1
|
Rapid Identification of Fupenzi (Rubus chingii Hu) and Its Adulteration by AuNP Visualization. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6278549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fupenzi (Rubus chingii Hu) is a dried and immature fruit in East China, which has effects of nourishing kidneys, solidifying essence, and otherwise. Because Fupenzi was often adulterated and replaced with inferior things, this paper had researched Fupenzi and its adulterant raspberry. A new type of visible sensor was constructed by using Au nanoparticles (AuNPs), which was modified by the surface-active agent and combined with the ultraviolet-visible (UV-vis) spectrum technology. It was found that the change in particle size after the interaction of AuNPs and adulterants will lead to color change. In this paper, the RGB (red, green, and blue) values of the solution were extracted to correlate the color with the concentration of adulterants, and the relationship between the absorption peak intensity and the concentration of adulterants was established. The results showed that the intensity of an absorption peak is related to adulteration concentration, and the color of the solution changed from red to gray as the particle size changed. The visual sensor constructed based on the above principle is a fast and precise method to detect adulteration with different concentrations, which has a potential application value in real-time and rapid detection of Fupenzi’s quality.
Collapse
|
2
|
Shih YH, Peng CL, Chiang PF, Shieh MJ. Dual-Functional Polymeric Micelles Co-Loaded with Antineoplastic Drugs and Tyrosine Kinase Inhibitor for Combination Therapy in Colorectal Cancer. Pharmaceutics 2022; 14:pharmaceutics14040768. [PMID: 35456602 PMCID: PMC9030189 DOI: 10.3390/pharmaceutics14040768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this research was to evaluate the receptor tyrosine kinase inhibitor Sunitinib combined with SN-38 in polymeric micelles for antitumor efficacy in colorectal cancer. First, SN-38 and Sunitinib co-loaded micelles were developed and characterized. We studied cell viability and cellular uptake in HCT-116 cells. Then, subcutaneous HCT-116 xenograft tumors were used for ex vivo biodistribution, antitumor efficacy, and histochemical analysis studies. Results of cellular uptake and ex vivo biodistribution of SN-38/Sunitinib micelles showed the highest accumulation in tumors compared with other normal organs. In the antitumor effect studies, mice bearing HCT-116 tumors were smallest at day 28 after injection of SN-38/Sunitinib micelles, compared with other experiment groups (p < 0.01). As demonstrated by the results of inhibition on multi-receptors by Sunitinib, we confirmed that SN-38/Sunitinib co-loaded micelles to be a treatment modality that could inhibit VEGF and PDGF receptors and enhance the antitumor effect of SN-38 (p < 0.05). In summary, we consider that this micelle is a potential formulation for the combination of SN-38 and Sunitinib in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ying-Hsia Shih
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; (Y.-H.S.); (P.-F.C.)
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; (Y.-H.S.); (P.-F.C.)
- Correspondence: (C.-L.P.); (M.-J.S.)
| | - Ping-Fang Chiang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; (Y.-H.S.); (P.-F.C.)
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
- Correspondence: (C.-L.P.); (M.-J.S.)
| |
Collapse
|
3
|
Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Sadat SMA, Wuest M, Paiva IM, Munira S, Sarrami N, Sanaee F, Yang X, Paladino M, Binkhathlan Z, Karimi-Busheri F, Martin GR, Jirik FR, Murray D, Gamper AM, Hall DG, Weinfeld M, Lavasanifar A. Nano-Delivery of a Novel Inhibitor of Polynucleotide Kinase/Phosphatase (PNKP) for Targeted Sensitization of Colorectal Cancer to Radiation-Induced DNA Damage. Front Oncol 2022; 11:772920. [PMID: 35004293 PMCID: PMC8733593 DOI: 10.3389/fonc.2021.772920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022] Open
Abstract
Inhibition of the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) increases the sensitivity of cancer cells to DNA damage by ionizing radiation (IR). We have developed a novel inhibitor of PNKP, i.e., A83B4C63, as a potential radio-sensitizer for the treatment of solid tumors. Systemic delivery of A83B4C63, however, may sensitize both cancer and normal cells to DNA damaging therapeutics. Preferential delivery of A83B4C63 to solid tumors by nanoparticles (NP) was proposed to reduce potential side effects of this PNKP inhibitor to normal tissue, particularly when combined with DNA damaging therapies. Here, we investigated the radio-sensitizing activity of A83B4C63 encapsulated in NPs (NP/A83) based on methoxy poly(ethylene oxide)-b-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) or solubilized with the aid of Cremophor EL: Ethanol (CE/A83) in human HCT116 colorectal cancer (CRC) models. Levels of γ-H2AX were measured and the biodistribution of CE/A83 and NP/A83 administered intravenously was determined in subcutaneous HCT116 CRC xenografts. The radio-sensitization effect of A83B4C63 was measured following fractionated tumor irradiation using an image-guided Small Animal Radiation Research Platform (SARRP), with 24 h pre-administration of CE/A83 and NP/A83 to Luc+/HCT116 bearing mice. Therapeutic effects were analyzed by monitoring tumor growth and functional imaging using Positron Emission Tomography (PET) and [18F]-fluoro-3’-deoxy-3’-L:-fluorothymidine ([18F]FLT) as a radiotracer for cell proliferation. The results showed an increased persistence of DNA damage in cells treated with a combination of CE/A83 or NP/A83 and IR compared to those only exposed to IR. Significantly higher tumor growth delay in mice treated with a combination of IR and NP/A83 than those treated with IR plus CE/A83 was observed. [18F]FLT PET displayed significant functional changes for tumor proliferation for the drug-loaded NP. This observation was attributed to the higher A83B4C63 levels in the tumors for NP/A83-treated mice compared to those treated with CE/A83. Overall, the results demonstrated a potential for A83B4C63-loaded NP as a novel radio-sensitizer for the treatment of CRC.
