient binding area thanks to molecular dynamics simulations. Molecular simulations have the potential to also improve the design and engineering of drug delivery devices, which are still largely based on fundamental conservation equations. Although they can highlight the dominant release mechanism and quantitatively link the release rate to design parameters (size, drug loading, et cetera), their spatial resolution does not allow to fully capture how phenomena at molecular scale influence system behavior. In this scenario, the "computational microscope" offered by simulations at atomic scale can shed light on the impact of molecular interactions on crucial parameters such as release rate and the response of the drug delivery device to external stimuli, providing insights that are difficult or impossible to obtain experimentally. Moreover, the new paradigm brought by nanomedicine further underlined the importance of such computational microscope to study the interactions between nanoparticles and biological components with an unprecedented level of detail. Such knowledge is a fundamental pillar to perform device engineering and to achieve efficient and safe formulations. After a brief theoretical background, this review aims at discussing the potential of molecular simulations for the rational design of drug delivery systems.
Collapse
Affiliation(s)
- Tommaso Casalini
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland; Polymer Engineering Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via la Santa 1, Lugano 6962, Switzerland.
| |
Collapse
|
23
|
Molecular simulation of zwitterionic polypeptides on protecting glucagon-like peptide-1 (GLP-1). Int J Biol Macromol 2021; 174:519-526. [PMID: 33539961 DOI: 10.1016/j.ijbiomac.2021.01.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 11/23/2022]
Abstract
Owing to their anti-fouling properties, zwitterionic polypeptides demonstrate great advantage on protecting protein drugs. When conjugated to glucagon-like peptide-1 (GLP-1), a drug for type-II diabetes, zwitterionic polypeptides confer better pharmacokinetics than uncharged counterparts. However, its microscopic mechanism is still unclear due to the complicated conformational space. To address this challenge, this work explored the interaction modes of GLP-1 with the unconnected repeat units, instead of the full-length polypeptides. The three repeat units are two zwitterionic pentapeptides VPKEG and VPREG, and one uncharged control VPGAG. Our molecular simulations revealed that the helical conformation of GLP-1 was stabilized by adding 40 polypeptides. Both VPGAG and VPREG formed dense packing shells around GLP-1, but the driving forces were hydrophobic and electrostatic interactions, respectively. In contrast, the packing shell composed of VPKEG was most loose, while could still stabilize GLP-1. The moderate electrostatic interactions endowed VPKEG an anti-fouling property, thereby avoiding non-specific interaction with other amino acids. The strong electrostatic interactions exerted by arginine promoted atomic contacts between VPREG and other residues, making it as "hydrophobic" as VPGAG. In summary, the combination of hydrophobic and moderate electrostatic interactions in VPKEG brings about a subtle balance between stabilizing GLP-1 and avoiding non-specific interaction.
Collapse
|
24
|
Slor G, Olea AR, Pujals S, Tigrine A, De La Rosa VR, Hoogenboom R, Albertazzi L, Amir RJ. Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. Biomacromolecules 2021; 22:1197-1210. [PMID: 33512161 PMCID: PMC7944483 DOI: 10.1021/acs.biomac.0c01708] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Enzymatically
degradable polymeric micelles have great potential
as drug delivery systems, allowing the selective release of their
active cargo at the site of disease. Furthermore, enzymatic degradation
of the polymeric nanocarriers facilitates clearance of the delivery
system after it has completed its task. While extensive research is
dedicated toward the design and study of the enzymatically degradable
hydrophobic block, there is limited understanding on how the hydrophilic
shell of the micelle can affect the properties of such enzymatically
degradable micelles. In this work, we report a systematic head-to-head
comparison of well-defined polymeric micelles with different polymeric
shells and two types of enzymatically degradable hydrophobic cores.
To carry out this direct comparison, we developed a highly modular
approach for preparing clickable, spectrally active enzyme-responsive
dendrons with adjustable degree of hydrophobicity. The dendrons were
linked with three different widely used hydrophilic polymers—poly(ethylene
glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid) using the
CuAAC click reaction. The high modularity and molecular precision
of the synthetic methodology enabled us to easily prepare well-defined
amphiphiles that differ either in their hydrophilic block composition
or in their hydrophobic dendron. The micelles of the different amphiphiles
were thoroughly characterized and their sizes, critical micelle concentrations,
drug loading, stability, and cell internalization were compared. We
found that the micelle diameter was almost solely dependent on the
hydrophobicity of the dendritic hydrophobic block, whereas the enzymatic
degradation rate was strongly dependent on the composition of both
blocks. Drug encapsulation capacity was very sensitive to the type
of the hydrophilic block, indicating that, in addition to the hydrophobic
core, the micellar shell also has a significant role in drug encapsulation.
