1
|
Loverro M, Bizzarri N, Capomacchia FM, Watrowski R, Querleu D, Gioè A, Naldini A, Santullo F, Foschi N, Fagotti A, Scambia G, Fanfani F. Indocyanine green fluorescence applied to gynecologic oncology: beyond sentinel lymph node. Int J Surg 2024; 110:3641-3653. [PMID: 38489558 PMCID: PMC11175818 DOI: 10.1097/js9.0000000000001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Indocyanine green (ICG), a well-known molecule employed in medicine for over five decades, has emerged as a versatile dye widely embraced across various surgical disciplines. In gynecologic oncology, its prevalent use revolves around the detection of sentinel lymph nodes. However, the true potential of ICG extends beyond this singular application, owing to its pragmatic utility, cost-effectiveness, and safety profile. Furthermore, ICG has been introduced in the theranostic landscape, marking a significant juncture in the evolution of its clinical utility. This narrative review aims to describe the expanding horizons of ICG fluorescence in gynecologic oncology, beyond the sentinel lymph node biopsy. The manifold applications reported within this manuscript include: 1) lymphography; 2) angiography; 3) nerve visualization; 4) ICG-driven resections; and 5) theranostic. The extensive exploration across these numerous applications, some of which are still in the preclinical phase, serves as a hypothesis generator, aiming to stimulate the development of clinical studies capable of expanding the use of this drug in our field, enhancing the care of gynecological cancer patients.
Collapse
Affiliation(s)
- Matteo Loverro
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | - Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | | | - Rafał Watrowski
- Department of Gynecology and Obsterics, Helios Hospital Müllheim, Teaching Hospital of the University of Freiburg, 79379 Müllheim
- Faculty of Medicine, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Denis Querleu
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | - Alessandro Gioè
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | - Angelica Naldini
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | - Francesco Santullo
- Operational Unit of Peritoneum and Retroperitoneum Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli
| | - Nazario Foschi
- Urology Division, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Anna Fagotti
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
- Università Cattolica del Sacro Cuore
| | - Giovanni Scambia
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
- Università Cattolica del Sacro Cuore
| | - Francesco Fanfani
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
- Università Cattolica del Sacro Cuore
| |
Collapse
|
2
|
Wang X, Jiang C, Wang Z, Cohen BE, Chan EM, Chen G. Triplet-Induced Singlet Oxygen Photobleaches Near-Infrared Dye-Sensitized Upconversion Nanosystems. NANO LETTERS 2023; 23:7001-7007. [PMID: 37493432 DOI: 10.1021/acs.nanolett.3c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The rapid photobleaching of near-infrared (NIR) dye-sensitized upconversion nanosystems is one of the crucial problems that has blocked their technological applications. Uncovering the photophysical and photochemical pathways of NIR dyes would help to elucidate the photobleaching mechanism and thereby improve the photostability of the system. Here we investigate the triplet dynamics of NIR dyes and their interaction with triplet oxygen in the typically investigated IR806-sensitized upconversion nanoparticle (UCNP) nanosystem. Low-temperature fluorescence at 77 K provides direct proof of the generation of singlet oxygen (1O2) under 808 nm laser irradiation. Mass spectrometry indicates that all three double bonds in the structure of IR806 can be broken in the photochemical process. Coupling IR806 to the surface of UCNPs can accelerate its triplet dynamics, thus producing more 1O2 to photocleave IR806. Importantly, we find that the addition of β-carotene can scavenge the generated 1O2, thereby providing a simple method to effectively inhibit photobleaching.
Collapse
Affiliation(s)
- Xindong Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Institute of Flexible Electronics Technology of THU, Zhejiang Jiaxing & Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Jiaxing 314006, People's Republic of China
| | - Chang Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Zeming Wang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
3
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
4
|
Zhang Z, Xu Y, Zhu T, Sang Z, Guo X, Sun Y, Hao Y, Wang W. Hypoxia mitigation by manganese-doped carbon dots for synergistic photodynamic therapy of oral squamous cell carcinoma. Front Bioeng Biotechnol 2023; 11:1153196. [PMID: 37152644 PMCID: PMC10157228 DOI: 10.3389/fbioe.2023.1153196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Photodynamic therapy (PDT) is widely used for cancer treatment due to its non-invasive and precise effectiveness, however, hypoxia in the tumor microenvironment greatly limits the efficacy of photodynamic therapy. Compared with conventional photosensitizers, carbon dots (CDs) have great potential. Therefore, developing a water-soluble, low-toxicity photosensitizer based on CDs is particularly important, especially one that can enhance the photodynamic efficacy using the tumor microenvironment to produce oxygen. Herein, manganese-doped carbon dot (Mn-CDs, ∼2.7 nm) nanoenzymes with excellent biocompatibility were prepared by a solvothermal method using ethylenediaminetetraacetic acid manganese disodium salt hydrate and o-phenylenediamine as precursors. TEM, AFM, HR-TEM, XRD, XPS, FT-IR, ζ potential, DLS, UV-Vis, and PL spectra were used to characterize the Mn-CDs. Cancer resistance was assessed using the CCK-8 kit, calcein AM versus propidium iodide (PI) kit, and the Annexin V-FITC/PI cell apoptosis assay kit. The obtained Mn-CDs have excellent near-infrared emission properties, stability, and efficient 1O2 generation. Notably, the manganese doping renders CDs with catalase (CAT)-like activity, which leads to the decomposition of acidic H2O2 in situ to generate O2, enhancing the PDT efficacy against OSCC-9 cells under 635 nm (300 mW·cm-2) irradiation. Thus, this work provides a simple and feasible method for the development of water-soluble photosensitizers with oxygen production, presenting good biosafety for PDT in hypoxic tumors.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yongzhi Xu
- School of Stomatology of Qingdao University, Qingdao, China
| | - Tingting Zhu
- School of Stomatology of Qingdao University, Qingdao, China
| | - Zhiqin Sang
- School of Stomatology of Qingdao University, Qingdao, China
| | - Xiaoli Guo
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yu Sun
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yuanping Hao
- School of Stomatology of Qingdao University, Qingdao, China
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Yuanping Hao, ; Wanchun Wang,
| | - Wanchun Wang
- School of Stomatology of Qingdao University, Qingdao, China
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Yuanping Hao, ; Wanchun Wang,
| |
Collapse
|
5
|