Collapse
Affiliation(s)
- Sams M A Sadat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Melinda Wuest
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Igor M Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sirazum Munira
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Nasim Sarrami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Forughalsadat Sanaee
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Xiaoyan Yang
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marco Paladino
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Ziyad Binkhathlan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Feridoun Karimi-Busheri
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gary R Martin
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Frank R Jirik
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Armin M Gamper
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dennis G Hall
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Applications of Aptamer-Bound Nanomaterials in Cancer Therapy. BIOSENSORS-BASEL 2021; 11:bios11090344. [PMID: 34562934 PMCID: PMC8468797 DOI: 10.3390/bios11090344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
Cancer is still a major disease that threatens human life. Although traditional cancer treatment methods are widely used, they still have many disadvantages. Aptamers, owing to their small size, low toxicity, good specificity, and excellent biocompatibility, have been widely applied in biomedical areas. Therefore, the combination of nanomaterials with aptamers offers a new method for cancer treatment. First, we briefly introduce the situation of cancer treatment and aptamers. Then, we discuss the application of aptamers in breast cancer treatment, lung cancer treatment, and other cancer treatment methods. Finally, perspectives on challenges and future applications of aptamers in cancer therapy are discussed.
Collapse
|
6
|
Huang M, Wang X, Xing G, Meng C, Li Y, Li X, Fan L, Wan Y, Yang S. Plasmonic Hot Hole Extraction from CuS Nanodisks Enables Significant Acceleration of Oxygen Evolution Reactions. J Phys Chem Lett 2021; 12:7988-7996. [PMID: 34398606 DOI: 10.1021/acs.jpclett.1c01950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Localized surface plasmon resonance (LSPR) is well known for its unique ability to tune the reactivity of plasmonic materials via photoexcitation; however, it is still an open question as to whether plasmonic holes can be directly extracted to drive valuable chemical reactions. Herein we give an affirmative answer by reporting an illumination-enhanced oxygen evolution reaction (OER) using CuS nanodisks (NDs) alone as the electrocatalyst. Impressively, under 1221 nm laser or xenon lamp illumination, an unprecedented reduction of OER overpotential was observed on the CuS ND-coated electrodes. Transient absorption combined with Mott-Schottky measurements disclosed that near-infrared (NIR) irradiation generated abundant hot holes from LSPR damping in the CuS NDs accounting for the remarkable OER performance enhancement. This is the first report on the direct utilization of plasmonic hot holes in CuS nanomaterials for boosting OER performance, opening up a new route to designing NIR-active photocatalysts/electrocatalysts by exploiting the unique LSPR properties.
Collapse
Affiliation(s)
- Min Huang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xian Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guanjie Xing
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chenchen Meng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Wan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shihe Yang
- Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
7
|
Granja A, Pinheiro M, Sousa CT, Reis S. Gold nanostructures as mediators of hyperthermia therapies in breast cancer. Biochem Pharmacol 2021; 190:114639. [PMID: 34077740 DOI: 10.1016/j.bcp.2021.114639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is the leading cause of cancer-related deaths among women. Due to the limitations of the current therapeutics, new treatment options are needed. Hyperthermia is a promising approach to improve breast cancer therapy, particularly when combined with chemo and radiotherapy. This area has gained more attention following association with nanotechnology, with the emergence of modalities, such as photothermal therapy (PTT). PTT is a simple, minimally invasive technique that requires a near infrared (NIR) light source and a PTT agent. Gold nanostructures are excellent PTT agents as they offer biocompatibility, versatility, high photothermal conversion efficiency, imaging contrast and an easily-modified surface. In this review, we describe the molecular basis and the current clinical aspects of hyperthermia-based therapies. The emergent area of nanoparticle-induced hyperthermia will be explored, in particular gold nanostructure-mediated PTT, focusing on recent preclinical studies for breast cancer management.
Collapse
Affiliation(s)
- Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Célia T Sousa
- IFIMUP and Dep. Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169 - 007 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
Xing J, Gong Q, Akakuru OU, Liu C, Zou R, Wu A. Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. NANOSCALE 2020; 12:24311-24330. [PMID: 33300527 DOI: 10.1039/d0nr06867e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, cancer is obviously a major threat to human health worldwide. Accurate diagnosis and treatment are in great demand and have become an effective method to alleviate the development of cancer and improve the survival rate of patients. A large number of theranostic probes that combine diagnosis and treatment methods have been developed as promising tools for tumor precision medicine. Among them, fluorescent theranostic probes have developed rapidly in the frontier research field of precision medicine with their real time, low toxicity, and high-resolution merit. Therefore, this review focuses on recent advances in the development of fluorescent theranostic probes, as well as their applications for cancer diagnosis and treatment. Initially, small-molecule fluorescent theranostic probes mainly including tumor microenvironment-responsive fluorescent prodrugs and phototherapeutic probes were introduced. Subsequently, nanocomposite probes are expounded based on four types of nano-fluorescent particles combining different therapies (chemotherapy, photothermal therapy, photodynamic therapy, gene therapy, etc.). Then, the capsule-type "all in one" probes, which occupy an important position in theranostic probes, are summarized according to the surface carrier type. This review aims to present a comprehensive guide for researchers in the field of tumor-related theranostic probe design and development.