Incubation of the spectrally active micelles in the presence of cells
showed that the hydrophilic shell significantly affects the micellar
stability, localization, cell internalization kinetics, and the cargo
release mechanism. Overall, the high molecular precision and the ability
of these amphiphiles to report their disassembly, even in complex
biological media, allowed us to directly compare the different types
of micelles, providing striking insights into how the composition
of the micelle shells and cores can affect their properties and potential
to serve as nanocarriers.
Collapse
Affiliation(s)
- Gadi Slor
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Alis R Olea
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Sílvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain.,Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, Carrer Martí I Franquès 1, 08028 Barcelona, Spain
| | - Ali Tigrine
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Victor R De La Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain.,Department of Biomedical Engineering, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands
| | - Roey J Amir
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.,BLAVATNIK Center for Drug Discovery, Tel-Aviv University, Tel-Aviv 6997801, Israel.,ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv 6997801, Israel.,The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
25
|
3D-printed electrode as a new platform for electrochemical immunosensors for virus detection. Anal Chim Acta 2020; 1147:30-37. [PMID: 33485583 PMCID: PMC7997732 DOI: 10.1016/j.aca.2020.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022]
Abstract
Simple, low-cost, and sensitive new platforms for electrochemical immunosensors for virus detection have been attracted attention due to the recent pandemic caused by a new type of coronavirus (SARS-CoV-2). In the present work, we report for the first time the construction of an immunosensor using a commercial 3D conductive filament of carbon black and polylactic acid (PLA) to detect Hantavirus Araucaria nucleoprotein (Np) as a proof-of-concept. The recognition biomolecule was anchored directly at the filament surface by using N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride and N-Hydroxysuccinimide (EDC/NHS). Conductive and non-conductive composites of PLA were characterized using thermal gravimetric analysis (TGA), revealing around 30% w/w of carbon in the filament. Morphological features of composites were obtained from SEM and TEM measurements. FTIR measurement revealed that crosslinking agents were covalently bonded at the filament surface. Electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the evaluation of each step involved in the construction of the proposed immunosensor. The results showed the potentiality of the device for the quantitative detection of Hantavirus Araucaria nucleoprotein (Np) from 30 μg mL-1 to 240 μg mL-1 with a limit of detection of 22 μg mL-1. Also, the proposed immunosensor was applied with success for virus detection in 100x diluted human serum samples. Therefore, the PLA conductive filament with carbon black is a simple and excellent platform for immunosensing, which offers naturally carboxylic groups able to anchor covalently biomolecules.
Collapse
|
26
|
Guyon L, Groo AC, Malzert-Fréon A. Relevant Physicochemical Methods to Functionalize, Purify, and Characterize Surface-Decorated Lipid-Based Nanocarriers. Mol Pharm 2020; 18:44-64. [PMID: 33244972 DOI: 10.1021/acs.molpharmaceut.0c00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Surface functionalization of lipid-based nanocarriers (LBNCs) with targeting ligands has attracted huge interest in the field of nanomedicines for their ability to overcome some physiological barriers and their potential to deliver an active molecule to a specific target without causing damage to healthy tissues. The principal objective of this review is to summarize the present knowledge on LBNC decoration used for biomedical applications, with an emphasis on the ligands used, the functionalization approaches, and the purification methods after ligand corona formation. The most potent experimental techniques for the LBNC surface characterization are described. The potential of promising methods such as nuclear magnetic resonance spectroscopy and isothermal titration calorimetry to characterize ligand surface corona is also outlined.
Collapse
Affiliation(s)
- Léna Guyon
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | - Anne-Claire Groo
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | | |
Collapse
|
27
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Fan H, Guo Z. Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater Sci 2020; 8:1502-1535. [PMID: 31994566 DOI: 10.1039/c9bm01729a] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Surface wettability plays an important role in regulating biomolecule adhesion behaviors. The biomolecule adhesion behaviors of superwettable surfaces have become an important topic as an important part of the interactions between materials and organisms. In addition to general research on the moderate wettability of surfaces, the studies of biomolecule adhesion behaviors extend to extreme wettability ranges such as superhydrophobic, superhydrophilic and slippery surfaces and attract both fundamental and practical interest. In this review, we summarize the recent studies on biomolecule adhesion behaviors on superwettable surfaces, especially superhydrophobic, superhydrophilic and slippery surfaces. The first part will focus on the influence of extreme wettability on cell adhesion behaviors. The second part will concentrate on the adhesion behaviors of biomacromolecules on superwettable surfaces including proteins and nucleic acids. Finally, the influences of wettability on small molecule adhesion behaviors on material surfaces have also been investigated. The mechanism of superwettable surfaces and their influences on biomolecule adhesion behaviors have been studied and highlighted.