Xu XL, Zhang NN, Shu GF, Liu D, Qi J, Jin FY, Ji JS, Du YZ. A Luminol-Based Self-Illuminating Nanocage as a Reactive Oxygen Species Amplifier to Enhance Deep Tumor Penetration and Synergistic Therapy. ACS NANO 2021; 15:19394-19408. [PMID: 34806870 DOI: 10.1021/acsnano.1c05891] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The dense extracellular matrix (ECM) in tumor tissues resists drug diffusion into tumors and leads to a poor prognosis. To address this problem, glucose oxidase (GOx)-modified ferritin loaded with luminol-curcumin was fabricated. Once delivered to the tumor, this luminol-based self-illuminating nanocage could actively convert glucose to reactive oxygen species (ROS) to achieve starvation therapy. Then, excessive ROS were transmitted to luminol, thereby emitting 425 nm blue-violet light. Momentarily, light was further absorbed by curcumin and ROS production was amplified. Abundant ROS helps break down the ECM network to penetrate deep into tumors. In addition, ROS produced after cell internalization can induce apoptosis of tumor cells by decreasing the mitochondrial membrane potential and can promote ferroptosis by consuming reduced glutathione. Effective penetration and multiple pathways inducing tumor cell death contributed to the efficient antitumor effect (tumor inhibition rate of GOx-modified ferritin loaded with luminol-curcumin: 71.73%). This study developed a glucose-driven self-illuminating nanocage for active tumor penetration via ROS-mediated destruction of the ECM and provided the synergetic mechanism of apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Nan-Nan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Gao-Feng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fei-Yang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
6
|
Wang M, Xia A, Wu S, Shen J. Facile Synthesis of the Cu, N-CDs@GO-CS Hydrogel with Enhanced Antibacterial Activity for Effective Treatment of Wound Infection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7928-7935. [PMID: 34157835 DOI: 10.1021/acs.langmuir.1c00529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug resistance and increasing dangers during antibiotic treatment have brought a new eternal task for the research of effective antibacterial agents or therapeutics. In this work, we used Cu, N-doped carbon dots (Cu, N-CDs) to modify graphene oxide (GO) nanosheets and then loaded to chitosan (CS) hydrogels via electrostatic interaction to form Cu, N-CDs@GO-CS hydrogel nanoplatforms to treat Staphylococcus aureus and Escherichia coli. The excellent antibacterial activity is from the combined effects of hyperthermia and reactive oxygen species generated under near-infrared (NIR) laser irradiation of the Cu, N-CDs@GO-CS hydrogel, which shows excellent antibacterial activity compared with the CS hydrogel or the Cu, N-CDs@GO-CS hydrogel without NIR laser irradiation. Moreover, the inherent antibacterial nature of the CS hydrogel or the Cu, N-CDs@GO-CS hydrogel was used to treat bacteria-infected wounds in mice, which also protected the wound area from second infection. In vivo experiments demonstrate favorable wound healing results and have no significant harmful side effects to the major organs in mice. Overall, this work demonstrates that the antibacterial Cu, N-CDs@GO-CS hydrogel offers significant prospect as an antibacterial reagent for wound healing.
Collapse
Affiliation(s)
- Mingqian Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | - Ao Xia
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | - Shishan Wu
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
7
|
Xia J, Qian M, Yao Q, Meng Z, Cui H, Zhang L, Li Y, Wu S, Wang J, Chen Q, Peng X. Synthetic infrared nano-photosensitizers with hierarchical zoom-in target-delivery functionalities for precision photodynamic therapy. J Control Release 2021; 334:263-274. [PMID: 33930477 DOI: 10.1016/j.jconrel.2021.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022]
Abstract
Surgical assailment at the vulnerable subcellular organelles (e.g. mitochondria) by photodynamic therapy (PDT) is perceived as the most devastating approach to eradicate the tumors. Herein, we programmed a novel near-infrared (NIR) PDT construct illustrating appreciable hierarchical zoom-in targeting scenario, namely, primary cell-level targeting to carcinoma post systemic dosage and subcellular level targeting to mitochondria. Pertaining to tumor-targeting function, charge reversal chemistry selectively responsive to acidic tumoral microenvironments (pH 6.8) was implemented as the external corona of PDT constructs. This charge transformative exterior entitled minimal biointerfacial reactions in systemic retention but intimate affinities to cytomembranes selectively in tumoral microenvironments, thereby resulting in preferential uptake by tumors. Furthermore, the proposed PDT constructs were equipped with mitochondria targeting triphenylphosphonium (TPP) motif, which appeared to propel intriguing 88% colocalization with mitochondria. Therefore, overwhelming cytotoxic potencies were accomplished by our carefully engineered photodynamic constructs. Another noteworthy is the photodynamic constructs characterized to be excited at tissue-penetrating NIR (980 nm) based on energy transfer between their internal components of anti-Stoke upconversion nanoparticles (UCN, donor) and photodynamic chlorin e6 (Ce6, acceptor). Therefore, practical applications for photodynamic treatment of intractable solid carcinoma were greatly facilitated and complete tumor eradication was achieved by systemic administration of the ultimate multifunctional NIR photodynamic constructs.
Collapse
Affiliation(s)
- Jing Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China; School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Ming Qian
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Zhipeng Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Hongyan Cui
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Liuwei Zhang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Yachen Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road Dalian, 116044, PR China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China; School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China.
| | - Qixian Chen
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| |
Collapse
|
8
|
Zhang Z, Wang R, Luo R, Zhu J, Huang X, Liu W, Liu F, Feng F, Qu W. An Activatable Theranostic Nanoprobe for Dual-Modal Imaging-Guided Photodynamic Therapy with Self-Reporting of Sensitizer Activation and Therapeutic Effect. ACS NANO 2021; 15:5366-5383. [PMID: 33705106 DOI: 10.1021/acsnano.0c10916] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Intelligent systems that offer traceable cancer therapy are highly desirable for precision medicine. Although photodynamic therapy (PDT) has been approved in the clinic for decades, determining where the tumor is, when to irradiate, and how long to expose to light still confuse the clinicians. Patients are always suffering from the phototoxicity of the photosensitizer in nonmalignant tissues. Herein, an activatable theranostic agent, ZnPc@TPCB nanoparticles (NPs), is prepared by doping a photosensitizer, ZnPc, with an aggregation-induced emission probe, TPCB. The assembled or disassembled ZnPc@TPCB NPs in various phases have behaved differently in fluorescence intensity, photoacoustic (PA) signals, and PDT efficiency. The intact nanoparticles are non-emissive in aqueous media while showing strong PA signals and low PDT efficiency, which can eliminate the phototoxicity and self-monitor their distribution and image the tumors' location. Disassembling of the NPs leads to the release of ZnPc and its red fluorescence turn-on to self-report the photosensitizer's activation. Upon light irradiation, the reactive oxygen species (ROS) generated by ZnPc can induce cell apoptosis and activate the ROS sensor, TPCB, which will yield intense orange-red fluorescence and instantly predict the therapeutic effect. Moreover, enhanced PDT efficacy is achieved via the GSH-depleting adjuvant quinone methide produced by the activated TPCB. The well-designed ZnPc@TPCB NPs have shown promising potential for finely controlled PDT with good biosafety and broad application prospects in individual therapy, which may inspire the development of precision medicine.