Collapse
Affiliation(s)
- Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiuyu Gong
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruifen Zou
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
9
|
Karimi E, Abbasi S, Abbasi N. Thymol polymeric nanoparticle synthesis and its effects on the toxicity of high glucose on OEC cells: involvement of growth factors and integrin-linked kinase. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2513-2532. [PMID: 31440034 PMCID: PMC6664260 DOI: 10.2147/dddt.s214454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/03/2019] [Indexed: 11/25/2022]
Abstract
Background Nowadays, the drug delivery system is important in the treatment of diseases. Purpose A polymeric nanoparticle modified by oleic acid (NPMO) as a Thymol (Thy) drug release system was synthesized from Thymbra spicata and its neurotrophic and angiogenic effects on rat’s olfactory ensheathing cells (OECs) in normal (NG) and high glucose (HG) conditions were studied. Methods The NPMO was characterized by using different spectroscopy methods, such as infrared, HNMR, CNMR, gel permeation chromatography, dynamic light scattering, and atomic force microscopy. Load and releasing were investigated by HPLC. The toxicity against OECs diet-induced by MTT assay. ROS and generation of nitric oxide (NO) were evaluated using dichloro-dihydro-fluorescein and Griess method, respectively. The expression of protein integrin-linked kinase (ILK), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were evaluated by Western blotting. Results ThyNPMO is desirable for transferring drug as a carrier. The amount of Thy and extract (E) loaded on NPMO estimated at 43±2.5% and 41±1.8%, respectively. Then, 65% and 63% of the drug load were released, respectively. Thy, ThyNPMO, E, and ENPMO prevented HG-induced OECs cell death (EC50 33±1.5, 22±0.9, 35±1.8, and 25±1.1 μM, respectively). Incubation with Thy, ThyNPMO, E ,and ENPMO at high concentrations increased cell death with LC50 105±3.5, 82±2.8, 109±4.3, and 86±3.4 μM, respectively in HG states. Conclusion OECs were protected by ThyNPMO and ENPMO in protective concentrations by reducing the amount of ROS and NO, maintaining ILK, reducing VEGF, and increasing BDNF and NGF. The mentioned mechanisms were totally reversed at high concentrations.
Collapse
Affiliation(s)
- Elahe Karimi
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran.,Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahryar Abbasi
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran.,Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Department of Pharmacology, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
10
|
Peng J, Liang X. Progress in research on gold nanoparticles in cancer management. Medicine (Baltimore) 2019; 98:e15311. [PMID: 31045767 PMCID: PMC6504334 DOI: 10.1097/md.0000000000015311] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The rapid advancement of nanotechnology in recent years has fuelled burgeoning interest in the field of nanoparticle research, particularly its application in cancer management. At present, there seems to be heightened interest in the application of gold nanoparticles (AuNPs) to the management of cancer, encompassing diagnosis, monitoring, and treatment. AuNPs could be used as drug delivery agents that target cancer cells or in gene therapy. These efforts are undertaken in the hope of revolutionizing current methods and strategies for cancer treatment. This review will focus on the current applications of AuNPs in cancer management. OBJECTIVES, DATA SOURCES, STUDY APPRAISAL AND SYNTHESIS METHODS, RESULTS:: objectives, data sources, study eligibility criteria, participants, and interventions, study appraisal and synthesis methods, results are not required, as the study will be a literature review. Just introduction, ethics and dissemination, and conclusion are applicable. ETHICS AND DISSEMINATION Ethical approval and informed consent are not required, as the study is a literature review and does not involve direct contact with patients or alterations to patient care. CONCLUSION AuNPs have many properties that are of great value for the diagnosis and treatment of tumors. AuNPs are small in size and can penetrate widely and deposit on the tumor site, bind to many proteins and drugs, target delivery drugs, and have good biocompatibility. The application of AuNPs in the diagnosis and treatment of tumors is very considerable. In the near future, AuNPs will certainly play an important role in the treatment of tumors.
Collapse
|
11
|
Park S, Kim H, Lim SC, Lim K, Lee ES, Oh KT, Choi HG, Youn YS. Gold nanocluster-loaded hybrid albumin nanoparticles with fluorescence-based optical visualization and photothermal conversion for tumor detection/ablation. J Control Release 2019; 304:7-18. [PMID: 31028785 DOI: 10.1016/j.jconrel.2019.04.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022]
Abstract
Gold nanoclusters (AuNCs) are viewed as effective hyperthermal agents for the treatment of tumors. Whereas AuNCs formed by the agglomeration of several to tens of gold atoms (<1-2 nm) possess significant fluorescence, they have a negligible hyperthermal effect, while AuNCs comprised of spherical gold nanoparticles (AuNPs > a few nanometers) have a marked hyperthermic effect but lose their inherent fluorescence and obstruct the intensity of neighboring fluorescent dyes due to Forster resonance energy transfer (FRET). To achieve both hyperthermia and fluorescence-based optical visualization, we generated hybrid albumin nanoparticles containing AuNCs (~88 nm) comprising AuNPs (~4.5 nm). We generated a series of formulated AuNCs and optimized the size, morphology, NIR absorbance (600-900 nm), hyperthermal activity, and fluorescence spectral characters of the resulting hybrid albumin nanoparticles (AuNCs/BSA-NPs) by considering the interparticle distance between the AuNPs and Cy5.5. Among these, AuNCs/BSA-NPs (formula D) had a strong hyperthermic effect and had well-preserved fluorescence intensity (from the attached Cy5.5) due to localized surface plasmon resonance (LSPR) and a reduction in FRET. These AuNCs/BSA-NPs were able to elevate the surface tumor temperature of HCT116-bearing mice to >50 °C following 808 nm laser irradiation (1.5 W/cm2, 10 min), which remarkably suppressed tumor growth (17.8 ± 16.9 mm3vs. PBS and AuNCs/BSA-NPs (formula E): ~1850 and ~1250 mm3, respectively). Also, Cy5.5-modified AuNCs/BSA-NPs (formula D) showed good performance in optical fluorescence imaging of target tumors in HCT116 tumor-bearing mice. Together, our results indicate that the interparticle distance between albumin or Cy5.5 and AuNPs/AuNCs can be optimized to achieve both hyperthermia and fluorescence emission by striking a balance between LSPR and FRET effects. We believe that the AuNC/BSA-NPs formulation presented here can serve as a potential platform for both optically visualizing and treating colon cancers.
