1
|
Song Z, Wang X, Feng W, Armand M, Zhou Z, Zhang H. Designer Anions for Better Rechargeable Lithium Batteries and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310245. [PMID: 38839065 DOI: 10.1002/adma.202310245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Non-aqueous electrolytes, generally consisting of metal salts and solvating media, are indispensable elements for building rechargeable batteries. As the major sources of ionic charges, the intrinsic characters of salt anions are of particular importance in determining the fundamental properties of bulk electrolyte, as well as the features of the resulting electrode-electrolyte interphases/interfaces. To cope with the increasing demand for better rechargeable batteries requested by emerging application domains, the structural design and modifications of salt anions are highly desired. Here, salt anions for lithium and other monovalent (e.g., sodium and potassium) and multivalent (e.g., magnesium, calcium, zinc, and aluminum) rechargeable batteries are outlined. Fundamental considerations on the design of salt anions are provided, particularly involving specific requirements imposed by different cell chemistries. Historical evolution and possible synthetic methodologies for metal salts with representative salt anions are reviewed. Recent advances in tailoring the anionic structures for rechargeable batteries are scrutinized, and due attention is paid to the paradigm shift from liquid to solid electrolytes, from intercalation to conversion/alloying-type electrodes, from lithium to other kinds of rechargeable batteries. The remaining challenges and key research directions in the development of robust salt anions are also discussed.
Collapse
Affiliation(s)
- Ziyu Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xingxing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenfang Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - Zhibin Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
2
|
Rutkoski R, Debarba LK, Stilgenbauer L, Rosenthal T, Sadagurski M, Nagorny P. Selective (α)-l-Rhamnosylation and Neuroprotective Activity Exploration of Cardiotonic Steroids. ACS Med Chem Lett 2024; 15:280-286. [PMID: 38352829 PMCID: PMC10860192 DOI: 10.1021/acsmedchemlett.3c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
This work describes the studies on the direct C3-glycosylation of the C19-hydroxylated cardiotonic steroids strophanthidol, anhydro-ouabagenin, and ouabagenin using a strategy based on in situ protection of the C5 and C19 hydroxyl groups with boronic acids. While this strategy resulted in a successful one-pot C3-selective glycosylation of strophanthidol and anhydro-ouabegenin, it failed to provide ouabain from ouabagenin. The neuroprotective activity of the synthetic and natural glycosides against LPS-induced neuroinflammation was explored in neonatal mouse primary glia cells. Co-administration of natural and synthetic C3-glycosides at 200 nM concentrations resulted in the significant reduction of the LPS-induced neuroinflammatory markers IL-6, IL-1, TNFα, and IKBKE, with the anhydro-ouabagenin-3-(α)-l-rhamnoside (anhydro-ouabain) showing the most significant effect. At the same time, unglycosylated anhydro-ouabagenin enhanced rather than suppressed LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Ryan Rutkoski
- Department
of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lucas Kniess Debarba
- Department
of Biological Sciences, Institute of Environmental Health Sciences,
Integrative Biosciences Center, Wayne State
University, Detroit, Michigan 48202, United States
| | - Lukas Stilgenbauer
- Department
of Biological Sciences, Institute of Environmental Health Sciences,
Integrative Biosciences Center, Wayne State
University, Detroit, Michigan 48202, United States
| | - Tay Rosenthal
- Small
Molecule Discovery & Development, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Marianna Sadagurski
- Department
of Biological Sciences, Institute of Environmental Health Sciences,
Integrative Biosciences Center, Wayne State
University, Detroit, Michigan 48202, United States
| | - Pavel Nagorny
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Zhao X, Zhang Z, Xu J, Wang N, Huang N, Yao H. Stereoselective Synthesis of O-Glycosides with Borate Acceptors. J Org Chem 2023; 88:11735-11747. [PMID: 37525574 DOI: 10.1021/acs.joc.3c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Borate esters have been applied widely as coupling partners in organic synthesis. However, the direct utilization of borate acceptors in O-glycosylation with glycal donors remains underexplored. Herein, we describe a novel O-glycosylation resulting in the formation of 2,3-unsaturated O-glycosides and 2-deoxy O-glycosides mediated by palladium and copper catalysis, respectively. This O-glycosylation method tolerated a broad scope of trialkyl/triaryl borates and various glycals with exclusive stereoselectivities in high yields. All the desired aliphatic/aromatic O-glycosides and 2-deoxy O-glycosides were generated successfully, without the hemiacetal byproducts and O→C rearrangement because of the nature of borate esters. The utility of this strategy was demonstrated by functionalizing the 2,3-unsaturated glycoside products to form saturated β-O-glycosides, 2,3-deoxy O-glycosides, and 2,3-epoxy O-glycosides.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhentao Zhang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Jing Xu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