Collapse
Affiliation(s)
- Zhongtao Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ruyi Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Renjie Luo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaxin Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Fulei Liu
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian 271000, China
- Pharmaceutical Department, Taian City Central Hospital, Taian 271000, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Zhang H, Zhou L, Li J, Rong S, Jiang J, Liu S. Photocatalytic Degradation of Tetracycline by a Novel (CMC)/MIL-101(Fe)/β-CDP Composite Hydrogel. Front Chem 2021; 8:593730. [PMID: 33520930 PMCID: PMC7845018 DOI: 10.3389/fchem.2020.593730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Herein, we report a novel carboxymethyl cellulose (CMC)/MIL-101 (Fe)/poly(β-cyclodextrin) (β-CDP) hydrogel with high photocatalytic activity. β-CDP can significantly enhance the photoactivity of MIL-101(Fe) in the hydrogel prepared by a simple solvothermal method. The structure and property of this composite hydrogel were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Tetracycline was selected as a model pharmaceutical antibiotic to evaluate the photocatalytic activity of the composite hydrogel under visible light irradiation and darkness, respectively. This composite hydrogel shows excellent activity for degrading pharmaceutical antibiotics under visible light irradiation. The increased photocatalytic activity can be attributed to β-CDP, which acts as a promoter and affords an efficient separation of photogenerated electron-hole pairs of MIL-101(Fe). Moreover, the composite hydrogel is shown to have good water retainability. The hydrogel is inexpensive and shows high photocatalytic activity. Hence, it can be used as an efficient photocatalytic material.
Collapse
Affiliation(s)
- Hui Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Liang Zhou
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jing Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Sijia Rong
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jianping Jiang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Shengquan Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Jiayin Z, Qiyu W, Hong L, Guoli S, Zhiguo Z. Optimal fluorescence and photosensitivity properties of dual-functional NaYb 1−xF 4:Tm x3+ nanoparticles for applications in imaging guided photodynamic therapy. RSC Adv 2021; 11:1282-1286. [PMID: 35424111 PMCID: PMC8693527 DOI: 10.1039/d0ra09544c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/20/2020] [Indexed: 11/24/2022] Open
Abstract
The fluorescence and photosensitivity properties of NaYb1−xF4:Tmx3+ nanoparticles were optimized to develop noninvasive near-infrared fluorescence imaging-guided photodynamic therapy. The emission at 800 nm from Tm3+ presented an exponential increase with an increase in the Tm3+ doping concentration from 0 to 2%. The photosensitivity properties of NaYb1−xF4:Tmx3+ nanoparticles were also studied via the chemoprobe method, which used a reactive oxygen quencher, 1,3-diphenylisobenzofuran (DPBF). With the increase in the doping concentration of Tm3+, the generation rate of reactive oxygen species in NaYb1−xF4:Tmx3+ nanoparticles decreased linearly at a rate of 0.3. The doping concentration of Tm3+ had two opposite effects on the 800 nm emission and generation rates of reactive oxygen species. The competitive relationship was discussed and an optimal value for the Tm3+ doping concentration of approximately 1% was determined. At this concentration, the energy of the Yb3+ excited state can be fully utilized, and the fluorescence and photosensitivity properties are an effective combination. An optimal Tm3+ concentration of approximately 1% was determined for the most efficient energy distribution to balance imaging and PDT.![]()
Collapse
Affiliation(s)
- Zhang Jiayin
- School of Technology
- Harbin University
- Harbin 150086
- China
| | - Wang Qiyu
- School of Physics & Electronic Engineering
- Harbin Normal University
- Harbin 150025
- China
| | - Liang Hong
- School of Technology
- Harbin University
- Harbin 150086
- China
| | - Song Guoli
- School of Technology
- Harbin University
- Harbin 150086
- China
| | - Zhang Zhiguo
- School of Instrumentation Science and Engineering
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| |
Collapse
|
11
|
Das S, Tiwari M, Mondal D, Sahoo BR, Tiwari DK. Growing tool-kit of photosensitizers for clinical and non-clinical applications. J Mater Chem B 2020; 8:10897-10940. [PMID: 33165483 DOI: 10.1039/d0tb02085k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photosensitizers are photosensitive molecules utilized in clinical and non-clinical applications by taking advantage of light-mediated reactive oxygen generation, which triggers local and systemic cellular toxicity. Photosensitizers are used for diverse biological applications such as spatio-temporal inactivation of a protein in a living system by chromophore-assisted light inactivation, localized cell photoablation, photodynamic and immuno-photodynamic therapy, and correlative light-electron microscopy imaging. Substantial efforts have been made to develop several genetically encoded, chemically synthesized, and nanotechnologically driven photosensitizers for successful implementation in redox biology applications. Genetically encoded photosensitizers (GEPS) or reactive oxygen species (ROS) generating proteins have the advantage of using them in the living system since they can be manipulated by genetic engineering with a variety of target-specific genes for the precise spatio-temporal control of ROS generation. The GEPS variety is limited but is expanding with a variety of newly emerging GEPS proteins. Apart from GEPS, a large variety of chemically- and nanotechnologically-empowered photosensitizers have been developed with a major focus on photodynamic therapy-based cancer treatment alone or in combination with pre-existing treatment methods. Recently, immuno-photodynamic therapy has emerged as an effective cancer treatment method using smartly designed photosensitizers to initiate and engage the patient's immune system so as to empower the photosensitizing effect. In this review, we have discussed various types of photosensitizers, their clinical and non-clinical applications, and implementation toward intelligent efficacy, ROS efficiency, and target specificity in biological systems.
