1
|
Sultanaev V, Yakimova L, Nazarova A, Sedov I, Mostovaya O, Mukhametzyanov T, Davletshin D, Takuntseva D, Gilyazova E, Bulatov E, Stoikov I. Pillar[5]arene/albumin biosupramolecular systems for simultaneous native protein preservation and encapsulation of a water-soluble substrate. J Mater Chem B 2024; 12:3103-3114. [PMID: 38450640 DOI: 10.1039/d3tb02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The growing resistance of pathogens, bacteria, viruses, and fungi to a number of drugs has encouraged researchers to use natural and synthetic biomimetic systems to overcome this challenge. Multicomponent systems are an attractive approach for drug design and multitarget therapy. In this study, we report the assembly of a three-component (pillar[5]arene, bovine serum albumin, and methyl orange) biosupramolecular system as a potential drug delivery system. We estimated the cytotoxic activity and transfection ability of pillar[5]arene derivatives and investigated the effect of the nature of macrocycle functions (L-phenylalanine, glycine, L-alanine) on the native conformation of serum albumin in a three-component system. NMR, UV-vis, fluorescence, CD spectroscopy, DLS, and molecular docking studies were performed in order to confirm the structure and possible pillar[5]arene/bovine serum albumin/methyl orange interactions occurring during the association process. Results indicate that pillar[5]arene with L-phenylalanine fragments retains the native form of BSA to the maximum extent and forms more stable associates.
Collapse
Affiliation(s)
- Vildan Sultanaev
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Luidmila Yakimova
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Anastasia Nazarova
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Igor Sedov
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Olga Mostovaya
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Timur Mukhametzyanov
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Daria Takuntseva
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| |
Collapse
|
2
|
Joshi B, Khalil AM, Zhang S, Memon FA, Yang Z. Application of 2D MoS 2 Nanoflower for the Removal of Emerging Pollutants from Water. ACS ENGINEERING AU 2023; 3:461-476. [PMID: 38144680 PMCID: PMC10739627 DOI: 10.1021/acsengineeringau.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023]
Abstract
Two-dimensional (2D) nanomaterial-MoS2 (molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and physiochemical properties. This paper reports on the removal of organic dyes and an emerging contaminant, Ciprofloxacin, by a 2D MoS2 nanoflower as an adsorbent. The material was prepared by a green hydrothermal technique, and its high Brunauer-Emmett-Teller-specific area of 185.541m2/g contributed to the removal of 96% rhodamine-B dye and 85% Ciprofloxacin. Various characterizations, such as X-ray diffraction, scanning electron microscopy linked with energy-dispersive spectroscopy, and transmission electron microscopy, revealed the nanoflower structure with good crystallinity. The feasibility and efficacy of 2D MoS2 nanoflower as a promising adsorbent candidate for the removal of emerging pollutants was confirmed in-depth in batch investigations, such as the effects of adsorption time, MoS2 dosages, solution pH, and temperature. The adsorption mechanism was further investigated based on thermodynamic calculations, adsorption kinetics, and isotherm modeling. The results confirmed the exothermic nature of the enthalpy-driven adsorption as well as the fast kinetics and physisorption-controlled adsorption process. The recyclability potential of 2D MoS2 exceeds four regeneration recycles. MoS2 nanoflower has been shown to be an effective organic pollutant removal adsorbent in water treatment.
Collapse
Affiliation(s)
- Bhavya Joshi
- Faculty of Environment, Science
and Economy, University of Exeter, Exeter EX4 4QF, U.K.
| | - Ahmed M.E. Khalil
- Faculty of Environment, Science
and Economy, University of Exeter, Exeter EX4 4QF, U.K.
| | - Shaowei Zhang
- Faculty of Environment, Science
and Economy, University of Exeter, Exeter EX4 4QF, U.K.
| | - Fayyaz A. Memon
- Faculty of Environment, Science
and Economy, University of Exeter, Exeter EX4 4QF, U.K.
| | - Zhuxian Yang
- Faculty of Environment, Science
and Economy, University of Exeter, Exeter EX4 4QF, U.K.