Collapse
Affiliation(s)
- Haifeng Fan
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
29
|
Park SJ. Protein-Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles. Int J Nanomedicine 2020; 15:5783-5802. [PMID: 32821101 PMCID: PMC7418457 DOI: 10.2147/ijn.s254808] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (NPs) are highly potent tools for the diagnosis of diseases and specific delivery of therapeutic agents. Their development and application are scientifically and industrially important. The engineering of NPs and the modulation of their in vivo behavior have been extensively studied, and significant achievements have been made in the past decades. However, in vivo applications of NPs are often limited by several difficulties, including inflammatory responses and cellular toxicity, unexpected distribution and clearance from the body, and insufficient delivery to a specific target. These unfavorable phenomena may largely be related to the in vivo protein-NP interaction, termed "protein corona." The layer of adsorbed proteins on the surface of NPs affects the biological behavior of NPs and changes their functionality, occasionally resulting in loss-of-function or gain-of-function. The formation of a protein corona is an intricate process involving complex kinetics and dynamics between the two interacting entities. Structural changes in corona proteins have been reported in many cases after their adsorption on the surfaces of NPs that strongly influence the functions of NPs. Thus, understanding of the conformational changes and unfolding process of proteins is very important to accelerate the biomedical applications of NPs. Here, we describe several protein corona characteristics and specifically focus on the conformational fluctuations in corona proteins induced by NPs.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon21936, Korea
| |
Collapse
|
30
|
Bheri S, Hoffman JR, Park HJ, Davis ME. Biomimetic nanovesicle design for cardiac tissue repair. Nanomedicine (Lond) 2020; 15:1873-1896. [PMID: 32752925 DOI: 10.2217/nnm-2020-0097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is a major cause of mortality and morbidity worldwide. Exosome therapies are promising for cardiac repair. Exosomes transfer cargo between cells, have high uptake by native cells and are ideal natural carriers for proteins and nucleic acids. Despite their proreparative potential, exosome production is dependent on parent cell state with typically low yields and cargo variability. Therefore, there is potential value in engineering exosomes to maximize their benefits by delivering customized, potent cargo for cardiovascular disease. Here, we outline several methods of exosome engineering focusing on three important aspects: optimizing cargo, homing to target tissue and minimizing clearance. Finally, we put these methods in context of the cardiac field and discuss the future potential of vesicle design.
Collapse
Affiliation(s)
- Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Jessica R Hoffman
- Molecular & Systems Pharmacology Graduate Training Program, Graduate Division of Biological & Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30332, USA.,Department of Pediatrics, Division of Pediatric Cardiology, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
31
|
Lee H. Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics 2020; 12:E533. [PMID: 32531886 PMCID: PMC7355693 DOI: 10.3390/pharmaceutics12060533] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first polyethylene glycol (PEG)ylated protein was approved by the FDA in 1990, PEGylation has been successfully applied to develop drug delivery systems through experiments, but these experimental results are not always easy to interpret at the atomic level because of the limited resolution of experimental techniques. To determine the optimal size, structure, and density of PEG for drug delivery, the structure and dynamics of PEGylated drug carriers need to be understood close to the atomic scale, as can be done using molecular dynamics simulations, assuming that these simulations can be validated by successful comparisons to experiments. Starting with the development of all-atom and coarse-grained PEG models in 1990s, PEGylated drug carriers have been widely simulated. In particular, recent advances in computer performance and simulation methodologies have allowed for molecular simulations of large complexes of PEGylated drug carriers interacting with other molecules such as anticancer drugs, plasma proteins, membranes, and receptors, which makes it possible to interpret experimental observations at a nearly atomistic resolution, as well as help in the rational design of drug delivery systems for applications in nanomedicine. Here, simulation studies on the following PEGylated drug topics will be reviewed: proteins and peptides, liposomes, and nanoparticles such as dendrimers and carbon nanotubes.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| |
Collapse
|
32
|
Penna M, Yarovsky I. Nanoscale in silico classification of ligand functionalised surfaces for protein adsorption resistance. NANOSCALE 2020; 12:7240-7255. [PMID: 32196038 DOI: 10.1039/c9nr10009a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-specific protein adsorption represents a significant challenge for the design of efficient and safe nanoparticles for biomedical applications since it may prevent functional ligands to target the desired specific receptors which can limit the efficacy of novel drug delivery systems and biosensors. The biofilm formation initiated by protein adsorption on surfaces limits the lifetime and safety of medical implants and tissue regenerative scaffolds. The development of biofouling resistant surfaces is therefore a major goal for the widespread uptake of nanomedicine. Here, we provide a relatively simple computational screening method based on the rational physically grounded criteria that may suffice in selection of surface grafted ligands for protein rejection, and test whether these criteria can be extrapolated from a specific protein to generic protein-resistant surfaces. Using all-atom molecular dynamics simulations we characterise four types of ligand functionalised surfaces at aqueous interfaces in terms of the surface hydrophobicity and ligand dynamics. We demonstrate how our hypothesised interfacial design based on the select physical characteristics of the ligated surfaces can enable the rejection of a protein from the surface. The ligand screening procedure and the detailed atomistic characterisation of the protein rejection process presented suggest that minimizing the adsorption of surface active proteins requires specific surface topographies and ligand chemistries that are able to maximise the entropic penalty associated with the restriction of the ligand dynamics and trapping interfacial water by adsorbed proteins.