Collapse
Affiliation(s)
- Sanghyun Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do, Suwon 16419, Republic of Korea
| | - Hanju Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do, Suwon 16419, Republic of Korea
| | - Su Chan Lim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do, Suwon 16419, Republic of Korea
| | - Kyungseop Lim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do, Suwon 16419, Republic of Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Gyeonggi-do, Bucheon-si 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do, Suwon 16419, Republic of Korea.
| |
Collapse
|
12
|
Smart nanoplatform for sequential drug release and enhanced chemo-thermal effect of dual drug loaded gold nanorod vesicles for cancer therapy. J Nanobiotechnology 2019; 17:44. [PMID: 30917812 PMCID: PMC6437988 DOI: 10.1186/s12951-019-0473-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/09/2019] [Indexed: 12/30/2022] Open
Abstract
Background The combination of multiple chemotherapeutics has been used in the clinic for enhanced cancer chemotherapy, however, frequent relapse, chemo-resistance and side effects remains therapeutic hurdles. Thus, the development of co-delivery system with enhanced targeting and synergistic different modal treatments has been proposed as promising strategies for intensive improvement of the therapeutic outcomes. Results We fabricated a nanocarrier based on gold nanorods (Au NRs), cRGD peptide-modified and multi-stimuli-responsive paclitaxel (PTX) and curcumin (CUR) release for synergistic anticancer effect and chemo-photothermal therapy (PTX/CUR/Au NRs@cRGD). The specific banding of cRGD to αvβ3 integrin receptor on the tumor cell surfaces facilitated the endocytosis of PTX/CUR/Au NRs@cRGD, and the near-infrared ray (NIR) further enhanced the drug release and chemotherapeutical efficiency. Compared to single drug, single model treatment or undecorated-PTX/CUR/Au NRs, the PTX/CUR/Au NRs@cRGD with a mild NIR showed significantly enhanced apoptosis and S phase arrest in three cancer cell lines in vitro, and improved drug accumulation in tumor sites as well as tumor growth inhibition in vivo. Conclusions The tumor targeted chemo-photothermal therapy with the synergistic effect of dual drugs provided a versatile strategy for precise cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12951-019-0473-3) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Moustaoui H, Saber J, Djeddi I, Liu Q, Movia D, Prina-Mello A, Spadavecchia J, Lamy de la Chapelle M, Djaker N. A protein corona study by scattering correlation spectroscopy: a comparative study between spherical and urchin-shaped gold nanoparticles. NANOSCALE 2019; 11:3665-3673. [PMID: 30741295 DOI: 10.1039/c8nr09891c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The study of protein interactions with gold nanoparticles (GNP) is a key step prior to any biomedical application. These interactions depend on many GNP parameters such as size, surface charge, chemistry, and shape. In this work, we propose to use a sensitive technique named scattering correlation spectroscopy or SCS to study protein interactions with GNP. SCS allowed the investigation of the GNP hydrodynamic radius with a very high sensitivity before and after interaction with proteins. No labeling is needed. As a proof-of-concept, two of the most used morphologies of GNP-based nanovectors have been used within this work: spherical-shaped GNP (GNS) and branched-shaped GNP (GNU). The measurement of several parameters such as the number of proteins binding to one GNP, the binding affinity and the cooperativeness of binding for three different plasma proteins on the GNP surface was carried out. While GNS showed an increase in the hydrodynamic radius, indicating that each kind of protein binds on the GNS in a specific orientation, GNU showed different orientations of proteins due to their multi-oriented surfaces (tips) with a higher surface to volume area. Quantitative data based on the Hill model were extracted to obtain the affinity of the proteins to both GNS and GNU surfaces. Data variations can be understood in terms of the electrostatic properties of the proteins, which interact differently with the negatively charged GNP surfaces.
Collapse
Affiliation(s)
- Hanane Moustaoui
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire CSPBAT, CNRS (UMR 7244), 74 rue Marcel Cachin, F-93017 Bobigny, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li H, Li H, Yu W, Huang S, Liu Y, Zhang N, Yuan J, Xu X, Duan S, Hu Y. PEGylated hyaluronidase/NIR induced drug controlled release system for synergetic chemo-photothermal therapy of hepatocellular carcinoma. Eur J Pharm Sci 2019; 133:127-136. [PMID: 30779981 DOI: 10.1016/j.ejps.2019.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/26/2019] [Accepted: 02/15/2019] [Indexed: 01/10/2023]
Abstract
In recent years, cancer treatment has been facing the challenge of increasing antitumor efficiency and avoiding severe adverse effects simultaneously. In this study, we designed a controlled release drug delivery system, doxorubicin (Dox)-loaded and hyaluronic acid (HA)-modified PEGylated gold nanocages (AuNCs), which was designated as PEG-HAn-AuNCs/Dox (n represented 10n HA repeating units were modified on each AuNC). In this system, AuNCs were applied as the photothermal cores, Dox was employed as the model drug, HA was applied as the tumor-microenvironment responsive switch to achieve controlled release, and poly (ethylene glycol) (PEG) was used as the stealth polymer to prolong systemic circulation time. Firstly, we evaluated the physical and chemical properties of the PEG-HAn-AuNCs/Dox with different ratios of HA to AuNC and found that PEG-HA4-AuNCs/Dox was the optimal. Secondly, PEG-HA4-AuNCs/Dox revealed the feature of controlled release, namely, the drug release was triggered by hyaluronidase (HAase) and accelerated by the acidic pH and near-infrared (NIR) irradiation. And then PEG-HA4-AuNCs/Dox could be effectively delivered to a cultured SMMC-7721 cell line in vitro and the tumor tissues of the subcutaneous mouse models of hepatocellular carcinoma (HCC) in vivo. Finally, the results demonstrated the synergetic therapy, namely the combination of chemotherapy and photothermal therapy (PTT) (defined as chemo-photothermal therapy) mediated by PEG-HA4-AuNCs/Dox, could efficiently inhibit the tumor growth both in vitro and in vivo. Therefore, the advantages of PEG-HA4-AuNCs/Dox endowed it as a great potential candidate for HCC treatment.