| |
Collapse
|
3
|
Daliran S, Khajeh M, Oveisi AR. A porous Fe‐based porphyrinic metal‐organic framework for highly effective removal of organic azo‐dye. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Saba Daliran
- Department of Chemistry University of Zabol Zabol Iran
| | | | | |
Collapse
|
4
|
Abstract
Due to its recalcitrant and carcinogenic nature, the presence of methyl orange (MO) in the environment is a serious threat to human and animal life and is also toxic to plants. MO being recalcitrant cannot be effectively reclaimed from industrial effluents through physical and chemical approaches. Biological methods on the other hand have the potential to degrade such dyes because of their compatibility with nature and low chances of adverse effects on the environment. Bacteria, due to their fast growth rate and capability of surviving in extreme environments can effectively be used for this purpose. In the current research study, Pseudomonas aeruginosa was isolated and characterized using 16rRNA from textile wastewater. In the preliminary tests it was found that Pseudomonas aeruginosa has the ability to degrade and mineralize methyl orange effectively. The physicochemical conditions were then optimized, in order to get maximum degradation of MO which was achieved at 37 °C, a pH of 7, a low salt concentration of 0.1 g/15 mL, a high carbon source of 0.6 g/15 mL, and 72 h experimental time. In a single set of experiments where all these optimum conditions were combined, 88.23% decolorization of the selected dye was achieved. At the end of the experimental cycle, the aliquots were homogenized and filtered. The filtrates were subjected to FTIR and GC-MS analysis where azo linkage breaking was confirmed from the FTIR spectra. The filtrates were then extracted with ethyl acetate and then passed through a silica gel column. On the basis of Rf value (TLC plates used) similar fraction were combined which were then subjected to NMR analysis. The compounds detected through GC-MS, peaks were not observed in proton and C-13 NMR. Instead, solvent and some impurity peaks were present, showing that complete mineralization of the dye had occurred due to the action of different bacterial enzymes such as azoreductase, peroxidases, and classes on MO. The prosed mechanism of complete mineralization is based on spectral data that needs to be verified by trapping the individual step products through the use of appropriate inhibitors of individual enzymes.
Collapse
|
5
|
Liu L, Zhou Q, He Q, Duan W, Huang Y. A pH-Responsive Supramolecular Drug Delivery System Constructed by Cationic Pillar[5]arene for Enhancing Antitumor Activity. Front Chem 2021; 9:661143. [PMID: 33912542 PMCID: PMC8072374 DOI: 10.3389/fchem.2021.661143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Drug delivery systems have good biocompatibiliy and low side effects for cancer treatment, but overcoming high efficiency of drug-loading and the drug-targeting controlled release still remains challenging. In this work, supramolecular vesicles, with pH-triggering effect, have been successfully constructed for drug delivery, which are fabricated by the complexation between a cationic pillar[5]arene (DAWP5) and a sodium dodecyl sulfonate (SDS) in aqueous solution. Drug-loading and releasing results demonstrated that anticancer drug doxorubicin (DOX) could be loaded efficiently by such cationic vesicles in neutral condition, and the drug release could be controlled in the simulated weak acid environment of tumor cells. Moreover, the vesicles had low cytotoxicity to normal human cell (L02), while the DOX-loaded vesicles could significantly enhance the cytotoxicity of free DOX for normal cell L02 and four tested tumor cells (Hela, HepG2, MGC-803 and T24). Especially for HepG2, after 24 h incubation time, IC50 of DOX-loaded vesicles was only 0.79 μM, about 23% of that of DOX (3.43 μM). These results suggested that such novel vesicles have promising potential to construct nano-drug delivery systems for various biomedical applications.
Collapse
Affiliation(s)
- Luzhi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China.,Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, China
| | - Qingqing Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Qin He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Yan Huang
- Guangxi Institute of Chinese Traditional Medical & Pharmaceutical Science and Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, China
| |
Collapse
|
6
|
Liu S, Wu Q, Zhang T, Zhang H, Han J. Supramolecular brush polymers prepared from 1,3,4-oxadiazole and cyanobutoxy functionalised pillar[5]arene for detecting Cu2+. Org Biomol Chem 2021; 19:1287-1291. [DOI: 10.1039/d0ob02587a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The self-assembly of an A1/A2 disubstituted pillar[5]arene was used to construct a supramolecular brush polymer.
Collapse
Affiliation(s)
- Shuangyan Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Qiuxia Wu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Tianze Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
7
|
Duan Q, Wang F, Zhang H, Lu K. pH-Responsive Host-Guest Complexations Between a Water-Soluble Pillar[6]arene Dodecyl-Ammonium Chloride and Aromatic Sulfonic Acids. Front Chem 2020; 8:588201. [PMID: 33195089 PMCID: PMC7533581 DOI: 10.3389/fchem.2020.588201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
In the present work, new host-guest binding motifs based on a water-soluble pillar[6]arene dodecyl-ammonium chloride (CP6) with two aromatic sulfonic acids in aqueous media were fabricated. In accordance with the integrated results of 1H NMR, 2D NOESY, and florescence titration experiments, it was demonstrated that the host-guest binding of CP6 with the two aromatic sulfonic acids in aqueous solution not only has high binding constants but also has pH-responsiveness.