Collapse
Affiliation(s)
- Suman Das
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao Plateau, Goa 403206, India.
| | | | | | | | | |
Collapse
|
12
|
Liu N, Gobeil N, Evers P, Gessner I, Rodrigues EM, Hemmer E. Water dispersible ligand-free rare earth fluoride nanoparticles: water transfer versus NaREF 4-to-REF 3 phase transformation. Dalton Trans 2020; 49:16204-16216. [PMID: 32330218 DOI: 10.1039/d0dt01080d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The chemical stability of oleate-capped sub-10 nm α- and β-NaREF4 NPs (RE = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu for α- and RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy for β-phase NPs) was evaluated under the acidic conditions used for ligand removal towards water dispersibility. It was found that for such small NPs, a pH lower than 3 was necessary for the water transfer to be efficient and to yield well-dispersed ligand-free NPs. In stark contrast to the generally considered good chemical stability of NaREF4, these conditions were observed to pose a risk to phase transformation of the NaREF4 NPs into much larger, hexagonal- or orthorhombic-phase REF3, depending on the NP composition. A correlation between the thermodynamic stability of the α/β-NaREF4 and the hexagonal/orthorhombic REF3 phases - dictated by the RE ion choice - and the chemical stability of the NPs was found. For instance, β-NaGdF4 NPs remained stable, while α-NaGdF4 NPs underwent phase transformation into hexagonal GdF3. More general, NaREF4 NPs based on lighter RE ions were more prone towards phase transformation, while those based on heavier RE ions exhibited stability. Herein, within the RE series, the borderline for phase transformation was identified as Tb/Dy for α-NaREF4 NPs and Sm/Eu for β-NaREF4 NPs, respectively. Also, given the large interest in luminescent NPs for, e.g. biomedical applications, optically active Ln3+ ions (Ln = Nd, Eu, Tb, Er/Yb) were doped into α/β-NaGdF4 host NPs, and the dopant influence on the chemical stability was evaluated. Steady state and time-resolved spectroscopy unveiled spectral features characteristic for Ln3+ f-f transitions, i.e. downshifting and upconversion, before and after ligand removal. Overall, the results herein described emphasise the importance of minding the chemical procedure used for ligand removal of NaREF4 NPs of different crystalline phases and RE compositions.
Collapse
Affiliation(s)
- Nan Liu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Wei Z, Liu X, Niu D, Qin L, Li Y. Upconversion Nanoparticle-Based Organosilica–Micellar Hybrid Nanoplatforms for Redox-Responsive Chemotherapy and NIR-Mediated Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:4655-4664. [DOI: 10.1021/acsabm.0c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhenyang Wei
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohang Liu
- Department of Radiology,Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Limei Qin
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Rui X, Yang Y, Chen Q, Wu J, Chen J, Zhang Q, Ren R, Yin D. Imperative and effective reversion of synovial hyperplasia and cartilage destruction in rheumatoid arthritis through multiple synergistic effects of O 2 and Ca 2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111058. [PMID: 32993999 DOI: 10.1016/j.msec.2020.111058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023]
Abstract
Abnormal synovial hyperplasia and cartilage destruction in a joint cavity are the key causes affecting the pain and disability in rheumatoid arthritis (RA) and, unfortunately, there exists no effective treatment for them. This investigation reports an effective reversion of the above pathological characteristics in RA owing to the use of a prolonged O2/Ca2+-supporting phototherapy hydrogel. The performed in vitro and in vivo experiments exhibit that the prolonged O2-supporting not only promotes the direct cell-killing effects of singlet oxygen, but also persistently blocks the pathological feedback between the abnormal proliferation of fibroblast-like synoviocyte and the local oxygen depletion. Furthermore, the Ca2+, which is the other decomposition product of the O2 donor, induces mitochondrial Ca2+ overload and endoplasmic reticulum Ca2+ disorder and triggers Ca2+-associated apoptosis and immunogenic cell death. In addition to these multiple synergistic effects on synovial hyperplasia, the prolonged Ca2+ support can also induce the regeneration of cartilage in RA affected joints. The present study may thus provide an effective therapeutic strategy for the prevention and reversion of joint lesions and the accompanying arthralgia and deformity in RA.
Collapse
Affiliation(s)
- Xue Rui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, PR China; Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui Province 230012, PR China; Key Laboratory of Xin' an Medicine, Ministry of Education, Hefei 230012, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Qingqing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Jingjing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Jing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Qingqing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Rongrong Ren
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, PR China; Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui Province 230012, PR China; Key Laboratory of Xin' an Medicine, Ministry of Education, Hefei 230012, PR China.
| |
Collapse
|
15
|
Zhang JY, Wang QY, Liang H, Zhang ZG. Effect of Tm3+ Concentration on the Generation of Reactive Oxygen Species in NaYb1 – xF4:$${\text{Tm}}_{x}^{{3 + }}$$ for the Multifunctional Photosensitizer. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024419130387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zheng Y, Li Z, Chen H, Gao Y. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur J Pharm Sci 2020; 144:105213. [PMID: 31926941 DOI: 10.1016/j.ejps.2020.105213] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
Abstract
Compared with the traditional treatment, photodynamic therapy (PDT) in the treatment of malignant tumors has the advantages of less damage to normal tissues, quick therapeutic effect, and ability to repeat treatments to the same site. However, most of the traditional photosensitizers (PSs) have severe skin photosensitization, poor tumor targeting, and low therapeutic effect in hypoxic tumor environment, which limit the application of PDT. Nanoparticle-based drug delivery systems can improve the targeting of PSs and release drugs with controllable photoactivity at predetermined locations, so as to achieve desired therapeutic effects with minimal side-effects. The present review summarizes the current nanoparticle platforms for PDT, and offers the description of different strategies including tumor-targeted delivery, controlled-release of PSs and the triggered photoactivity to achieve controllable PDT by nanoparticle-based drug delivery systems. The challenges and prospects for further development of intelligent PSs for PDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China.
| |
Collapse
|
17
|
Chen L, Zhuang W, Hu C, Yu T, Su X, Liang Z, Li G, Wang Y. pH and singlet oxygen dual-responsive GEM prodrug micelles for efficient combination therapy of chemotherapy and photodynamic therapy. J Mater Chem B 2020; 8:5645-5654. [DOI: 10.1039/d0tb00622j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanocarriers have been an important strategy for enhancing the combination therapy of chemotherapy and photodynamic therapy (PDT) (Chem-PDT).