Collapse
Affiliation(s)
- Matthew Penna
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | | |
Collapse
|
33
|
Liu N, Tang M, Ding J. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. CHEMOSPHERE 2020; 245:125624. [PMID: 31864050 DOI: 10.1016/j.chemosphere.2019.125624] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 05/23/2023]
Abstract
Once nanoparticles (NPs) contact with the biological fluids, the proteins immediately adsorb onto their surface, forming a layer called protein corona (PC), which bestows the biological identity on NPs. Importantly, the NPs-PC complex is the true identity of NPs in physiological environment. Based on the affinity and the binding and dissociation rate, PC is classified into soft protein corona, hard protein corona, and interfacial protein corona. Especially, the hard PC, a protein layer relatively stable and closer to their surface, plays particularly important role in the biological effects of the complex. However, the abundant corona proteins rarely correspond to the most abundant proteins found in biological fluids. The composition profile, formation and conformational change of PC can be affected by many factors. Here, the influence factors, not only the nature of NPs, but also surface chemistry and biological medium, are discussed. Likewise, the formed PC influences the interaction between NPs and cells, and the associated subsequent cellular uptake and cytotoxicity. The uncontrolled PC formation may induce undesirable and sometimes opposite results: increasing or inhibiting cellular uptake, hindering active targeting or contributing to passive targeting, mitigating or aggravating cytotoxicity, and stimulating or mitigating the immune response. In the present review, we discuss these aspects and hope to provide a valuable reference for controlling protein adsorption, predicting their behavior in vivo experiments and designing lower toxicity and enhanced targeting nanomedical materials for nanomedicine.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| | - Jiandong Ding
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| |
Collapse
|
34
|
Ashkarran AA, Dararatana N, Crespy D, Caracciolo G, Mahmoudi M. Mapping the heterogeneity of protein corona by ex vivo magnetic levitation. NANOSCALE 2020; 12:2374-2383. [PMID: 31960871 DOI: 10.1039/c9nr10367h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the past decade, we witnessed limited success in the clinical translation of therapeutic nanoparticles (NPs). One of the main reasons for this limited success is our poor understanding of the biological identity of NPs. Herein, we report magnetic levitation (MagLev) as a complementary analytical tool to investigate the homogeneity of the created protein corona (PC) coated NPs through an ex vivo model. Our results demonstrate that the MagLev system not only has the capacity to separate corona coated NPs, but also enables us to study the homogeneity/heterogeneity of the PC. Our findings suggest that current ex vivo isolation methods cause a heterogeneous coverage of PC profiles at the surface of NPs. The MagLev technique, therefore, would be instrumental in identifying and separating fully PC coated NPs which, in turn, enables us to achieve more accurate information on protein corona composition. Ultimately, we believe that the MagLev technique can be used for the fast screening of the homogeneity of corona coated NPs before quantitative analysis of the corona profile/composition, hence definitely improving our fundamental understanding of nano-bio interfaces.