4
|
Jdanova S, Taylor MS. Mechanistic Study of the Copper(II)-Mediated Site-Selective O-Arylation of Glycosides with Arylboronic Acids. J Org Chem 2023; 88:3487-3498. [PMID: 36888595 DOI: 10.1021/acs.joc.2c02693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Glycosides having multiple free OH groups have been shown to undergo site-selective O-arylations in the presence of arylboronic acids and copper(II) acetate. Herein, a mechanistic analysis of these Chan-Evans-Lam-type couplings is presented based on reaction kinetics, mass spectrometric analysis of reaction mixtures, and substituent effect studies. The results establish that the formation of a substrate-derived boronic ester accelerates the rate-determining transmetalation step. Intramolecular transfer of the aryl group from the boronic ester is ruled out in favor of a pathway in which the key pre-transmetalation assembly is generated from a boronic ester, a copper complex, and a second equivalent of arylboronic acid.
Collapse
Affiliation(s)
- Sofia Jdanova
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 Canada
| |
Collapse
|
5
|
Li X, Wu J, Tang W. General Strategy for the Synthesis of Rare Sugars via Ru(II)-Catalyzed and Boron-Mediated Selective Epimerization of 1,2- trans-Diols to 1,2- cis-Diols. J Am Chem Soc 2022; 144:3727-3736. [PMID: 35168319 DOI: 10.1021/jacs.1c13399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human glycans are primarily composed of nine common sugar building blocks. On the other hand, several hundred monosaccharides have been discovered in bacteria and most of them are not readily available. The ability to access these rare sugars and the corresponding glycoconjugates can facilitate the studies of various fundamentally important biological processes in bacteria, including interactions between microbiota and the human host. Many rare sugars also exist in a variety of natural products and pharmaceutical reagents with significant biological activities. Although several methods have been developed for the synthesis of rare monosaccharides, most of them involve lengthy steps. Herein, we report an efficient and general strategy that can provide access to rare sugars from commercially available common monosaccharides via a one-step Ru(II)-catalyzed and boron-mediated selective epimerization of 1,2-trans-diols to 1,2-cis-diols. The formation of boronate esters drives the equilibrium toward 1,2-cis-diol products, which can be immediately used for further selective functionalization and glycosylation. The utility of this strategy was demonstrated by the efficient construction of glycoside skeletons in natural products or bioactive compounds.
Collapse
Affiliation(s)
- Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jicheng Wu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Lášek T, Petrová M, Košiová I, Šimák O, Buděšínský M, Kozák J, Snášel J, Vavřina Z, Birkuš G, Rosenberg I, Páv O. 5′-Phosphonate modified oligoadenylates as potent activators of human RNase L. Bioorg Med Chem 2022; 56:116632. [DOI: 10.1016/j.bmc.2022.116632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
|
7
|
Oswood CJ, MacMillan DWC. Selective Isomerization via Transient Thermodynamic Control: Dynamic Epimerization of trans to cis Diols. J Am Chem Soc 2022; 144:93-98. [PMID: 34933555 PMCID: PMC9676085 DOI: 10.1021/jacs.1c11552] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traditional approaches to stereoselective synthesis require high levels of enantio- and diastereocontrol in every step that forms a new stereocenter. Here, we report an alternative approach, in which the stereochemistry of organic substrates is selectively edited without further structural modification, a strategy with the potential to allow new classes of late-stage stereochemical manipulation and provide access to rare or valuable stereochemical configurations. In this work, we describe a selective epimerization of cyclic diols enabled by hydrogen atom transfer photocatalysis and boronic acid mediated transient thermodynamic control, selectively generating less stable cis products from the otherwise favored trans isomers. A range of substitution patterns and ring sizes are amenable to selective isomerization, including stereochemically complex polyols such as estriol, as well as syn to anti epimerization of acyclic vicinal diols. Moreover, this strategy has enabled the divergent epimerization of saccharide anomers, providing access to distinct sugar isomers from α- or β-configured glycosides.