Collapse
Affiliation(s)
- Liang Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Weihua Zhuang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Tao Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xin Su
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Zhen Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
18
|
Jia P, Dai C, Cao P, Sun D, Ouyang R, Miao Y. The role of reactive oxygen species in tumor treatment. RSC Adv 2020; 10:7740-7750. [PMID: 35492191 PMCID: PMC9049915 DOI: 10.1039/c9ra10539e] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are by-products of aerobic metabolism and can also act as signaling molecules to participate in multiple regulation of biological and physiological processes. The occurrence, growth and metastasis of tumors, and even the apoptosis, necrosis and autophagy of tumor cells are all closely related to ROS. However, ROS levels in the body are usually maintained at a stable status. ROS produced by oxidative stress can cause damage to cell lipids, protein and DNA. In recent years, ROS have achieved satisfactory results on the treatment of tumors. Therefore, this review summarizes some research results of tumor treatments from the perspective of ROS in recent years, and analyzes how to achieve the mechanism of inhibition and treatment of tumors by ROS or how to affect the tumor microenvironment by influencing ROS. At the same time, the detection methods of ROS, problems encountered in the research process and solutions are also summarized. The purpose of this review is to provide a clearer understanding of the ROS role in tumor treatment, so that researchers might have more inspiration and thoughts for cancer prevention and treatment in the next stage. This review provides a clear understanding of the ROS role in tumor treatment and some thoughts for potential cancer prevention.![]()
Collapse
Affiliation(s)
- Pengpeng Jia
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Chenyu Dai
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Penghui Cao
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Dong Sun
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yuqing Miao
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
19
|
Li Z, Shan X, Chen Z, Gao N, Zeng W, Zeng X, Mei L. Applications of Surface Modification Technologies in Nanomedicine for Deep Tumor Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2002589. [PMID: 33437580 PMCID: PMC7788636 DOI: 10.1002/advs.202002589] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/03/2020] [Indexed: 05/04/2023]
Abstract
The impermeable barrier of solid tumors due to the complexity of their components limits the treatment effect of nanomedicine and hinders its clinical translation. Several methods are available to increase the penetrability of nanomedicine, yet they are too complex to be effective, operational, or practical. Surface modification employs the characteristics of direct contact between multiphase surfaces to achieve the most direct and efficient penetration of solid tumors. Furthermore, their simple operation makes their use feasible. In this review, the latest surface modification strategies for the penetration of nanomedicine into solid tumors are summarized and classified into "bulldozer strategies" and "mouse strategies." Additionally, the evaluation methods, existing problems, and the development prospects of these technologies are discussed.
Collapse
Affiliation(s)
- Zimu Li
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Xiaoting Shan
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Zhidong Chen
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Nansha Gao
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Wenfeng Zeng
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Xiaowei Zeng
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Lin Mei
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| |
Collapse
|
20
|
Xie W, Zhu S, Yang B, Chen C, Chen S, Liu Y, Nie X, Hao L, Wang Z, Sun J, Chang S. The Destruction Of Laser-Induced Phase-Transition Nanoparticles Triggered By Low-Intensity Ultrasound: An Innovative Modality To Enhance The Immunological Treatment Of Ovarian Cancer Cells. Int J Nanomedicine 2019; 14:9377-9393. [PMID: 31819438 PMCID: PMC6896924 DOI: 10.2147/ijn.s208404] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Photodynamic therapy (PDT), sonodynamic therapy (SDT), and oxaliplatin (OXP) can induce immunogenic cell death (ICD) following damage-associated molecular patterns (DAMPs) exposure or release and can be united via the use of nanoplatforms to deliver drugs that can impart anti-tumor effects. The aim of this study was to develop phase-transition nanoparticles (OI_NPs) loaded with perfluoropentane (PFP), indocyanine green (ICG), and oxaliplatin (OXP), to augment anti-tumor efficacy and the immunological effects of chemotherapy, photodynamic therapy and sonodynamic therapy (PSDT). Methods OI_NPs were fabricated by a double emulsion method and a range of physicochemical and dual-modal imaging features were characterized. Confocal microscopy and flow cytometry were used to determine the cellular uptake of OI_NPs by ID8 cells. The viability and apoptotic rate of ID8 cells were investigated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry. Flow cytometry, Western blotting, and luminometric assays were then used to investigate the exposure or release of crucial DAMPs such as calreticulin (CRT), high mobility group box 1 (HMGB1), and adenosine-5ʹ-triphosphate (ATP). Tumor rechallenge experiments were then used to investigate whether treated ID8 cells underwent ICD. Finally, cytotoxic T lymphocyte (CTL) activity was determined by a lactate dehydrogenase (LDH) assay. Results Spherical OI_NPs were able to carry OXP, ICG and PFP and were successfully internalized by ID8 cells. The application of OI_NPs significantly enhanced the phase shift ability of PFP and the optical characteristics of ICG, thus leading to a significant improvement in photoacoustic and ultrasonic imaging. When combined with near-infrared light and ultrasound, the application of OI_NPs led to improved anti-tumor effects on cancer cells, and significantly enhanced the expression of DAMPs, thus generating a long-term anti-tumor effect. Conclusion The application of OI_NPs, loaded with appropriate cargo, may represent a novel strategy with which to increase anti-tumor effects, enhance immunological potency, and improve dual-mode imaging.