Collapse
Affiliation(s)
- Qunpeng Duan
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Fei Wang
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Hongsong Zhang
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Kui Lu
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China.,School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou, China
| |
Collapse
|
8
|
Abstract
Novel two-dimensional ZnO/Ti3C2Tx hybrid photocatalysts with modified surface areas were prepared using a simple calcination technique. The microstructures, crystalline features, and bonding states of the ZnO structure-covered Ti3C2Tx MXenes were closely characterized using various tools. The photoluminescence intensity of the hybrid photocatalyst was greatly reduced compared to the pristine ZnO, while its Brunauer-Emmett-Teller (BET) surface area increased by more than 100 times. Under solar light illumination, the photocatalytic degradation efficiency of the hybrid photocatalyst for organic pollutants (MO, RhB) appeared to be three-fold larger as compared to pristine ZnO. The superb photocatalytic performance of the photocatalyst was attributed to several factors, such as ideal band alignment, Schottky barrier formation, and large surface area. Moreover, the ZnO/Ti3C2Tx hybrid photocatalyst showed excellent cycling stability. These results suggest that the novel hybrid structure may be a potential candidate for removing organic pollutants in wastewater.
Collapse
|
9
|
Nazarova A, Shurpik D, Padnya P, Mukhametzyanov T, Cragg P, Stoikov I. Self-Assembly of Supramolecular Architectures by the Effect of Amino Acid Residues of Quaternary Ammonium Pillar[5]arenes. Int J Mol Sci 2020; 21:E7206. [PMID: 33003555 PMCID: PMC7582551 DOI: 10.3390/ijms21197206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Novel water-soluble multifunctional pillar[5]arenes containing amide-ammonium-amino acid moiety were synthesized. The compounds demonstrated a superior ability to bind (1S)-(+)-10-camphorsulfonic acid (S-CSA) and methyl orange dye depending on the nature of the substituent, resulting in the formation one-to-one complexes with both guests. The formation of host-guest complexes was confirmed by ultraviolet (UV), circular dichroism (CD) and 1H NMR spectroscopy. This work demonstrates the first case of using S-CSA as a chiral template for the non-covalent self-assembly of architectures based on pillar[5]arenes. It was shown that pillar[5]arenes with glycine or L-alanine fragments formed aggregates with average hydrodynamic diameters (d) of 165 and 238 nm, respectively. It was established that the addition of S-CSA to the L-alanine-containing derivative led to the formation of micron-sized aggregates with d of 713 nm. This study may advance the design novel stereoselective catalysts and transmembrane amino acid channels.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Dmitriy Shurpik
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Pavel Padnya
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Timur Mukhametzyanov
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Peter Cragg
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK;
| | - Ivan Stoikov
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| |
Collapse
|
10
|
Evtyugin GA, Shurpik DN, Stoikov II. Electrochemical sensors and biosensors on the pillar[5]arene platform. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2843-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Uncharged water-soluble amide derivatives of pillar[5]arene: synthesis and supramolecular self-assembly with tetrazole-containing polymers. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Shurpik DN, Sevastyanov DA, Zelenikhin PV, Padnya PL, Evtugyn VG, Osin YN, Stoikov II. Nanoparticles based on the zwitterionic pillar[5]arene and Ag +: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:421-431. [PMID: 32215229 PMCID: PMC7082700 DOI: 10.3762/bjnano.11.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
For the first time, stable pillar[5]arene/Ag+ nanoparticles, consisting of water-soluble pillar[5]arene containing γ-sulfobetaine fragments and Ag+ ions without Ag-Ag bonds, were synthesized and characterized. The pillar[5]arene/Ag+ (ratio 1:10) nanoparticles obtained were cubic with a rib length of 100 nm and are less cytotoxic than Ag+ ions. The survival of the A549 model cells in the presence of pillar[5]arene/Ag+ (1:10) nanoparticles at a concentration of 30 and 40 μM was 76% and 55%, while in the absence of pillar[5]arene, the cell survival for free Ag+ ions at the same concentration was 30% and 10%, respectively. The results can be used to create new antibacterial materials and 2D biomedical coatings.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Denis A Sevastyanov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel L Padnya
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Vladimir G Evtugyn
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Yuriy N Osin
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Ivan I Stoikov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| |
Collapse
|
13
|