Collapse
Affiliation(s)
| | - Naruphorn Dararatana
- Precision Health Program, Michigan State University, East Lansing, MI, USA. and Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
35
|
Kari OK, Ndika J, Parkkila P, Louna A, Lajunen T, Puustinen A, Viitala T, Alenius H, Urtti A. In situ analysis of liposome hard and soft protein corona structure and composition in a single label-free workflow. NANOSCALE 2020; 12:1728-1741. [PMID: 31894806 DOI: 10.1039/c9nr08186k] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methodological constraints have limited our ability to study protein corona formation, slowing nanomedicine development and their successful translation into the clinic. We determined hard and soft corona structural properties along with the corresponding proteomic compositions on liposomes in a label-free workflow: surface plasmon resonance and a custom biosensor for in situ structure determination on liposomes and corona separation, and proteomics using sensitive nanoliquid chromatography tandem mass spectrometry with open-source bioinformatics platforms. Undiluted human plasma under dynamic flow conditions was used for in vivo relevance. Proof-of-concept is presented with a regular liposome formulation and two light-triggered indocyanine green (ICG) liposome formulations in preclinical development. We observed formulation-dependent differences in corona structure (thickness, protein-to-lipid ratio, and surface mass density) and protein enrichment. Liposomal lipids induced the enrichment of stealth-mediating apolipoproteins in the hard coronas regardless of pegylation, and their preferential enrichment in the soft corona of the pegylated liposome formulation with ICG was observed. This suggests that the soft corona of loosely interacting proteins contributes to the stealth properties as a component of the biological identity modulated by nanomaterial surface properties. The workflow addresses significant methodological gaps in biocorona research by providing truly complementary hard and soft corona compositions with corresponding in situ structural parameters for the first time. It has been designed into a convenient and easily reproducible single-experiment format suited for preclinical development of lipid nanomedicines.
Collapse
Affiliation(s)
- Otto K Kari
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020; 160:136-169. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The clinical success of polypeptides as polymeric drugs, covered by the umbrella term "polymer therapeutics," combined with related scientific and technological breakthroughs, explain their exponential growth in the development of polypeptide-drug conjugates as therapeutic agents. A deeper understanding of the biology at relevant pathological sites and the critical biological barriers faced, combined with advances regarding controlled polymerization techniques, material bioresponsiveness, analytical methods, and scale up-manufacture processes, have fostered the development of these nature-mimicking entities. Now, engineered polypeptides have the potential to combat current challenges in the advanced drug delivery field. In this review, we will discuss examples of polypeptide-drug conjugates as single or combination therapies in both preclinical and clinical studies as therapeutics and molecular imaging tools. Importantly, we will critically discuss relevant examples to highlight those parameters relevant to their rational design, such as linking chemistry, the analytical strategies employed, and their physicochemical and biological characterization, that will foster their rapid clinical translation.
Collapse
Affiliation(s)
- Tetiana Melnyk
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Snežana Đorđević
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
37
|
Polloni AE, Chiaradia V, do Amaral RJFC, Kearney C, Gorey B, de Oliveira D, de Oliveira JV, de Araújo PHH, Sayer C, Heise A. Polyesters with main and side chain phosphoesters as structural motives for biocompatible electrospun fibres. Polym Chem 2020. [DOI: 10.1039/d0py00033g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The functionalisation of polymacrolactones with phosphoesters was achieved by thiol–ene coupling resulting in copolymers with modulated properties.
Collapse
Affiliation(s)
- André E. Polloni
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
- Department of Chemical Engineering and Food Engineering
| | - Viviane Chiaradia
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
- Department of Chemical Engineering and Food Engineering
| | - Ronaldo José F. C. do Amaral
- Kearney Lab & Tissue Engineering Research Group
- Anatomy Department
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| | - Cathal Kearney
- Kearney Lab & Tissue Engineering Research Group
- Anatomy Department
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| | - Brian Gorey
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - José V. de Oliveira
- Department of Chemical Engineering and Food Engineering
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Pedro H. H. de Araújo
- Department of Chemical Engineering and Food Engineering
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Andreas Heise
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CURAM)
| |
Collapse
|
38
|
Ghosh U, Pal A. Graphitic carbon nitride based Z scheme photocatalysts: Design considerations, synthesis, characterization and applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO2 nanoparticle surfaces. J Colloid Interface Sci 2019; 554:362-375. [DOI: 10.1016/j.jcis.2019.06.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/28/2022]
|
40
|
Wang G, Yan C, Gao S, Liu Y. Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109856. [DOI: 10.1016/j.msec.2019.109856] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022]
|
41
|
Wang L, Shi C, Wang X, Guo D, Duncan TM, Luo J. Zwitterionic Janus Dendrimer with distinct functional disparity for enhanced protein delivery. Biomaterials 2019; 215:119233. [PMID: 31176068 PMCID: PMC6585461 DOI: 10.1016/j.biomaterials.2019.119233] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
The development of a facile protein delivery vehicle is challenging and remains an unmet demand for clinical applications. The well-defined structure and functionality of a nanocarrier are highly desirable for the reproducibility and regulatory compliance. Herein, we report for the first time a novel Janus dendrimer (JD) system, comprised of two distinct dendrons with superior protein binding and protein repelling properties, respectively, for efficient spontaneous protein loading and enhanced in vivo protein delivery. Core-forming dendron is tethered with a combination of charged and hydrophobic moieties, which coat protein surface efficiently via the multivalent and synergistic interactions. Zwitterionic peripheries on the counter dendron endow the nanoparticle (<20 nm) with a highly hydrophilic and antifouling surface, which efficiently prevents serum protein adsorption and exchange as demonstrated in biolayer interferometry assay, therefore, reducing premature protein release. Surprisingly, JD nanocarriers containing biomimicking glycerylphosphorylcholine (GPC) surface significantly enhanced the intracellular uptake of protein therapeutics specifically in cancer cells, compared with zwitterionic carboxybetain (CB)-JD and PEGylated nanocarriers. The zwitterionic JD nanocarriers greatly prolonged the in vivo pharmacokinetic profiles of payloads relative to the PEGylated nanocarriers. Janus nanocarrier controlled the in vivo release of insulin and improved the blood sugar control in mice.