Collapse
Affiliation(s)
- Huili Li
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Huanjie Li
- General Hospital of Xuzhou Mining Group, Quanshan District Coal Road No. 32, Xuzhou, 221006, PR China
| | - Wei Yu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Shengnan Huang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Ying Liu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Ningxia Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Jinxiu Yuan
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Xin Xu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Shaofeng Duan
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, PR China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Medical Sciences, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, PR China.
| | - Yurong Hu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Key Laboratory of Key Technology of Drug Preparation, Ministry of Education, Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China.
| |
Collapse
|
15
|
Zhang J, Luo X, Wu YP, Wu F, Li YF, He RR, Liu M. Rod in Tube: A Novel Nanoplatform for Highly Effective Chemo-Photothermal Combination Therapy toward Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3690-3703. [PMID: 30618237 DOI: 10.1021/acsami.8b17533] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanorods (GNRs) and doxorubicin (DOX) were loaded into the lumen of halloysite nanotubes (HNTs) via a rapid synthesis process (2 min) and physical adsorption. The targeting molecules of folic acid (FA) are then conjugated to HNTs via reactions with bovine serum albumin (BSA). The formation of GNRs in HNTs was verified by different techniques. Au-HNT-DOX@BSA-FA shows a maximum temperature of 26.8 °C rising after 8 min of 808 nm laser irradiation under 0.8 W cm-2. The functionalized HNTs exhibited stronger chemotherapeutic effect under laser irradiation as the laser could promote the release of DOX and temperature rising. Au-HNT-DOX@BSA-FA-treated MCF-7 cells exhibited a survival rate of 7.4% after laser irradiation. Au-HNT-DOX@BSA-FA treatment does not induce obvious toxicity in blood biochemistry, liver, and kidney function in normal mice. In vivo chemo-photothermal treatment toward 4T1-bearing mice suggested that Au-HNT-DOX@BSA-FA exhibited remarkable tumor-targeted efficiency and good controlled release effect for DOX. Also, the nanoparticles exhibited a rapid photothermal performance and an ability to inhibit the growth of tumors. Because of the synergistic effect of chemical-photothermal therapy, the toxicity of DOX to normal tissues was reduced on the premise of ensuring the same curative effect with a low dosage of 0.32 mg kg-1. This novel chemo-photothermal therapy nanoplatform provided a safe, rapid, effective, and cheap choice for the treatment of breast tumors both in vitro and in vivo.
Collapse
|
16
|
Li Z, Ma X, Xia Y, Qian K, Akakuru OU, Luo L, Zheng J, Cui P, Shen Z, Wu A. A pH-sensitive polymer based precise tumor targeting strategy with reduced uptake of nanoparticles by non-cancerous cells. J Mater Chem B 2019; 7:5983-5991. [DOI: 10.1039/c9tb01202h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A T2-weighted MRI contrast agent (SPION-AN-FA@mPEG) can precisely target cancer cells with folate receptor α (FRα) diminishing non-specific uptake by normal healthy cells.
Collapse
|
17
|
Wu M, Liu J, Hu C, Li D, Yang J, Wu Z, Yang L, Chen Y, Fu S, Wu J. Olaparib nanoparticles potentiated radiosensitization effects on lung cancer. Int J Nanomedicine 2018; 13:8461-8472. [PMID: 30587971 PMCID: PMC6294076 DOI: 10.2147/ijn.s181546] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase (PARP) is a key enzyme in the repair process of DNA strand breaks (DSBs). Olaparib (Ola) is a PARP inhibitor that is involved in arresting PARP release from radiotherapy (RT)-induced damaged DNA to potentiate the effect of RT. Although the underlying mechanisms for the radiosensitization effects of Ola are well understood in vitro, the radiosensitization effects in vivo are still unclear. Moreover, poor water solubility and severe toxicity are two major impediments for the clinical success of Ola. MATERIALS AND METHODS Here, we developed olaparib nanoparticles (Ola-NPs) and investigated their radiosensitization mechanisms and toxicity using human non-small-cell lung cancer xenograft models in mice. RESULTS The prepared Ola-NPs showed a mean size of 31.96±1.54 nm and a lower polydispersity index of about 0.126±0.014. In addition, the sensitization enhancement ratio of Ola-NPs (3.81) was much higher than that of free Ola (1.66). The combination of Ola-NPs and RT (Ola-NPs + RT) significantly inhibited tumor growth and prolonged survival in mice. The mechanism of enhanced antitumor efficacy might be related to the inhibition of DSB repair and the promotion of cell apoptosis in vivo. No additional toxicity caused by Ola-NPs was observed. CONCLUSION This study demonstrated the principle of using Ola-NPs as a potent radiosensitizer to improve the therapeutic effect of RT relative to free Ola (P<0.05 in all cases).