Polyelectrolyte nanoparticles based on functionalized silica and pillar[5]arene derivatives for recognition of model proteins. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2667-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Qi LH, Ding JD, Ma XQ, Guan XW, Zhu W, Yao H, Zhang YM, Wei TB, Lin Q. An azine-containing bispillar[5]arene-based multi-stimuli responsive supramolecular pseudopolyrotaxane gel for effective adsorption of rhodamine B. SOFT MATTER 2019; 15:6836-6841. [PMID: 31402364 DOI: 10.1039/c9sm01126a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An azine-containing bispillar[5]arene was designed and synthesized by the reaction of aldehyde functionalized-pillar[5]arene and hydrazine. Then, a novel bispillar[5]arene-based supramolecular pseudopolyrotaxane has been successfully prepared via host-guest interaction. Interestingly, by taking advantage of the host-guest interactions, π-π stacking interactions and hydrogen bonding interactions, the multi-stimuli-responsive gel-sol phase transitions of such a supramolecular pseudopolyrotaxane gel were successfully realized under different stimuli, such as acid, temperature, concentration, and competitive guests. Moreover, this supramolecular system could effectively adsorb dye molecule rhodamine B. It is worth noting that this supramolecular pseudopolyrotaxane gel prepared in cyclohexanol solution (BP5·G·C) could be used as an adsorbent material for adsorbing rhodamine B with adsorption efficiency of 98.4%. Meanwhile, the adsorption efficiency was 97.6% for supramolecular pseudopolyrotaxane gel prepared in DMSO-H2O (v : v, 8 : 2) binary solution (BP5·G·D), also indicating the superior adsorption effect of BP5·G·D toward the dye molecule rhodamine B.
Collapse
Affiliation(s)
- Li-Hua Qi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fernando A, Mako TL, Levenson AM, Cesana PT, Mendieta AM, Racicot JM, DeBoef B, Levine M. A polycationic pillar[5]arene for the binding and removal of organic toxicants from aqueous media. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1632457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ashvin Fernando
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Teresa L. Mako
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | | | - Paul T. Cesana
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | | | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
16
|
Synthesis of Tris-pillar[5]arene and Its Association with Phenothiazine Dye: Colorimetric Recognition of Anions. Molecules 2019; 24:molecules24091807. [PMID: 31083290 PMCID: PMC6539510 DOI: 10.3390/molecules24091807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
A multicyclophane with a core based on tris(2-aminoethyl)amine (TREN) linked by amide spacers to three fragments of pillar[5]arene was synthesized. The choice of the tris-amide core allowed the multicyclophane to bind to anion guests. The presence of three terminal pillar[5]arene units provides the possibility of effectively binding the colorimetric probe N-phenyl-3-(phenylimino)-3H-phenothiazin-7-amine (PhTz). It was established that the multicyclophane complexed PhTz in chloroform with a 1:1 stoichiometry (lgKa = 5.2 ± 0.1), absorbing at 650 nm. The proposed structure of the complex was confirmed by 1H-NMR spectroscopy: the amide group linking the pillar[5]arene to the TREN core forms a hydrogen bond with the PhTz imino-group while the pillararenes surround PhTz. It was established that the PhTz:tris-pillar[5]arene complex could be used as a colorimetric probe for fluoride, acetate, and dihydrogen phosphate anions due to the anion binding with proton donating amide groups which displaced the PhTz probe. Dye displacement resulted in a color change from blue to pink, lowering the absorption band at 650 nm and increasing that at 533 nm.
Collapse
|
17
|
Liu Y, Zhou F, Yang F, Ma D. Carboxylated pillar[n]arene (n = 5-7) host molecules: high affinity and selective binding in water. Org Biomol Chem 2019; 17:5106-5111. [PMID: 31070210 DOI: 10.1039/c9ob00684b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Water-soluble carboxylated pillar[n]arenes (n = 5-7) or WPns were discovered to be high affinity host molecules with selective binding for different guests based on a systematic investigation. We chose 22 dyes or guests and determined the value of Ka for 51 supramolecular complexes. It was discovered that the electrostatic interactions, π-π stacking and hydrophobic effect were the driving force for high affinity supramolecular encapsulation. WPns had selective binding toward suitable guests based on their sizes and molecular structures. Based on the above discovery, a guest (guest 21) was designed, which bound with WP7 3.3-fold tighter compared to methyl viologen.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Fang Zhou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Fan Yang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
18
|
Duan Q, Zhang H, Mai W, Wang F, Lu K. Acid/base- and base/acid-switchable complexation between anionic-/cationic-pillar[6]arenes and a viologen ditosylate salt. Org Biomol Chem 2019; 17:4430-4434. [PMID: 30888007 DOI: 10.1039/c9ob00398c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two new host-guest complexes between water-soluble anionic pillar[6]arene (WP6) or cationic pillar[6]arene (CP6) and a viologen ditosylate salt G·2TsO were constructed, among which one formed from WP6 and G2+ ions can be controlled by the sequential addition of an acid and a base (HCl and NaOH, respectively), whereas the other fabricated from CP6 and TsO- ions can be switched through the sequential addition of basic and acidic reagents (NaOH and HCl, respectively).