Collapse
Affiliation(s)
- Lili Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States
| | - Xu Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States; National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States
| | - Thomas M Duncan
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States.
| |
Collapse
|
42
|
Sousa AA. Impact of soft protein interactions on the excretion, extent of receptor occupancy and tumor accumulation of ultrasmall metal nanoparticles: a compartmental model simulation. RSC Adv 2019; 9:26927-26941. [PMID: 35528561 PMCID: PMC9070572 DOI: 10.1039/c9ra04718b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
Ultrasmall metal nanoparticles (NPs) are next-generation nano-based platforms for in vivo disease diagnosis and treatment. Due to their small size below the kidney filtration threshold and marked resistance to nonspecific serum protein adsorption, ultrasmall NPs can be rapidly excreted through the kidneys and escape liver uptake. However, although ultrasmall particles may be deemed highly resistant to protein adsorption, the real extent of this resistance is not known. Here, a simple compartmental model simulation was therefore implemented to understand how NP behavior in vivo could be modulated by soft, transient NP-plasma protein interactions characterized by dissociation constants in the millimolar range. In Model 1, ultrasmall NPs functionalized with a targeting probe, plasma proteins and target receptors were assumed to co-exist within a single compartment. Simulations were performed to understand the synergistic effect of soft interactions, systemic clearance and NP size on receptor occupancy in the single compartment. The results revealed the existence of a narrow range of ultraweak affinities and optimal particle sizes leading to greater target occupancy. In Model 2, simulations were performed to understand the impact of soft interactions on NP accumulation into a peripheral (tumor) compartment. The results revealed that soft interactions - but not active targeting - enhanced tumor uptake levels when tumor accumulation was limited by 'fast' plasma clearance and 'slow' vascular extravasation. The simple model presented here provides a basic framework to quantitatively understand the blood and tumor pharmacokinetics of ultrasmall NPs under the influence of transient protein interactions.
Collapse
Affiliation(s)
- Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo São Paulo SP Brazil
| |
Collapse
|
43
|
Kim S, Lee SM, Lee SS, Shin DS. Microfluidic Generation of Amino-Functionalized Hydrogel Microbeads Capable of On-Bead Bioassay. MICROMACHINES 2019; 10:mi10080527. [PMID: 31405057 PMCID: PMC6723060 DOI: 10.3390/mi10080527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Microfluidic generation of hydrogel microbeads is a highly efficient and reproducible approach to create various functional hydrogel beads. Here, we report a method to prepare crosslinked amino-functionalized polyethylene glycol (PEG) microbeads using a microfluidic channel. The microbeads generated from a microfluidic device were evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and confocal laser scanning microscopy, respectively. We found that the microbeads were monodisperse and the amino groups were localized on the shell region of the microbeads. A swelling test exhibited compatibility with various solvents. A cell binding assay was successfully performed with RGD peptide-coupled amino-functionalized hydrogel microbeads. This strategy will enable the large production of the various functional microbeads, which can be used for solid phase peptide synthesis and on-bead bioassays.
Collapse
Affiliation(s)
- Seongsoo Kim
- Division of Chemical and Bioengineering, Kangwon National University, Gangwon-do 24341, Korea
| | - Sang-Myung Lee
- Division of Chemical and Bioengineering, Kangwon National University, Gangwon-do 24341, Korea
| | - Sung Sik Lee
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, CH-8093 Zurich, Switzerland
- Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Dong-Sik Shin
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea.