Collapse
Affiliation(s)
- Christian J Oswood
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Turner JA, Rosano N, Gorelik DJ, Taylor MS. Synthesis of Ketodeoxysugars from Acylated Pyranosides Using Photoredox Catalysis and Hydrogen Atom Transfer. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03050] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Julia A. Turner
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Nicholas Rosano
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Daniel J. Gorelik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
9
|
Cuminet F, Caillol S, Dantras É, Leclerc É, Ladmiral V. Neighboring Group Participation and Internal Catalysis Effects on Exchangeable Covalent Bonds: Application to the Thriving Field of Vitrimer Chemistry. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02706] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Éric Dantras
- CIRIMAT Physique des Polymères, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Éric Leclerc
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
10
|
Shimada N, Sugimoto T, Noguchi M, Ohira C, Kuwashima Y, Takahashi N, Sato N, Makino K. Boronic Acid-Catalyzed Regioselective Koenigs-Knorr-Type Glycosylation. J Org Chem 2021; 86:5973-5982. [PMID: 33829786 DOI: 10.1021/acs.joc.1c00130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Boronic acid-catalyzed regioselective Koenigs-Knorr-type glycosylation is presented. The reaction of an unprotected or partially protected glycosyl acceptor with a glycosyl halide donor in the presence of silver oxide and a low catalytic amount of imidazole-containing boronic acid was found to proceed smoothly, which enables construction of a 1,2-trans glycosidic linkage with high regioselectivities. This is the first example of the use of a boronic acid catalyst to initiate regioselective glycosylation via the activation of cis-vicinal diols in glycosyl acceptors.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Tomoya Sugimoto
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Mao Noguchi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Chikako Ohira
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yutaro Kuwashima
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoya Takahashi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Noriko Sato
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
11
|
Valiakhmetova OY, Kuznetsov VV. Conformational Analysis of
2-Isopropyl-5-methoxy-5-methyl-1,3,2-dioxaborinane in Chloroform Solution: Effect of
“Magic” Solvent Molecule. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021010036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Dimakos V, Taylor MS. Recent advances in the direct O-arylation of carbohydrates. Org Biomol Chem 2021; 19:514-524. [PMID: 33331387 DOI: 10.1039/d0ob02009e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methods for the O-arylation of hydroxyl and hemiacetal groups in carbohydrates via C(sp2)-O bond formation are discussed. Such methods provide an alternative disconnection to the traditional approach of nucleophilic substitution between a sugar-derived electrophile and a phenol or phenoxide nucleophile. They have led to new opportunities for stereoselectivity, site-selectivity and chemoselectivity in the preparation of O-aryl glycosides and carbohydrate-derived aryl ethers, compounds that are useful for a broad range of applications in medicinal chemistry, glycobiology and organic synthesis.