Collapse
Affiliation(s)
- Qunpeng Duan
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, 450006, China.
| | | | | | | | | |
Collapse
|
19
|
Synthesis, self-assembly and the effect of the macrocyclic platform on thermal properties of lactic acid oligomer modified by p-tert-butylthiacalix[4]arene. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Padnya PL, Potrekeeva OS, Bayarashov EE, Stoikov II. Spatial Structure of Tetrasubstituted Thiacalix[4]arenes Containing L-Tryptophan Fragments in Solution. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218110130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Novel Competitive Fluorescence Sensing Platform for L-carnitine Based on Cationic Pillar[5]Arene Modified Gold Nanoparticles. SENSORS 2018; 18:s18113927. [PMID: 30441777 PMCID: PMC6263671 DOI: 10.3390/s18113927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022]
Abstract
Supramolecular host-guest interaction and sensing between cationic pillar[5]arenes (CP5) and L-carnitine were developed by the competitive host-guest recognition for the first time. The fluorescence sensing platform was constructed by CP5 functionalized Au nanoparticles (CP5@Au-NPs) as receptor and probe (rhodamine 123, R123), which shown high sensitivity and selectivity for L-carnitine detection. Due to the negative charge and molecular size properties of L-carnitine, it can be highly captured by the CP5 via electrostatic interactions and hydrophobic interactions. The host-guest mechanism between PP5 and L-carnitine was studied by 1H NMR and molecular docking, indicating that more affinity binding force of CP5 with L-carnitine. Therefore, a selective and sensitive fluorescent method was developed. It has a linear response of 0.1–2.0 and 2.0–25.0 μM and a detection limit of 0.067 μM (S/N = 3). The fluorescent sensing platform was also used to detect L-carnitine in human serum and milk samples, which provided potential applications for the detection of drugs abuse and had path for guarding a serious food safety issues.
Collapse
|
22
|
Shu X, Xu K, Hou D, Li C. Molecular Recognition of Water-soluble Pillar[n
]arenes Towards Biomolecules and Drugs. Isr J Chem 2018. [DOI: 10.1002/ijch.201800115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyan Shu
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| | - Kaidi Xu
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| | - Dabin Hou
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
| | - Chunju Li
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| |
Collapse
|
23
|
Välimäki S, Beyeh NK, Linko V, Ras RHA, Kostiainen MA. A supramolecular host-guest complex for heparin binding and sensing. NANOSCALE 2018; 10:14022-14030. [PMID: 29995039 DOI: 10.1039/c8nr03132k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Heparin is an anionic polysaccharide widely used in clinics as an anticoagulant. However, heparin usage requires an antidote and sensors for safe operation during and after surgeries. In this study, a host-guest complex capable of selective heparin binding and sensing is presented. Heparin binding affinity was studied in solution with a variety of polycationic macrocyclic hosts, a pillar[5]arene and multiple resorcin[4]arenes, by dynamic light scattering, dye displacement assay, isothermal titration calorimetry, and anti-Xa assay. The measurements reveal the significant importance of multivalency in electrostatic host-heparin binding in competitive, application-relevant media. Additionally, to monitor the heparin concentration, a host-guest indicator displacement assay was performed by following the free and bound state of the methyl orange dye in UV-Vis spectroscopic experiments. Furthermore, this colorimetric sensing based on the tertiary host-guest-heparin supramolecular assembly was utilized in the construction of a calibration curve in a range of blood plasma concentrations.