| |
Collapse
|
44
|
Martins G, Gogola JL, Caetano FR, Kalinke C, Jorge TR, Santos CND, Bergamini MF, Marcolino-Junior LH. Quick electrochemical immunoassay for hantavirus detection based on biochar platform. Talanta 2019; 204:163-171. [PMID: 31357278 DOI: 10.1016/j.talanta.2019.05.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 11/30/2022]
Abstract
This work describes the first method using biochar (BC) as carbonaceous platform for immunoassay application. BC is a highly functionalized material obtained through biomass pyrolysis under controlled conditions. Due to the highly functionalized surface, covalent binding between BC and biomolecules can be performed by EDC/NHS conjugation. The application of the modified electrode was done with Hantavirus, that are etiologic agents mainly transmitted by wild rodents. Among its pathologies Hantavirus Cardiopulmonary Syndrome (HCPS) arises at Americas, caused by Hantavirus Araucária and reaches 40% lethality. The diagnostic is based on the presence of specific hantavirus nucleoprotein (Np), under viremic condition or IgG2b antibodies (Ab), during first symptoms. The results presented a device sensitivity of 5.28 μA dec-1 and a LOD of 0.14 ng mL-1 to the Np detection, ranging from 5.0 ng mL-1 to 1.0 μg mL-1, the Ab detection works as qualitative type sensor above 200 ng mL-1. Both sensors were evaluated its selectivity and serum samples; selectivity against Gumboro disease, VP2 protein, and antibody IgG2a against Yellow fever disease (YF), respectively. So, the devices here proposed are promising tool suitable for both rodent and human hantavirus clinical surveys.
Collapse
Affiliation(s)
- Gustavo Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Jeferson L Gogola
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Fabio R Caetano
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Cristiane Kalinke
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Taíssa R Jorge
- Instituto Carlos Chagas, FIOCRUZ, CEP 81310-020, Curitiba, PR, Brazil
| | | | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Luiz H Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil.
| |
Collapse
|
45
|
Munasinghe A, Mathavan A, Mathavan A, Lin P, Colina CM. Molecular Insight into the Protein–Polymer Interactions in N-Terminal PEGylated Bovine Serum Albumin. J Phys Chem B 2019; 123:5196-5205. [DOI: 10.1021/acs.jpcb.8b12268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Le TC, Penna M, Winkler DA, Yarovsky I. Quantitative design rules for protein-resistant surface coatings using machine learning. Sci Rep 2019; 9:265. [PMID: 30670792 PMCID: PMC6342937 DOI: 10.1038/s41598-018-36597-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
Preventing biological contamination (biofouling) is key to successful development of novel surface and nanoparticle-based technologies in the manufacturing industry and biomedicine. Protein adsorption is a crucial mediator of the interactions at the bio - nano -materials interface but is not well understood. Although general, empirical rules have been developed to guide the design of protein-resistant surface coatings, they are still largely qualitative. Herein we demonstrate that this knowledge gap can be addressed by using machine learning approaches to extract quantitative relationships between the material surface chemistry and the protein adsorption characteristics. We illustrate how robust linear and non-linear models can be constructed to accurately predict the percentage of protein adsorbed onto these surfaces using lysozyme or fibrinogen as prototype common contaminants. Our computational models could recapitulate the adsorption of proteins on functionalised surfaces in a test set with an r2 of 0.82 and standard error of prediction of 13%. Using the same data set that enabled the development of the Whitesides rules, we discovered an extension to the original rules. We describe a workflow that can be applied to large, consistently obtained data sets covering a broad range of surface functional groups and protein types.
Collapse
Affiliation(s)
- Tu C Le
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
| | - Matthew Penna
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
- ARC Industrial Transformation Research Hub for Australian Steel Manufacturing, Wollongong, NSW, 2522, Australia
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3084, Australia
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Irene Yarovsky
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
- ARC Industrial Transformation Research Hub for Australian Steel Manufacturing, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
47
|
Bartas M, Bažantová P, Brázda V, Liao JC, Červeň J, Pečinka P. Identification of Distinct Amino Acid Composition of Human Cruciform Binding Proteins. Mol Biol 2019. [DOI: 10.1134/s0026893319010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Jafari M, Doustdar F, Mehrnejad F. Molecular Self-Assembly Strategy for Encapsulation of an Amphipathic α-Helical Antimicrobial Peptide into the Different Polymeric and Copolymeric Nanoparticles. J Chem Inf Model 2018; 59:550-563. [PMID: 30475620 DOI: 10.1021/acs.jcim.8b00641] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Encapsulation of peptide and protein-based drugs in polymeric nanoparticles is one of the fundamental fields in controlled-release drug delivery systems. The molecular mechanisms of absorption of peptides to the polymeric nanoparticles are still unknown, and there is no precise molecular data on the encapsulation process of peptide and protein-based drugs. Herein, the self-assembly of different polymers and block copolymers with combinations of the various molecular weight of blocks and the effects of resultant polymer and copolymer nanomicelles on the stability of magainin2, an α-helical antimicrobial peptide, were investigated by means of all-atom molecular dynamics (MD) simulation. The micelle forming, morphology of micellar aggregations and changes in the first hydration shell of the micelles during micelles formation were explored as well. The results showed that the peptide binds to the polymer and copolymer micelles and never detaches during the MD simulation time. In general, all polymers and copolymers simultaneously encapsulated the peptide during micelles formation and had the ability to maintain the helical structure of the peptide, whereas the first hydration shell of the peptide remained unchanged. Among the micelles, the polyethylene glycol (PEG) micelles completely encapsulated magainin2 and, surprisingly, the NMR structure of the peptide was perfectly kept during the encapsulation process. The MD results also indicated that the aromatic and basic residues of the peptide strongly interact with polymers/copolymers and play important roles in the encapsulation mechanism. This research will provide a good opportunity in the design of polymer surfaces for drug delivery applications such as controlled-release peptide delivery systems.