Collapse
Affiliation(s)
- Min Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China, ;
| | - Jing Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China, ;
| | - ChuanFei Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China, ;
| | - Dong Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China, ;
| | - Juan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China, ;
| | - ZhouXue Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China, ;
| | - LingLin Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China, ;
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China, ;
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China, ;
| |
Collapse
|
18
|
Wu X, Liu J, Yang L, Wang F. Photothermally controlled drug release system with high dose loading for synergistic chemo-photothermal therapy of multidrug resistance cancer. Colloids Surf B Biointerfaces 2018; 175:239-247. [PMID: 30540971 DOI: 10.1016/j.colsurfb.2018.11.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Chemotherapy is an important first-line strategy for tumor therapy in cancer treatment, but multidrug resistance (MDR) is a major problem that reduces the efficacy of chemotherapeutics. Herein, we report a novel photothermally controlled intelligent drug release system (AuNP@mSiO2-DOX-FA) with a large amount of drugs loading for synergistic chemo-photothermal therapy of MDR in breast cancer. The nanoplatform utilized gold nanoparticles as a hyperthermia core, and large-mesoporous silica as a shell for doxorubicin (DOX) loading. Benefiting from the thick layer and large pore size, the encapsulation and loading efficiency were as high as 97.7% and 8.84%, respectively. Furthermore, under the trigger of 808 nm near infrared (NIR) light, the released DOX increased significantly at pH 5.0 and reached to 39.0% in 20 min, achieving a facile intelligent control of chemotherapy additional to the photothermal therapy. The viability of MCF-7/ADR cells could be efficiently reduced to 16.9%, demonstrating the proposed photothermally controlled system with synergistic chemo-photothermal therapy has great potential capability to overcome MDR in breast cancer.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Jing Liu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Lingyan Yang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Fu Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
19
|
Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, Zhou Z, Shi C, Ke C, Bregadze VI, Mandal SK, Liu Y, Li Z, Xue T, Zhu G, Munasinghe J, Niu G, Wu A, Chen X. Fenton-Reaction-Acceleratable Magnetic Nanoparticles for Ferroptosis Therapy of Orthotopic Brain Tumors. ACS NANO 2018; 12:11355-11365. [PMID: 30375848 DOI: 10.1021/acsnano.8b06201] [Citation(s) in RCA: 413] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cancer is one of the leading causes of morbidity and mortality in the world, but more cancer therapies are needed to complement existing regimens due to problems of existing cancer therapies. Herein, we term ferroptosis therapy (FT) as a form of cancer therapy and hypothesize that the FT efficacy can be significantly improved via accelerating the Fenton reaction by simultaneously increasing the local concentrations of all reactants (Fe2+, Fe3+, and H2O2) in cancer cells. Thus, Fenton-reaction-acceleratable magnetic nanoparticles, i.e., cisplatin (CDDP)-loaded Fe3O4/Gd2O3 hybrid nanoparticles with conjugation of lactoferrin (LF) and RGD dimer (RGD2) (FeGd-HN@Pt@LF/RGD2), were exploited in this study for FT of orthotopic brain tumors. FeGd-HN@Pt@LF/RGD2 nanoparticles were able to cross the blood-brain barrier because of its small size (6.6 nm) and LF-receptor-mediated transcytosis. FeGd-HN@Pt@LF/RGD2 can be internalized into cancer cells by integrin αvβ3-mediated endocytosis and then release Fe2+, Fe3+, and CDDP upon endosomal uptake and degradation. Fe2+ and Fe3+ can directly participate in the Fenton reaction, whereas the CDDP can indirectly produce H2O2 to further accelerate the Fenton reaction. The acceleration of Fenton reaction generates reactive oxygen species to induce cancer cell death. FeGd-HN@Pt@LF/RGD2 successfully delivered reactants involved in the Fenton reaction to the tumor site and led to significant inhibition of tumor growth. Finally, the intrinsic magnetic resonance imaging (MRI) capability of the nanoparticles was used to assess and monitor tumor response to FT (self-MRI monitoring).
Collapse
Affiliation(s)
- Zheyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 Zhong-guan West Road , Ningbo , Zhejiang 315201 , China
- Laboratory of Molecular Imaging and Nanomedicine , National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health, Bethesda , Maryland 20892 , United States
| | - Ting Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Yan Li
- College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , China
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine , National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health, Bethesda , Maryland 20892 , United States
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine , National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health, Bethesda , Maryland 20892 , United States
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine , National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health, Bethesda , Maryland 20892 , United States
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine , National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health, Bethesda , Maryland 20892 , United States
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Chaomin Ke
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Vladimir I Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov Str. 28 , Moscow 119991 , Russia
| | - Swadhin K Mandal
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur 741246 , India
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine , National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health, Bethesda , Maryland 20892 , United States
| | - Zihou Li
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 Zhong-guan West Road , Ningbo , Zhejiang 315201 , China
| | - Ting Xue
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 Zhong-guan West Road , Ningbo , Zhejiang 315201 , China
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine , National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health, Bethesda , Maryland 20892 , United States
- Department of Pharmaceutics, School of Pharmacy, Massey Cancer Center , Virginia Commonwealth University , Richmond , Virginia 23298-0533 , United States
| | - Jeeva Munasinghe
- Mouse Imaging Facility , National Institute of Neurological Disorder and Stroke , National Institutes of Health, Bethesda , Maryland 20892 , United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine , National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health, Bethesda , Maryland 20892 , United States
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 Zhong-guan West Road , Ningbo , Zhejiang 315201 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine , National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health, Bethesda , Maryland 20892 , United States
| |
Collapse
|
20
|
Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG. How can nanotechnology help the fight against breast cancer? NANOSCALE 2018; 10:11719-11731. [PMID: 29917035 DOI: 10.1039/c8nr02796j] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review we provide a broad overview on the use of nanotechnology for the fight against breast cancer (BC). Nowadays, detection, diagnosis, treatment, and prevention may be possible thanks to the application of nanotechnology to clinical practice. Taking into consideration the different forms of BC and the disease status, nanomaterials can be designed to meet the most forefront objectives of modern therapy and diagnosis. We have analyzed in detail three main groups of nanomaterial applications for BC treatment and diagnosis. We have identified several types of drugs successfully conjugated with nanomaterials. We have analyzed the main important imaging techniques and all nanomaterials used to help the non-invasive, early detection of the lesions. Moreover, we have examined theranostic nanomaterials as unique tools, combining imaging, detection, and therapy for BC. This state of the art review provides a useful guide depicting how nanotechnology can be used to overcome the current barriers in BC clinical practice, and how it will shape the future scenario of treatments, prevention, and diagnosis, revolutionizing the current approaches, e.g., reducing the suffering related to chemotherapy.