Collapse
Affiliation(s)
- Wan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China.,Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Shenyin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Biyong Yang
- Chongqing Institute for Food and Drug Control, Chongqing 401121, People's Republic of China
| | - Chunyan Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Shuning Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yujiao Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xuyuan Nie
- School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Lan Hao
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Jiangchuan Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
21
|
Wang G, Liu J, Zhu L, Guo Y, Yang L. Silver sulfide nanoparticles for photodynamic therapy of human lymphoma cells via disruption of energy metabolism. RSC Adv 2019; 9:29936-29941. [PMID: 35531500 PMCID: PMC9072148 DOI: 10.1039/c9ra05432d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/09/2019] [Indexed: 01/11/2023] Open
Abstract
Recently, studies on the application of light-responsive semiconductor nanomaterials for photodynamic therapy (PDT) of non-solid tumors have attracted tremendous attention. Herein, 6.98 nm Ag2S nanoparticles (Ag2S NPs) with excellent aqueous dispersibility, stability, and biocompatibility were synthesized by a facile strategy without any post-modification. In vitro studies indicated that Ag2S NPs could significantly inhibit the growth of human lymphoma cells (Raji cells) compared with hepatoma carcinoma cells (Hep G2 cells) under light irradiation. Further studies revealed that Ag2S NPs could specifically induce the accumulation of intracellular reactive oxidative species in Raji cells under light irradiation, and induce significant disruption of energy metabolism. This finding provides inspiration for the potential application of Ag2S semiconductor nanoparticles as a photosensitizer to significantly and specifically treat human lymphoma through PDT. Ag2S/BSA hybrid nanoparticles were prepared and studied for their ability to inhibit the growth of human lymphoma cells under light irradiation, via inducing the accumulation of intracellular reactive oxidative species to disrupt energy metabolism.![]()
Collapse
Affiliation(s)
- Ge Wang
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China .,School of Basic Medical Sciences, Xinxiang Medical University Xinxiang Henan 453003 P. R. China
| | - Jing Liu
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Lin Zhu
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuming Guo
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Lin Yang
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
22
|
Li M, Li L, Su K, Liu X, Zhang T, Liang Y, Jing D, Yang X, Zheng D, Cui Z, Li Z, Zhu S, Yeung KWK, Zheng Y, Wang X, Wu S. Highly Effective and Noninvasive Near-Infrared Eradication of a Staphylococcus aureus Biofilm on Implants by a Photoresponsive Coating within 20 Min. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900599. [PMID: 31508278 PMCID: PMC6724470 DOI: 10.1002/advs.201900599] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/10/2019] [Indexed: 05/04/2023]
Abstract
Biofilms have been related to the persistence of infections on medical implants, and these cannot be eradicated because of the resistance of biofilm structures. Therefore, a biocompatible phototherapeutic system is developed composed of MoS2, IR780 photosensitizer, and arginine-glycine-aspartic acid-cysteine (RGDC) to safely eradicate biofilms on titanium implants within 20 min. The magnetron-sputtered MoS2 film possesses excellent photothermal properties, and IR780 can produce reactive oxygen species (ROS) with the irradiation of near-infrared (NIR, λ = 700-1100 nm) light. Consequently, the combination of photothermal therapy (PTT) and photodynamic therapy (PDT), assisted by glutathione oxidation accelerated by NIR light, can provide synergistic and rapid killing of bacteria, i.e., 98.99 ± 0.42% eradication ratio against a Staphylococcus aureus biofilm in vivo within 20 min, which is much greater than that of PTT or PDT alone. With the assistance of ROS, the permeability of damaged bacterial membranes increases, and the damaged bacterial membranes become more sensitive to heat, thus accelerating the leakage of proteins from the bacteria. In addition, RGDC can provide excellent biosafety and osteoconductivity, which is confirmed by in vivo animal experiments.
Collapse
Affiliation(s)
- Mu Li
- Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science & EngineeringHubei UniversityWuhan430062China
| | - Liqian Li
- Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science & EngineeringHubei UniversityWuhan430062China
| | - Kun Su
- Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science & EngineeringHubei UniversityWuhan430062China
| | - Xiangmei Liu
- Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science & EngineeringHubei UniversityWuhan430062China
| | - Tianjin Zhang
- Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science & EngineeringHubei UniversityWuhan430062China
| | - Yanqin Liang
- School of Materials Science & Engineeringthe Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of ChinaTianjin UniversityTianjin300072China
| | - Doudou Jing
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xianjin Yang
- School of Materials Science & Engineeringthe Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of ChinaTianjin UniversityTianjin300072China
| | - Dong Zheng
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zhenduo Cui
- School of Materials Science & Engineeringthe Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of ChinaTianjin UniversityTianjin300072China
| | - Zhaoyang Li
- School of Materials Science & Engineeringthe Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of ChinaTianjin UniversityTianjin300072China
| | - Shengli Zhu
- School of Materials Science & Engineeringthe Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of ChinaTianjin UniversityTianjin300072China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Xianbao Wang
- Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science & EngineeringHubei UniversityWuhan430062China
| | - Shuilin Wu
- Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science & EngineeringHubei UniversityWuhan430062China
- School of Materials Science & Engineeringthe Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of ChinaTianjin UniversityTianjin300072China
| |
Collapse
|
23
|
Lu C, Sun F, Liu Y, Xiao Y, Qiu Y, Mu H, Duan J. Versatile Chlorin e6-based magnetic polydopamine nanoparticles for effectively capturing and killing MRSA. Carbohydr Polym 2019; 218:289-298. [DOI: 10.1016/j.carbpol.2019.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
|
24
|
Chan MH, Lai CY, Chan YC, Hsiao M, Chung RJ, Chen X, Liu RS. Development of upconversion nanoparticle-conjugated indium phosphide quantum dot for matrix metalloproteinase-2 cancer transformation sensing. Nanomedicine (Lond) 2019; 14:1791-1804. [PMID: 31305218 DOI: 10.2217/nnm-2018-0524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Matrix metalloproteinase-2 (MMP2) plays an important role in extracellular matrix remodeling, that is, it increases significantly during cancer progression. In this regard, MMP2 monitoring is important. Experiment: A well-designed MMP2-sensitive polypeptide chain was used to link indium phosphide quantum dots (InP QDs) with upconversion nanoparticles (UCNPs) to form a nanocomposite that was utilized as biosensor. Results: We produced a biosensor that can be recognized by MMP2 and determined the presence or absence of MMP2 in cells by identifying difference in fluorescence wavelength. The InP QDs modified the arginylglycylaspartic acid molecules as targeting ligand based on chitosan. Conclusion: The MMP2-based biosensor, named UCNP-p@InP-cRGD, is sensitive and can be applied for biosensing probes.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,CAS Key Laboratory of Design & Assembly of Functional Nanostructures, & Fujian Key Laboratory of Nano-materials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Chen-Yu Lai
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yung-Chieh Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.,Department of Biochemistry College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Xueyuan Chen
- CAS Key Laboratory of Design & Assembly of Functional Nanostructures, & Fujian Key Laboratory of Nano-materials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.,Department of Mechanical Engineering & Graduate, Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
25
|
Wu J, Hu X, Liu R, Zhang J, Song A, Luan Y. pH-responsive and self-targeting assembly from hyaluronic acid-based conjugate toward all-in-one chemo-photodynamic therapy. J Colloid Interface Sci 2019; 547:30-39. [DOI: 10.1016/j.jcis.2019.03.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
|
26
|
Feng Y, Chang Y, Sun X, Cheng Y, Zheng R, Wu X, Wang L, Ma X, Li X, Zhang H. Differential photothermal and photodynamic performance behaviors of gold nanorods, nanoshells and nanocages under identical energy conditions. Biomater Sci 2019; 7:1448-1462. [DOI: 10.1039/c8bm01122b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The corner angle structure of Au nanostructures could more efficiently convert the photon energy into the photodynamic performance.