Collapse
Affiliation(s)
- Salla Välimäki
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Espoo, Finland
| | | | | | | | | |
Collapse
|
24
|
Yang K, Wen J, Chao S, Liu J, Yang K, Pei Y, Pei Z. A supramolecular photosensitizer system based on the host-guest complexation between water-soluble pillar[6]arene and methylene blue for durable photodynamic therapy. Chem Commun (Camb) 2018; 54:5911-5914. [PMID: 29789821 DOI: 10.1039/c8cc02739k] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A supramolecular photosensitizer system WP6-MB was synthesized based on water-soluble pillar[6]arene and the photosensitizer methylene blue (MB) via host-guest interaction. MB can complex with WP6 directly with a high complex constant without further modification. In particular, WP6-MB can reduce the dark toxicity of MB remarkably. Furthermore, it can efficiently overcome photobleaching and extend the time for singlet oxygen production of MB upon light irradiation, which is significant for durable photodynamic therapy.
Collapse
Affiliation(s)
- Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Skvortsova PV, Gruzdeva EV, Faizullin DA, Shurpik DN, Evtugyn VG, Zelenikhin PV, Klochkov VV, Stoikov II, Khairutdinov BI. The Interaction of Water-Soluble Pillar[5]Arenes Containing Amide and Ammonium Fragments with Lipid Bilayer. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0532-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Konovalov AI, Antipin IS, Burilov VA, Madzhidov TI, Kurbangalieva AR, Nemtarev AV, Solovieva SE, Stoikov II, Mamedov VA, Zakharova LY, Gavrilova EL, Sinyashin OG, Balova IA, Vasilyev AV, Zenkevich IG, Krasavin MY, Kuznetsov MA, Molchanov AP, Novikov MS, Nikolaev VA, Rodina LL, Khlebnikov AF, Beletskaya IP, Vatsadze SZ, Gromov SP, Zyk NV, Lebedev AT, Lemenovskii DA, Petrosyan VS, Nenaidenko VG, Negrebetskii VV, Baukov YI, Shmigol’ TA, Korlyukov AA, Tikhomirov AS, Shchekotikhin AE, Traven’ VF, Voskresenskii LG, Zubkov FI, Golubchikov OA, Semeikin AS, Berezin DB, Stuzhin PA, Filimonov VD, Krasnokutskaya EA, Fedorov AY, Nyuchev AV, Orlov VY, Begunov RS, Rusakov AI, Kolobov AV, Kofanov ER, Fedotova OV, Egorova AY, Charushin VN, Chupakhin ON, Klimochkin YN, Osyanin VA, Reznikov AN, Fisyuk AS, Sagitullina GP, Aksenov AV, Aksenov NA, Grachev MK, Maslennikova VI, Koroteev MP, Brel’ AK, Lisina SV, Medvedeva SM, Shikhaliev KS, Suboch GA, Tovbis MS, Mironovich LM, Ivanov SM, Kurbatov SV, Kletskii ME, Burov ON, Kobrakov KI, Kuznetsov DN. Modern Trends of Organic Chemistry in Russian Universities. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s107042801802001x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Gómez-González B, Francisco V, Montecinos R, García-Río L. Investigation of the binding modes of a positively charged pillar[5]arene: internal and external guest complexation. Org Biomol Chem 2018; 15:911-919. [PMID: 28045174 DOI: 10.1039/c6ob02573k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective binding behavior of a trimethylammonium-derived pillar[5]arene towards different guests in aqueous media and under neutral conditions is reported. Although it is known that this macrocycle has the capability to form complexes with guests, we anticipate that the intrinsic pillar shape of the macrocycle with two positively charged rims should allow a diversity of binding modes. The three guests were selected based on their charge and size. The inclusion binding modes and the affinity of the macrocycle to form host-guest complexes were determined by ITC and NMR techniques. We reveal the ability of a cationic water soluble pillar[5]arene to effectively complex two guest molecules, one in each rim, evidencing the diversity of binding modes. Two different structures for 1 : 1 and three for 1 : 2 complexes are reported showing the pillararene ability for internal/external binding.
Collapse
Affiliation(s)
- Borja Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Vitor Francisco
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | - Rodrigo Montecinos
- Facultad de Química, Pontifica Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Luis García-Río
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Yakimova LS, Shurpik DN, Stoikov II. Amide-functionalized pillar[5]arenes as a novel class of macrocyclic receptors for the sensing of H 2PO 4- anion. Chem Commun (Camb) 2018; 52:12462-12465. [PMID: 27722507 DOI: 10.1039/c6cc05797g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel class of amide-functionalized pillar[5]arenes, that is, alkyl and aryl amide derivatives, has been synthesized. Highly selective binding of the dihydrogen phosphate anion over a range of anions by the new synthetic receptors is reported. First, the "binding strength-selectivity" relationship has been decided for the pillar[5]arene/anion systems.
