1
|
Tsukamoto T, Takahashi K, Murase N, Someya K, Sakata F, Yue T, Kusakabe T, Kato K. Synthesis of (-)-Monanchoradin A and (-)-Crambescin A2 392 Based on a Cyclization-Carbonylation-Cyclization Cascade. Org Lett 2024; 26:9011-9016. [PMID: 39400067 DOI: 10.1021/acs.orglett.4c03158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Syntheses of guanidino alkaloids (-)-monanchoradin A and (-)-crambescin A2 392 are described. The key feature of the syntheses is the cyclization-carbonylation-cyclization cascade of the optically active propargyl guanidine. The bicyclic guanidino cores bearing an asymmetric center and ester or carboxylic acid functionality were constructed in a single step. The carboxylic acid was then converted to (-)-monanchoradin A and (-)-crambescin A2 392.
Collapse
Affiliation(s)
- Takuya Tsukamoto
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Keisuke Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Natsuki Murase
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Kyoka Someya
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Fujino Sakata
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Tianci Yue
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Taichi Kusakabe
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
2
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
3
|
Nakazaki A, Mouri S, Nakane Y, Ishikawa Y, Yotsu-Yamashita M, Nishikawa T. The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships. HETEROCYCLES 2022. [DOI: 10.3987/com-21-s(r)7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Nishimura K, Hanzawa R, Sugai T, Fuwa H. Ruthenium-Catalyzed Intramolecular Double Hydrofunctionalization of Alkynes. Synthesis of Spirocyclic Hemiaminal Ethers and Their Lewis Acid-Mediated Cleavage/Nucleophilic Addition. J Org Chem 2021; 86:6674-6697. [PMID: 33861607 DOI: 10.1021/acs.joc.1c00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[RuCl2(p-cymene)]2/AgNO3-catalyzed intramolecular double hydrofunctionalization of internal alkynes having nitrogen and oxygen nucleophilic groups at appropriate positions provided a series of spirocyclic hemiaminal ether derivatives in good to excellent yields. The product spiro-hemiaminal ethers underwent Lewis acid-mediated chemoselective cleavage, and in situ-generated iminium/oxocarbenium ions could be trapped with nucleophiles to afford a range of nitrogen and oxygen heterocycles.
Collapse
Affiliation(s)
- Kazuma Nishimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ryohei Hanzawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tomoya Sugai
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
5
|
Lopez-Charcas O, Pukkanasut P, Velu SE, Brackenbury WJ, Hales TG, Besson P, Gomora JC, Roger S. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. iScience 2021; 24:102270. [PMID: 33817575 PMCID: PMC8010468 DOI: 10.1016/j.isci.2021.102270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - William J. Brackenbury
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Tim G. Hales
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, the University of Dundee, DD1 9SY, Dundee, UK
| | - Pierre Besson
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Juan Carlos Gomora
- Instituto de Fisiología Celular, Circuito Exterior s/n Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico City, 04510 México
| | - Sébastien Roger
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
6
|
CoFe2O4/Cu(OH)2 Nanocomposite: Expeditious and magnetically recoverable heterogeneous catalyst for the four component Biginelli/transesterification reaction and their DFT studies. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
7
|
Santana AG, González CC. Tandem Radical Fragmentation/Cyclization of Guanidinylated Monosaccharides Grants Access to Medium-Sized Polyhydroxylated Heterocycles. Org Lett 2020; 22:8492-8495. [PMID: 33074675 DOI: 10.1021/acs.orglett.0c03091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The fragmentation of anomeric alkoxyl radicals (ARF) and the subsequent cyclization promoted by hypervalent iodine provide an excellent method for the synthesis of guanidino-sugars. The methodology described herein is one of the few existing general methodologies for the formation of medium-sized exo- and endoguanidine-containing heterocycles presenting a high degree of oxygenation in their structure.