Collapse
|
27
|
Wang X, Ouyang X, Chen J, Hu Y, Sun X, Yu Z. Nanoparticulate photosensitizer decorated with hyaluronic acid for photodynamic/photothermal cancer targeting therapy. Nanomedicine (Lond) 2018; 14:151-167. [PMID: 30511886 DOI: 10.2217/nnm-2018-0204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM A photomedicine consisting of a core for photothermal therapy, a photosensitizer for photodynamic therapy, and a cancer-targeting moiety was fabricated to improve photosensitizer selectivity and antitumor efficiency. MATERIALS & METHODS Hyaluronic acid-decorated polydopamine nanoparticles with conjugated chlorin e6 (HA-PDA-Ce6) were synthesized and characterized. Cell uptake, phototoxicity, penetration, distribution and therapeutic effects were evaluated. RESULTS HA-PDA-Ce6 had high photoactivities for photodynamic therapy/photothermal therapy and was readily internalized via CD44-mediated endocytosis. Enhanced accumulation and deeper penetration into tumors were achieved by the diffusion molecular retention tumor targeting effect following peritumoral injection. In the combination therapy, HA-PDA-Ce6 displayed the highest tumor growth inhibition in HCT-116 tumor-bearing mice. CONCLUSION HA-PDA-Ce6 is promising for targeted colorectal cancer therapy.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China.,Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xumei Ouyang
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China.,Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinliang Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Ying Hu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo 315000, China
| | - Xiaoyi Sun
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China
| | - Zhenwei Yu
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
28
|
Han Y, An Y, Jia G, Wang X, He C, Ding Y, Tang Q. Theranostic micelles based on upconversion nanoparticles for dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. NANOSCALE 2018; 10:6511-6523. [PMID: 29569668 DOI: 10.1039/c7nr09717d] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is frequently metastatic once diagnosed and less likely to respond to curative surgery, emphasizing the need for the development of more sensitive and effective diagnostic and therapeutic strategies. Epithelial cell adhesion molecule (EpCAM) is deemed as the biomarker of cancer stem cells (CSCs), which are mainly responsible for the recurrence, metastasis and prognosis of HCC. In this study, we discuss the use of mitoxantrone (MX), an antitumor drug and a photosensitizer, for designing upconversion nanoparticle-based micelles grafted with the anti-EpCAM antibody, for dual-modality magnetic resonance/upconversion luminescence (MR/UCL)-guided synergetic chemotherapy and photodynamic therapy (PDT). The obtained micelles exhibit good biocompatibility, high specificity to HCC cells and superior fluorescent/magnetic properties in vitro. In vivo results demonstrate that the targeted micelles exhibited much better MR/UCL imaging qualities compared to the nontargeted micelles after the intravenous injection. More importantly, PEGylated UCNP micelles loaded with MX and grafted with anti-EpCAM antibody, denoted as anti-EpCAM-UPGs-MX, showcased the most effective synergetic antitumor efficacy compared with other treatment groups both in vitro and vivo. The remarkable antitumor effect, coupled with superior simultaneous dual-modality MR/UCL imaging as well as good biocompatibility and negligible toxicity, makes the UPG micelles promising for future translational research in HCC diagnosis and therapy.
Collapse
Affiliation(s)
- Yong Han
- Medical School of Southeast University, Nanjing 210009, China.
| | - Yanli An
- Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Gang Jia
- Medical School of Southeast University, Nanjing 210009, China.
| | - Xihui Wang
- Medical School of Southeast University, Nanjing 210009, China.
| | - Chen He
- Medical School of Southeast University, Nanjing 210009, China.
| | - Yinan Ding
- Medical School of Southeast University, Nanjing 210009, China.
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
29
|
Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P. A Magnetofluorescent Carbon Dot Assembly as an Acidic H 2 O 2 -Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706090. [PMID: 29436031 DOI: 10.1002/adma.201706090] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/15/2017] [Indexed: 05/17/2023]
Abstract
Recent studies indicate that carbon dots (CDs) can efficiently generate singlet oxygen (1 O2 ) for photodynamic therapy (PDT) of cancer. However, the hypoxic tumor microenvironment and rapid consumption of oxygen in the PDT process will severely limit therapeutic effects of CDs due to the oxygen-dependent PDT. Thus, it is becoming particularly important to develop a novel CD as an in situ tumor oxygenerator for overcoming hypoxia and substantially enhancing the PDT efficacy. Herein, for the first time, magnetofluorescent Mn-CDs are successfully prepared using manganese(II) phthalocyanine as a precursor. After cooperative self-assembly with DSPE-PEG, the obtained Mn-CD assembly can be applied as a smart contrast agent for both near-infrared fluorescence (FL) (maximum peak at 745 nm) and T1 -weighted magnetic resonance (MR) (relaxivity value of 6.97 mM-1 s-1 ) imaging. More interestingly, the Mn-CD assembly can not only effectively produce 1 O2 (quantum yield of 0.40) but also highly catalyze H2 O2 to generate oxygen. These collective properties of the Mn-CD assembly enable it to be utilized as an acidic H2 O2 -driven oxygenerator to increase the oxygen concentration in hypoxic solid tumors for simultaneous bimodal FL/MR imaging and enhanced PDT. This work explores a new biomedical use of CDs and provides a versatile carbon nanomaterial candidate for multifunctional nanotheranostic applications.