Collapse
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
13
|
Wan IC(S, Hamlin TA, Eisink NNHM, Marinus N, Boer C, Vis CA, Codée JDC, Witte MD, Minnaard AJ, Bickelhaupt FM. On the Origin of Regioselectivity in Palladium‐Catalyzed Oxidation of Glucosides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ieng Chim (Steven) Wan
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Institution Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Institution Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
| | - Niek N. H. M. Eisink
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - Nittert Marinus
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - Casper Boer
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden, The Netherlands
| | - Christopher A. Vis
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden, The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden, The Netherlands
| | - Martin D. Witte
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Institution Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
- Institute for Molecules and Materials (IMM) Radboud University Heyendaalseweg 135 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
14
|
Li L, Yu J, Xie C, Wang C, Guan P, Hu JJ, Tang K. A TIMS-TOF mass spectrometry study of disaccharides from in situ ESI derivatization with 3-pyridinylboronate. Analyst 2021; 146:75-84. [DOI: 10.1039/d0an01677b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mobilograms of in situ ESI 3-pyridinylboronic acid tagging of isomaltose in the positive or negative mode.
Collapse
Affiliation(s)
- Lei Li
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Jiancheng Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Chengyi Xie
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Chenlu Wang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Pengfei Guan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Jun Jack Hu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| |
Collapse
|
15
|
Slavko E, Taylor MS. Site-Selective, Organoboron-Catalyzed Polymerization of Pyranosides: Access to Sugar-Derived Polyesters with Tunable Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ekaterina Slavko
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
16
|
Tommasone S, Tagger YK, Mendes PM. Targeting Oligosaccharides and Glycoconjugates Using Superselective Binding Scaffolds. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002298. [PMID: 32774200 PMCID: PMC7405978 DOI: 10.1002/adfm.202002298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 05/29/2023]
Abstract
Recognition of oligosaccharides is associated with very limited specificity due to their strong solvation in water and the high degree of subtle structural variations between them. Here, oligosaccharide recognition sites are created on material surfaces with unmatched, binary on-off binding behavior, sharply discriminating a target oligosaccharide over closely related carbohydrate structures. The basis for the superselective binding behavior relies on the highly efficient generation of a pure, high order complex of the oligosaccharide target with synthetic carbohydrate receptor sites, in which the spatial arrangement of the multiple receptors in the complex is preserved upon material surface incorporation. The synthetic binding scaffolds can easily be tailored to recognize different oligosaccharides and glycoconjugates, opening up a realm of possibilities for their use in a wide field of applications, ranging from life sciences to diagnostics.
Collapse
Affiliation(s)
- Stefano Tommasone
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Yazmin K. Tagger
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Paula M. Mendes
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| |
Collapse
|
17
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
18
|
Shimada N, Fukuhara K, Urata S, Makino K. Total syntheses of seminolipid and its analogues by using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent. Org Biomol Chem 2019; 17:7325-7329. [PMID: 31353379 DOI: 10.1039/c9ob01445d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concise total synthesis of seminolipid, a sulfoglycolipid, has been achieved; key features include regioselective, tin-free sulfation of allyl β-d-galactopyranoside using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent, stereoselective epoxidation, and site-selective acylation. The utility of this divergent synthetic approach to introduce 2,2,2-trichloroethyl-protected sulfate group at an early stage without toxic and environmentally unfavorable tin reagents was demonstrated by the syntheses of three seminolipid analogues with different side-chains from the common intermediate.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan.