Collapse
Affiliation(s)
- Andrés G Santana
- Instituto de Productos Naturales y Agrobiología del C.S.I.C., Avenida Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Concepción C González
- Instituto de Productos Naturales y Agrobiología del C.S.I.C., Avenida Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
8
|
Gao Z, Li J, Song Y, Bi X, Meng X, Guo Y. Eight-step total synthesis of (+)-crambescin A. RSC Adv 2020; 10:39266-39270. [PMID: 35518432 PMCID: PMC9057376 DOI: 10.1039/d0ra08726b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/02/2022] Open
Abstract
(+)-Crambescin A belongs to the polycyclic guanidine natural product family and has been shown to possess various medically important properties. The chiral bicyclic guanidine structure of (+)-crambescin A presents a challenge for chemical synthesis. Here we implement a novel asymmetric Biginelli reaction strategy to achieve the enantiospecific total synthesis of (+)-crambescin A in only 8 steps from the abundant and inexpensive aliphatic aldehyde, urea and methyl 3-oxobutanoate. Here we implement a novel asymmetric Biginelli reaction strategy to achieve enantiospecific total synthesis of (+)-crambescin A in only 8 steps from the abundant and inexpensive aliphatic aldehyde, urea and methyl 3-oxobutanoate.![]()
Collapse
Affiliation(s)
- Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| | - Junchen Li
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| | - Yunyang Song
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| | - Xiaojing Bi
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| | - Xiangyan Meng
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| |
Collapse
|
9
|
Nishikawa T. New Synthetic Method for Efficient Synthesis of Bioactive Natural Products —Biomimetic Synthesis of Chaxines—. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Vlachou P, Le Goff G, Alonso C, Álvarez PA, Gallard JF, Fokialakis N, Ouazzani J. Innovative Approach to Sustainable Marine Invertebrate Chemistry and a Scale-Up Technology for Open Marine Ecosystems. Mar Drugs 2018; 16:md16050152. [PMID: 29734790 PMCID: PMC5983283 DOI: 10.3390/md16050152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022] Open
Abstract
Isolation of marine compounds from living invertebrates represents a major challenge for sustainable and environmentally friendly exploitation of marine bio-resources. To develop innovative technology to trap invertebrate compounds in the open sea, the proof of concept of a system combining external continuous circulation of water with XAD-amberlite solid-phase extraction was validated in an aquarium. In this work, we reported the elicitation of guanidine alkaloid production of Crambe crambe in the presence of Anemonia sulcata, both collected from the Mediterranean Sea. Besides the previously reported crambescidin 359 (1), and crambescidin acid (2), three new compounds were isolated; one carboxylated analog of 1 named crambescidin 401 (3), and two analogs of crambescin B, crambescin B 281 (4) and crambescin B 253 (5). Based on these results, a technology named Somartex® for “Self Operating MARine Trapping Extractor” was patented and built to transfer the concept from closed aquarium systems to open marine ecosystems.
Collapse
Affiliation(s)
- Pinelopi Vlachou
- Department of Pharmacognosy & Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | | | | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Nikolas Fokialakis
- Department of Pharmacognosy & Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
12
|
Nishikawa T, Nakazaki A, Nokura Y. Synthesis of Dibromo Compounds Containing 2,6-Dioxabicyclo[3.1.1]heptane Similar to Core Moiety of Thromboxane A2. HETEROCYCLES 2018. [DOI: 10.3987/com-17-13814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Guo Y, Tang H, Gao Z, Meng X, Yu H, Zhong H, Huang G, Zou C. Solvent-Free and Catalyst-Free Biginelli Reaction to Synthesize 4-Alkyl- 3,4-dihydropyrimidin-2-(1H)-ones. ChemistrySelect 2017. [DOI: 10.1002/slct.201701466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongbiao Guo
- Beijing Institute of Pharmaceutical Chemistry; No. 37; Center South Street, Yangfang Town, Changping District Beijing PR China
| | - Hui Tang
- Beijing Institute of Pharmaceutical Chemistry; No. 37; Center South Street, Yangfang Town, Changping District Beijing PR China
| | - Zhenhua Gao
- Beijing Institute of Pharmaceutical Chemistry; No. 37; Center South Street, Yangfang Town, Changping District Beijing PR China
| | - Xiangyan Meng
- Beijing Institute of Pharmaceutical Chemistry; No. 37; Center South Street, Yangfang Town, Changping District Beijing PR China