Collapse
Affiliation(s)
- Majid Jafari
- Infectious Diseases and Tropical Medicine Research Center , Shahid Beheshti University of Medical Sciences , P.O. Box 1985717443, Tehran , Iran.,Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran , P.O. Box 14395-1561, Tehran , Iran
| | - Farahnoosh Doustdar
- Infectious Diseases and Tropical Medicine Research Center , Shahid Beheshti University of Medical Sciences , P.O. Box 1985717443, Tehran , Iran.,Department of Microbiology, Faculty of Medicine , Shahid Beheshti University of Medical Sciences , P.O. Box 19839-63113 Tehran , Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran , P.O. Box 14395-1561, Tehran , Iran
| |
Collapse
|
49
|
Progress in ligand design for monolayer-protected nanoparticles for nanobio interfaces. Biointerphases 2018; 13:06D502. [PMID: 30463411 DOI: 10.1116/1.5044381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ligand-functionalized inorganic nanoparticles, also known as monolayer-protected nanoparticles, offer great potential as vehicles for in vivo delivery of drugs, genes, and other therapeutics. These nanoparticles offer highly customizable chemistries independent of the size, shape, and functionality imparted by the inorganic core. Their success as drug delivery agents depends on their interaction with three major classes of biomolecules: nucleic acids, proteins, and membranes. Here, the authors discuss recent advances and open questions in the field of nanoparticle ligand design for nanomedicine, with a focus on atomic-scale interactions with biomolecules. While the importance of charge and hydrophobicity of ligands for biocompatibility and cell internalization has been demonstrated, ligand length, flexibility, branchedness, and other properties also influence the properties of nanoparticles. However, a comprehensive understanding of ligand design principles lies in the cost associated with synthesizing and characterizing diverse ligand chemistries and the ability to carefully assess the structural integrity of biomolecules upon interactions with nanoparticles.
Collapse
|
50
|
Settanni G, Schäfer T, Muhl C, Barz M, Schmid F. Poly-sarcosine and Poly(Ethylene-Glycol) Interactions with Proteins Investigated Using Molecular Dynamics Simulations. Comput Struct Biotechnol J 2018; 16:543-550. [PMID: 30524669 PMCID: PMC6259037 DOI: 10.1016/j.csbj.2018.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022] Open
Abstract
Nanoparticles coated with hydrophilic polymers often show a reduction in unspecific interactions with the biological environment, which improves their biocompatibility. The molecular determinants of this reduction are not very well understood yet, and their knowledge may help improving nanoparticle design. Here we address, using molecular dynamics simulations, the interactions of human serum albumin, the most abundant serum protein, with two promising hydrophilic polymers used for the coating of therapeutic nanoparticles, poly(ethylene-glycol) and poly-sarcosine. By simulating the protein immersed in a polymer-water mixture, we show that the two polymers have a very similar affinity for the protein surface, both in terms of the amount of polymer adsorbed and also in terms of the type of amino acids mainly involved in the interactions. We further analyze the kinetics of adsorption and how it affects the polymer conformations. Minor differences between the polymers are observed in the thickness of the adsorption layer, that are related to the different degree of flexibility of the two molecules. In comparison poly-alanine, an isomer of poly-sarcosine known to self-aggregate and induce protein aggregation, shows a significantly larger affinity for the protein surface than PEG and PSar, which we show to be related not to a different patterns of interactions with the protein surface, but to the different way the polymer interacts with water.
Collapse
Affiliation(s)
| | - Timo Schäfer
- Institut für Physik, Johannes Gutenberg University, Mainz, Germany
| | - Christian Muhl
- Institut für Organische Chemie, Johannes Gutenberg University, Mainz, Germany
| | - Matthias Barz
- Institut für Organische Chemie, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|