Collapse
Affiliation(s)
- Qingyan Jia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiqing Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Wen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Duan D, Liu H, Xu Y, Han Y, Xu M, Zhang Z, Liu Z. Activating TiO 2 Nanoparticles: Gallium-68 Serves as a High-Yield Photon Emitter for Cerenkov-Induced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5278-5286. [PMID: 29368518 DOI: 10.1021/acsami.7b17902] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The classical photodynamic therapy (PDT) requires external light to activate photosensitizers for cancer treatment. However, limited tissue penetration of light has been a long-standing challenge for PDT to cure malignant tumors in deep tissues. Recently, Cerenkov radiation (CR) emitted by radiotracers such as 18F-fluorodeoxyglucose (18F-FDG) has become an alternative and promising internal light source. Nevertheless, fluorine-18 (F-18) only releases 1.3 photons per decay in average; consequently, injection dose of F-18 goes beyond 10-30 times more than usual to acquire therapeutic efficacy because of its low Cerenkov productivity. Gallium-68 (Ga-68) is a favorable CR source owing to its ready availability from generator and 30-time higher Cerenkov productivity. Herein, we report, for the first time, the use of Ga-68 as a CR source to activate dextran-modified TiO2 nanoparticles (D-TiO2 NPs) for CR-induced PDT. Compared with 18F-FDG, 68Ga-labeled bovine serum albumin (68Ga-BSA) inhibited the growth of 4T1 cells and exhibited significantly stronger DNA damage to tumor cells. In vivo studies showed that the tumor growth was almost completely inhibited when tumor-bearing mice were treated with a combination of D-TiO2 NPs and 68Ga-BSA. This study proved that Ga-68 is a more potent radionuclide for PDT than F-18 both in vitro and in vivo offered a promising strategy of using a diagnostic dose of radioactivity to achieve depth-independent cancer therapy without using any external light source.
Collapse
Affiliation(s)
- Dongban Duan
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, and ‡Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Hui Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, and ‡Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, and ‡Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Yuxiang Han
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, and ‡Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, and ‡Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Zhengchu Zhang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, and ‡Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, and ‡Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
31
|
Deng K, Li C, Huang S, Xing B, Jin D, Zeng Q, Hou Z, Lin J. Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702299. [PMID: 28961374 DOI: 10.1002/smll.201702299] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/23/2017] [Indexed: 05/21/2023]
Abstract
Nowadays, photodynamic therapy (PDT) is under the research spotlight as an appealing modality for various malignant tumors. Compared with conventional PDT treatment activated by ultraviolet or visible light, near infrared (NIR) light-triggered PDT possessing deeper penetration to lesion area and lower photodamage to normal tissue holds great potential for in vivo deep-seated tumor. In this review, recent research progress related to the exploration of NIR light responsive PDT nanosystems is summarized. To address current obstacles of PDT treatment and facilitate the effective utilization, several innovative strategies are developed and introduced into PDT nanosystems, including the conjugation with targeted moieties, O2 self-sufficient PDT, dual photosensitizers (PSs)-loaded PDT nanoplatform, and PDT-involved synergistic therapy. Finally, the potential challenges as well as the prospective for further development are also discussed.
Collapse
Affiliation(s)
- Kerong Deng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chunxia Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shanshan Huang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Bengang Xing
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW, 2007, Australia
| | - Qingguang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Zhiyao Hou
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Jun Lin
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
32
|
Shi R, Ling X, Li X, Zhang L, Lu M, Xie X, Huang L, Huang W. Tuning hexagonal NaYbF 4 nanocrystals down to sub-10 nm for enhanced photon upconversion. NANOSCALE 2017; 9:13739-13746. [PMID: 28884767 DOI: 10.1039/c7nr04877g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enhancing upconversion emission is critical for small-sized lanthanide doped upconversion nanocrystals. A promising way is increasing the doping concentration of excitation energy absorbers, the Yb3+ sensitizer. However, it is still a challenge to obtain small-sized hexagonal NaLnF4 (Ln: lanthanide) upconversion nanocrystals with a high Yb3+ concentration due to the fast growth of NaYbF4 crystals, which hinders their applications particularly in biology. We here demonstrate a highly repeatable and controllable method for tuning the size of hexagonal NaYbF4 nanocrystals, down to ∼7 nm, without the assistance of additional impurity doping. By monitoring the reaction process, we found that ultrasmall hexagonal NaYbF4 nanocrystals were formed through an in situ transformation of their cubic counterparts. We observed an enhanced upconversion emission of NaYbF4:Tm nanocrystals when compared to that of NaYbF4:Y/Tm nanocrystals with less Yb3+ doping. After coating a thin layer of a NaYF4 shell on NaYbF4:Tm nanocrystals, a ∼100 times upconversion emission enhancement with over 800 times stronger emission in the ultraviolet and blue ranges was observed. This versatile method, together with the strong upconversion emission of the as-prepared ultrasmall nanocrystals, should facilitate the future applications of upconversion nanocrystals.
Collapse
Affiliation(s)
- Ruikai Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Xu J, Gulzar A, Liu Y, Bi H, Gai S, Liu B, Yang D, He F, Yang P. Integration of IR-808 Sensitized Upconversion Nanostructure and MoS 2 Nanosheet for 808 nm NIR Light Triggered Phototherapy and Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28737290 DOI: 10.1002/smll.201701841] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/20/2017] [Indexed: 05/17/2023]
Abstract
Near infrared (NIR) light triggered phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) affords superior outcome in cancer treatment. However, the reactive oxygen species (ROS) generated by NIR-excited upconversion nanostructure is limited by the feeble upconverted light which cannot activate PDT agents efficiently. Here, an IR-808 dye sensitized upconversion nanoparticle (UCNP) with a chlorin e6 (Ce6)-functionalized silica layer is developed for PDT agent. The two booster effectors (dye-sensitization and core-shell enhancement) synergistically amplify the upconversion efficiency, therefore achieving superbright visible emission under low 808 nm light excitation. The markedly amplified red light subsequently triggers the photosensitizer (Ce6) to produce large amount of ROS for efficient PDT. After the silica is endowed with positive surface, these PDT nanoparticles can be easily grafted on MoS2 nanosheet. As the optimal laser wavelength of UCNPs is consistent with that of MoS2 nanosheet for PTT, the invented nanoplatform generates both abundant ROS and local hyperthermia upon a single 808 nm laser irradiation. Both the in vitro and in vivo assays validate that the innovated nanostructure presents excellent cancer cell inhibition effectiveness by taking advantages of the synergistic PTT and PDT, simultaneously, posing trimodal (upconversion luminescence/computed tomography (CT)/magnetic resonance imaging (MRI) imaging capability.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yuhui Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Huiting Bi
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|