Collapse
Affiliation(s)
- L S Yakimova
- Kazan Federal University, A. M. Butlerov Chemical Institute, Kremlevskaya Street, 18, Kazan, 420008, Russian Federation.
| | - D N Shurpik
- Kazan Federal University, A. M. Butlerov Chemical Institute, Kremlevskaya Street, 18, Kazan, 420008, Russian Federation.
| | - I I Stoikov
- Kazan Federal University, A. M. Butlerov Chemical Institute, Kremlevskaya Street, 18, Kazan, 420008, Russian Federation.
| |
Collapse
|
29
|
Shurpik DN, Yakimova LS, Gorbachuk VV, Sevastyanov DA, Padnya PL, Bazanova OB, Rizvanov IK, Stoikov II. Hybrid multicyclophanes based on thiacalix[4]arene and pillar[5]arene: synthesis and influence on the formation of polyaniline. Org Chem Front 2018. [DOI: 10.1039/c8qo00652k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of new tetrakispillar[5]thiacalix[4]arenes was synthesized. Supramolecular assistance of the multicyclophanes in oxidative polymerization of aniline was studied.
Collapse
Affiliation(s)
- Dmitriy N. Shurpik
- Kazan Federal University
- A.M. Butlerov Chemistry Institute
- Kazan
- Russian Federation
| | - Luidmila S. Yakimova
- Kazan Federal University
- A.M. Butlerov Chemistry Institute
- Kazan
- Russian Federation
| | | | - Denis A. Sevastyanov
- Kazan Federal University
- A.M. Butlerov Chemistry Institute
- Kazan
- Russian Federation
| | - Pavel L. Padnya
- Kazan Federal University
- A.M. Butlerov Chemistry Institute
- Kazan
- Russian Federation
| | - Olga B. Bazanova
- E. Arbuzov’ Institute of Organic and Physical Chemistry of KSC RAS
- Kazan 420088
- Russian Federation
| | - Il'dar Kh. Rizvanov
- E. Arbuzov’ Institute of Organic and Physical Chemistry of KSC RAS
- Kazan 420088
- Russian Federation
| | - Ivan I. Stoikov
- Kazan Federal University
- A.M. Butlerov Chemistry Institute
- Kazan
- Russian Federation
| |
Collapse
|
30
|
Shurpik DN, Sevastyanov DA, Evtyugin VG, Stoikov II. Supramolecular polymer based on aminated monosubstituted pillar[5]arene. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217090377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Nazarova AA, Makhmutova LI, Stoikov II. Synthesis of pillar[5]arenes with a PH-containing fragment. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217090080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Padnya PL, Khripunova IA, Mostovaya OA, Mukhametzyanov TA, Evtugyn VG, Vorobev VV, Osin YN, Stoikov II. Self-assembly of chiral fluorescent nanoparticles based on water-soluble L-tryptophan derivatives of p-tert-butylthiacalix[4]arene. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1825-1835. [PMID: 29046831 PMCID: PMC5629409 DOI: 10.3762/bjnano.8.184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/07/2017] [Indexed: 05/27/2023]
Abstract
New water-soluble tetra-substituted derivatives of p-tert-butylthiacalix[4]arene containing fragments of L-tryptophan in cone and 1,3-alternate conformations were obtained. It was shown that the resulting compounds form stable, positively charged aggregates of 86-134 nm in diameter in water at a concentration of 1 × 10-4 M as confirmed by dynamic light scattering, scanning electron microscopy and transmission electron microscopy. It was established that these aggregates are fluorescently active and chiral. A distinctive feature of the compounds is the pronounced dependence of their spectral (emission and chiroptical) properties on the polarity of the solvent and the length of the linker between the macrocyclic and fluorophore parts of the molecule.