Collapse
Affiliation(s)
- Elisabetta Avitabile
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | | | | | | | | |
Collapse
|
21
|
Zhao Y, Liu W, Tian Y, Yang Z, Wang X, Zhang Y, Tang Y, Zhao S, Wang C, Liu Y, Sun J, Teng Z, Wang S, Lu G. Anti-EGFR Peptide-Conjugated Triangular Gold Nanoplates for Computed Tomography/Photoacoustic Imaging-Guided Photothermal Therapy of Non-Small Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16992-17003. [PMID: 29722264 DOI: 10.1021/acsami.7b19013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Non-small cell lung cancer (NSCLC) is difficult to cure because of the high recurrence rate and the side effects of current treatments. It is urgent to develop a new treatment that is safer and more effective than current treatments against NSCLC. Herein, we constructed anti-epidermal growth factor receptor (EGFR) peptide-conjugated PEGylated triangular gold nanoplates (TGN-PEG-P75) as a targeting photothermal therapy (PTT) agent to treat NSCLC under the guidance of computed tomography (CT) and photoacoustic (PA) imaging. The surface of TGNs is successfully conjugated with a novel peptide P75 that has the specific affinity to epidermal growth factor receptor (EGFR). It is found that the EGFR is overexpressed in NSCLC cells. The TGN-PEG-P75 has uniform edge length (77.9 ± 7.0 nm) and neutrally charged surface. The cell uptake experiments demonstrate remarkable affinity of the TGN-PEG-P75 to high EGFR expression cells than low EGFR expression cells (5.1-fold). Thanks to the strong near-infrared absorbance, high photothermal conversion efficiency, and the increased accumulation in tumor cells via the interaction of P75 and EGFR, TGN-PEG-P75 exhibits 3.8-fold superior therapeutic efficacy on HCC827 cells than TGN-PEG. The in vivo CT/PA dual-modal imaging of the TGN-PEG-P75 is helpful in selecting the optimal treatment time and providing real-time visual guidance of PTT. Furthermore, treatments on HCC827 tumor-bearing mouse model demonstrate that the growth of NSCLC cells can be effectively inhibited by the TGN-PEG-P75 through PTT, indicating the great promise of the nanoplatform for treating NSCLC in vivo.
Collapse
Affiliation(s)
| | - Wenfei Liu
- Department of Respiration, Nanjing First Hospital , Nanjing Medical University , Nanjing 210029 , Jiangsu , P. R. China
| | | | | | | | | | | | | | | | | | | | - Zhaogang Teng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , Jiangsu , P. R. China
| | | | - Guangming Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , Jiangsu , P. R. China
| |
Collapse
|
22
|
Xia Y, Ma X, Gao J, Chen G, Li Z, Wu X, Yu Z, Xing J, Sun L, Ruan H, Luo L, Xiang L, Dong C, Ren W, Shen Z, Wu A. A Flexible Caterpillar-Like Gold Nanoparticle Assemblies with Ultrasmall Nanogaps for Enhanced Dual-Modal Imaging and Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800094. [PMID: 29655279 DOI: 10.1002/smll.201800094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Gold nanoparticle (AuNP) assemblies (GNAs) have attracted attention since enhanced coupling plasmonic resonance (CPR) emerged in the nanogap between coupling AuNPs. For one dimensional GNAs (1D-GNAs), most CPR from the nanogaps could be easily activated by electromagnetic waves and generate drastically enhanced CPR because the nanogaps between coupling AuNPs are linearly distributed in the 1D-GNAs. The reported studies focus on the synthesis of 1D-GNAs and fundamental exploration of CPR. There are still problems which impede further applications in nanomedicine, such as big size (>500 nm), poor water solubility, and/or poor stability. In this study, a kind of 1D flexible caterpillar-like GNAs (CL-GNAs) with ultrasmall nanogaps, good water solubility, and good stability is developed. The CL-GNAs have a flexible structure that can randomly move to change their morphology, which is rarely reported. Numerous ultrasmall nanogaps (<1 nm) are linearly distributed along the structure of CL-GNAs and generate enhanced CPR. The toxicity assessments in vitro and vivo respectively demonstrate that CL-GNAs have a low cytotoxicity and good biocompatibility. The CL-GNAs can be used as an efficient photothermal agent for photothermal therapy, a probe for Raman imaging and photothermal imaging.
Collapse
Affiliation(s)
- Yuanzhi Xia
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Xuehua Ma
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
- University of Chinese Academy of Sciences, 19 A Yu-quan Road, Shi-jing-shan District, Beijing, 100049, P. R. China
| | - Junhua Gao
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Guoxin Chen
- Test Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Zihou Li
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Xiaoxia Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Zhangsen Yu
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Jie Xing
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Li Sun
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Huimin Ruan
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Lijia Luo
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Lingchao Xiang
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Chen Dong
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Wenzhi Ren
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Zheyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang, 315201, P. R. China
| |
Collapse
|
23
|
Zhu F, Tan G, Jiang Y, Yu Z, Ren F. Rational design of multi-stimuli-responsive gold nanorod–curcumin conjugates for chemo-photothermal synergistic cancer therapy. Biomater Sci 2018; 6:2905-2917. [DOI: 10.1039/c8bm00691a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The as-prepared Au NR@Curcumin exhibited significant contribution to chemo-photothermal synergistic cancer therapy.