| | - Huilan Yu
- Beijing Institute of Pharmaceutical Chemistry; No. 37; Center South Street, Yangfang Town, Changping District Beijing PR China
| | - Hui Zhong
- Beijing Institute of Pharmaceutical Chemistry; No. 37; Center South Street, Yangfang Town, Changping District Beijing PR China
| | - Guilan Huang
- Beijing Institute of Pharmaceutical Chemistry; No. 37; Center South Street, Yangfang Town, Changping District Beijing PR China
| | - Chuanpin Zou
- Beijing Institute of Pharmaceutical Chemistry; No. 37; Center South Street, Yangfang Town, Changping District Beijing PR China
| |
Collapse
|
14
|
Tsukamoto T, Chiba Y, Nakazaki A, Ishikawa Y, Nakane Y, Cho Y, Yotsu-Yamashita M, Nishikawa T, Wakamori M, Konoki K. Inhibition of veratridine-induced delayed inactivation of the voltage-sensitive sodium channel by synthetic analogs of crambescin B. Bioorg Med Chem Lett 2017; 27:1247-1251. [PMID: 28143690 DOI: 10.1016/j.bmcl.2017.01.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
Crambescin B carboxylic acid, a synthetic analog of crambescin B, was recently found to inhibit the voltage-sensitive sodium channels (VSSC) in a cell-based assay using neuroblastoma Neuro 2A cells. In the present study, whole-cell patch-clamp recordings were conducted with three heterologously expressed VSSC subtypes, Nav1.2, Nav1.6 and Nav1.7, in a human embryonic kidney cell line HEK293T to further characterize the inhibition of VSSC by crambescin B carboxylic acid. Contrary to the previous observation, crambescin B carboxylic acid did not inhibit peak current evoked by depolarization from the holding potential of -100mV to the test potential of -10mV in the absence or presence of veratridine (VTD). In the presence of VTD, however, crambescin B carboxylic acid diminished VTD-induced sustained and tail currents through the three VSSC subtypes in a dose-dependent manner, whereas TTX inhibited both the peak current and the VTD-induced sustained and tail currents through all subtypes of VSSC tested. We thus concluded that crambescin B carboxylic acid does not block VSSC in a similar manner to TTX but modulate the action of VTD, thereby causing an apparent block of VSSC in the cell-based assay.
Collapse
Affiliation(s)
- Tadaaki Tsukamoto
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 981-8555, Japan
| | - Yukie Chiba
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 981-8555, Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yuki Ishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yoshiki Nakane
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yuko Cho
- Graduate School of Dentistry, Tohoku University, Aoba, Sendai 980-8575, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 981-8555, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Minoru Wakamori
- Graduate School of Dentistry, Tohoku University, Aoba, Sendai 980-8575, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 981-8555, Japan.
| |
Collapse
|
15
|
Berlinck RGS, Bertonha AF, Takaki M, Rodriguez JPG. The chemistry and biology of guanidine natural products. Nat Prod Rep 2017; 34:1264-1301. [DOI: 10.1039/c7np00037e] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemistry and biology of natural guanidines isolated from microbial culture media, from marine invertebrates, as well as from terrestrial plants and animals, are reviewed.
Collapse
Affiliation(s)
| | - Ariane F. Bertonha
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Mirelle Takaki
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | | |
Collapse
|
16
|
Ueno S, Nakazaki A, Nishikawa T. A Synthetic Strategy for Saxitoxin Skeleton by a Cascade Bromocyclization: Total Synthesis of (+)-Decarbamoyl-α-saxitoxinol. Org Lett 2016; 18:6368-6371. [PMID: 27978691 DOI: 10.1021/acs.orglett.6b03262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new synthetic strategy for the formation of the ABC tricyclic framework of saxitoxin was developed. The BC ring moiety, including a spiro-aminal structure, was first constructed stereoselectively by a newly designed cascade bromocyclization of a readily available internal alkyne bearing guanidine and urea. The A ring was then synthesized by a guanylation of a cyclic urea, easily prepared via the oxidative cleavage of the diol of the cascade product, followed by addition of cyanide. This strategy enables the concise stereocontrolled total synthesis of (+)-decarbamoyl-α-saxitoxinol, which is a naturally occurring saxitoxin analogue.
Collapse
Affiliation(s)
- Sohei Ueno
- Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|