Collapse
Affiliation(s)
- Pavel L Padnya
- Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
- Peoples Friendship University of Russia (RUDN University), 117198 Miklukho-Maklaya St., 6, Moscow, Russian Federation
| | - Irina A Khripunova
- Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Olga A Mostovaya
- Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | | | - Vladimir G Evtugyn
- Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | | | - Yuri N Osin
- Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Ivan I Stoikov
- Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| |
Collapse
|
33
|
Venkataramanan NS, Suvitha A, Vijayaraghavan A, Thamotharan S. Investigation of inclusion complexation of acetaminophen with pillar [5]arene: UV–Vis, NMR and quantum chemical study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Liu Y, Chen X, Ding J, Yu L, Ma D, Ding J. Improved Solubility and Bioactivity of Camptothecin Family Antitumor Drugs with Supramolecular Encapsulation by Water-Soluble Pillar[6]arene. ACS OMEGA 2017; 2:5283-5288. [PMID: 30023745 PMCID: PMC6044948 DOI: 10.1021/acsomega.7b01032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/22/2017] [Indexed: 06/08/2023]
Abstract
Water-soluble pillar[6]arene (WP6) was used to solubilize camptothecin family antitumor drugs. In the presence of WP6, the solubility of camptothecin (CPT) and 10-hydroxycamptothecin (HCPT) was enhanced by 380 and 40 times, respectively. The solubility enhancement is proved to be the result of the host-guest encapsulation by WP6. WP6 has a low cytotoxicity against normal MC 3T3-E1 cells, whereas the bioactivity of CPT and HCPT is substantially improved as a result of the solubility enhancement.
Collapse
Affiliation(s)
- Yamin Liu
- Department
of Chemistry and State Key Laboratory of Molecular Engineering
of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xi Chen
- Department
of Chemistry and State Key Laboratory of Molecular Engineering
of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jiaming Ding
- Department
of Chemistry and State Key Laboratory of Molecular Engineering
of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Lin Yu
- Department
of Chemistry and State Key Laboratory of Molecular Engineering
of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Da Ma
- Department
of Chemistry and State Key Laboratory of Molecular Engineering
of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jiandong Ding
- Department
of Chemistry and State Key Laboratory of Molecular Engineering
of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
35
|
Nazarova AA, Yakimova LS, Klochkov VV, Stoikov II. Monoaminophosphorylated pillar[5]arenes as hosts for alkaneamines. NEW J CHEM 2017. [DOI: 10.1039/c6nj03345h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New synthesized aminophosphonated pillar[5]arenes form host–guest complexes with aliphatic amines contrary to monoamine macrocycles that tend to self-assemble.
Collapse
Affiliation(s)
- A. A. Nazarova
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
| | - L. S. Yakimova
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
| | - V. V. Klochkov
- Institute of Physics
- Kazan Federal University
- Kazan
- Russian Federation
| | - I. I. Stoikov
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
- Institute of Physics
| |
Collapse
|
36
|
Padnya P, Andreyko EA, Gorbatova PA, Parfenov VV, Rizvanov IK, Stoikov II. Towards macrocyclic ionic liquids: novel ammonium salts based on tetrasubstituted p-tert-butylthiacalix[4]arenes. RSC Adv 2017. [DOI: 10.1039/c6ra24734b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water-soluble and water-insoluble ammonium ionic liquids based on p-tert-butylthiacalix[4]arenes in cone and 1,3-alternate conformation were synthesized.
Collapse
Affiliation(s)
- Pavel L. Padnya
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
- RUDN University
| | - Elena A. Andreyko
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | | | | | - Ildar Kh. Rizvanov
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Centre of the Russian Academy of Sciences
- 420088 Kazan
- Russian Federation
| | - Ivan I. Stoikov
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| |
Collapse
|
37
|
Zhang CC, Li SH, Zhang CF, Liu Y. Size Switchable Supramolecular Nanoparticle Based on Azobenzene Derivative within Anionic Pillar[5]arene. Sci Rep 2016; 6:37014. [PMID: 27849055 PMCID: PMC5111115 DOI: 10.1038/srep37014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
A photo/thermal-switchable supramolecular nanoparticles assembly has been constructed based on an inclusion complex between anionic pillar[5]arene 2C-WP5A and azobenzene derivative Azo-py-OMe (G). The novel anionic pillar[5]arene-based host-guest inclusion complexation was investigated by the 1H NMR titration, 2D ROESY and isothermal titration microcalorimetry (ITC) showing high association constant (Ka) of (2.60 ± 0.06) × 104 M−1 with 1:1 binding stoichiometry. Furthermore, the supramolecular nanoparticles assembly can be conveniently obtained from G and a small amount of 2C-WP5A in aqueous solution, which was so-called “host induced aggregating (HIA)”. The size and morphology of the supramolecular nanoparticles assembly were characterized by TEM and DLS. As a result of the photo/thermal-isomerization of G included in the cavity of 2C-WP5A, the size of these nanoparticles could reversibly change from ~800 nm to ~250 nm, which could switch the solution of this assembly from turbid to clear.
Collapse
Affiliation(s)
- Cai-Cai Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Sheng-Hua Li
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Cui-Fang Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|