Collapse
Affiliation(s)
- Falian Zhu
- Department of Pharmacy
- Nanfang Hospital
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
| | - Guozhu Tan
- Department of Pharmacy
- Nanfang Hospital
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
| | - Yaodong Jiang
- Department of Urology
- Nanfang Hospital
- Southern Medical University
- Guangzhou, 510515
- China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences
- Guangdong Provincial Key Laboratory of New Drug Screening
- Southern Medical University
- Guangzhou, 510515
- China
| | - Fei Ren
- Department of Pharmacy
- Nanfang Hospital
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
| |
Collapse
|
24
|
Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, Zhang A, Liu Y, Song J, Li Z, Ruan H, Fan W, Lin L, Munasinghe J, Chen X, Wu A. Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for T 1-Weighted Magnetic Resonance Imaging and Chemotherapy. ACS NANO 2017; 11:10992-11004. [PMID: 29039917 DOI: 10.1021/acsnano.7b04924] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The recently emerged exceedingly small magnetic iron oxide nanoparticles (ES-MIONs) (<5 nm) are promising T1-weighted contrast agents for magnetic resonance imaging (MRI) due to their good biocompatibility compared with Gd-chelates. However, the best particle size of ES-MIONs for T1 imaging is still unknown because the synthesis of ES-MIONs with precise size control to clarify the relationship between the r1 (or r2/r1) and the particle size remains a challenge. In this study, we synthesized ES-MIONs with seven different sizes below 5 nm and found that 3.6 nm is the best particle size for ES-MIONs to be utilized as T1-weighted MR contrast agent. To enhance tumor targetability of theranostic nanoparticles and reduce the nonspecific uptake of nanoparticles by normal healthy cells, we constructed a drug delivery system based on the 3.6 nm ES-MIONs for T1-weighted tumor imaging and chemotherapy. The laser scanning confocal microscopy (LSCM) and flow cytometry analysis results demonstrate that our strategy of precise targeting via exposure or hiding of the targeting ligand RGD2 on demand is feasible. The MR imaging and chemotherapy results on the cancer cells and tumor-bearing mice reinforce that our DOX@ES-MION3@RGD2@mPEG3 nanoparticles are promising for high-resolution T1-weighted MR imaging and precise chemotherapy of tumors.
Collapse
Affiliation(s)
- Zheyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Tianxiang Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Xuehua Ma
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Wenzhi Ren
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Ariel Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Zihou Li
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Huimin Ruan
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jeeva Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorder and Stroke, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| |
Collapse
|
25
|
|
26
|
Huang Y, He Y, Huang Z, Jiang Y, Chu W, Sun X, Huang L, Zhao C. Coordination self-assembly of platinum-bisphosphonate polymer-metal complex nanoparticles for cisplatin delivery and effective cancer therapy. NANOSCALE 2017; 9:10002-10019. [PMID: 28682411 DOI: 10.1039/c7nr02662e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cisplatin (CDDP) is a potent anti-carcinogen that is widely used for various solid tumors; however, its clinical application is limited by its severe nephrotoxicity. Novel platinum-bisphosphonate polymer-metal complex nanoparticles (Pt-bp NPs), based on platinum-bisphosphonate coordination, have been established. Three polymer carriers bearing alendronate (ALN) ligands, while containing different lengths of alkyl hydrophobic chains, were synthesized. Their structures were characterized by 1H NMR, 31P NMR and FTIR. The ALN was used to coordinate to the CDDP precursor [Pt(NH3)2(OSO3)(OH2)], and the Pt-bp NPs were formed spontaneously. The Pt-bp NPs formed by the polymer carrier, ALN-PEG2k-ASAC18, which contained the poly(ethylene glycol) chain with ALN on one side and the octadecyl hydrophobic chain on the other side, was denoted as ALN-ASAC18-CDDP; its diameter was within 200 nm. CDDP was released in a Cl- or pH-dependent manner. The cytotoxic effects to the HeLa, A549 and MCF-7 cell lines were relatively weak, compared to CDDP. However, ALN-ASAC18-CDDP showed significantly prolonged blood circulation time and tumor accumulation of platinum of 2.5-fold, compared to CDDP at 8 h. Besides, ALN-ASAC18-CDDP was demonstrated to remarkably reduce systemic toxicity without compromising in vivo antitumor activity. These results indicate that the facilely prepared ALN-ASAC18-CDDP has great utilization potential for CDDP delivery in a clinical setting.
Collapse
Affiliation(s)
- Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 132 Waihuan East Road, Guangzhou Higher Education Mega Center, GuangZhou 510006, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yang Y, Aw J, Xing B. Nanostructures for NIR light-controlled therapies. NANOSCALE 2017; 9:3698-3718. [PMID: 28272614 DOI: 10.1039/c6nr09177f] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In general, effective clinical treatment demands precision medicine, which requires specific perturbation to disease cells with no damage to normal tissue. Thus far, guaranteeing that selective therapeutic effects occur only at targeted disease areas remains a technical challenge. Among the various endeavors to achieve such an outcome, strategies based on light-controlled therapies have received special attention, mostly due to their unique advantages, including the low-invasive property and the capability to obtain spatial and temporal precision at the targeted sites via specific wavelength light irradiation. However, most conventional light-mediated therapies, especially those based on short-wavelength UV or visible light irradiation, have potential issues including limited penetration depth and harmful photo damage to healthy tissue. Therefore, the implemention of near-infrared (NIR) light illumination, which can travel into deeper tissues without causing obvious photo-induced cytotoxcity, has been suggested as a preferable option for precise phototherapeutic applications in vitro and in vivo. In this article, an overview is presented of existing therapeutic applications through NIR light-absorbed nanostructures, such as NIR light-controlled drug delivery, NIR light-mediated photothermal and photodynamic therapies. Potential challenges and relevant future prospects are also discussed.
Collapse
Affiliation(s)
- Yanmei Yang
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China 215123.
| | - Junxin Aw
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore and Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 117602, Singapore
| |
Collapse
|