| | | | | | | |
Collapse
|
19
|
Blaszczyk SA, Xiao G, Wen P, Hao H, Wu J, Wang B, Carattino F, Li Z, Glazier DA, McCarty BJ, Liu P, Tang W. S
‐Adamantyl Group Directed Site‐Selective Acylation: Applications in Streamlined Assembly of Oligosaccharides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stephanie A. Blaszczyk
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
- Department of ChemistryUniversity of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Guozhi Xiao
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
| | - Peng Wen
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
| | - Hua Hao
- Department of ChemistryUniversity of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Jessica Wu
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
| | - Bo Wang
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
| | - Francisco Carattino
- Department of ChemistryUniversity of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Ziyuan Li
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
| | - Daniel A. Glazier
- Department of ChemistryUniversity of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Bethany J. McCarty
- Department of ChemistryUniversity of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Peng Liu
- Department of ChemistryUniversity of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Weiping Tang
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
- Department of ChemistryUniversity of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
20
|
Blaszczyk SA, Xiao G, Wen P, Hao H, Wu J, Wang B, Carattino F, Li Z, Glazier DA, McCarty BJ, Liu P, Tang W. S-Adamantyl Group Directed Site-Selective Acylation: Applications in Streamlined Assembly of Oligosaccharides. Angew Chem Int Ed Engl 2019; 58:9542-9546. [PMID: 31066162 PMCID: PMC6663581 DOI: 10.1002/anie.201903587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/03/2019] [Indexed: 12/15/2022]
Abstract
The site-selective functionalization of carbohydrates is an active area of research. Reported here is the surprising observation that the sterically encumbered adamantyl group directed site-selective acylation at the C2 position of S-glycosides through dispersion interactions between the adamantyl C-H bonds and the π system of the cationic acylated catalyst, which may have broad implications in many other chemical reactions. Because of their stability, chemical orthogonality, and ease of activation for glycosylation, the site-selective acylation of S-glycosides streamlines oligosaccharide synthesis and will have wide applications in complex carbohydrate synthesis.
Collapse
Affiliation(s)
- Stephanie A Blaszczyk
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Guozhi Xiao
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Peng Wen
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Hua Hao
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Jessica Wu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Bo Wang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Francisco Carattino
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Ziyuan Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Daniel A Glazier
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Bethany J McCarty
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
21
|
One-pot synthesis of orthogonally protected sugars through sequential base-promoted/acid-catalyzed steps: A solvent-free approach with self-generation of a catalytic species. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Dimakos V, Liu JJW, Ge Z, Taylor MS. Copper-mediated anomeric O-arylation with organoboron reagents. Org Biomol Chem 2019; 17:5671-5674. [PMID: 31123748 DOI: 10.1039/c9ob01022j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Copper-mediated couplings of arylboroxines with glycosyl hemiacetals furnish O-aryl glycosides via Csp2-O bond formation. The method enables the anomeric O-arylation of protected pyranose and furanose derivatives, and is tolerant of functionalized arylboroxine partners. Whereas mixtures of anomers are formed from glucopyranose, galactopyranose and arabinofuranose hemiacetals, the α-anomer is generated selectively from mannopyranose and mannofuranose-derived substrates.
Collapse
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6 Canada.
| | | | | | | |
Collapse
|
23
|
Shimada N, Nakamura Y, Ochiai T, Makino K. Catalytic Activation of Cis-Vicinal Diols by Boronic Acids: Site-Selective Acylation of Carbohydrates. Org Lett 2019; 21:3789-3794. [DOI: 10.1021/acs.orglett.9b01231] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Takayuki Ochiai
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
24
|
Regioselective single pot C3-glycosylation of strophanthidol using methylboronic acid as a transient protecting group. J Antibiot (Tokyo) 2019; 72:437-448. [PMID: 30948784 DOI: 10.1038/s41429-019-0172-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
This manuscript describes a single pot protocol for the selective introduction of unprotected sugars to the C3 position of the cardiotonic steroid strophanthidol. These reactions proceed with high levels of regiocontrol (>20:1 rr) in the presence of three other hydroxyl functionalities including the C19 primary hydroxyl group and could be applied to different sugars to provide the deprotected cardiac glycosides upon work up (5 examples, 77-69% yield per single operation). The selective glycosylation of the less reactive C3 position is accomplished by the use of traceless protection with methylboronic acid that blocks the C5 and C19 hydroxyls by forming a cyclic boronic ester, followed by in situ glycosylation and a work up with ammonia in methanol to remove the boronic ester and the carbohydrate ester protecting groups.
Collapse
|
25
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
26
|
Manhas S, Taylor MS. Dehydrative glycosidations of 2-deoxysugar derivatives catalyzed by an arylboronic ester. Carbohydr Res 2018; 470:42-49. [DOI: 10.1016/j.carres.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023]
|
27
|
Recent advances in site-selective functionalization of carbohydrates mediated by organocatalysts. Carbohydr Res 2018; 471:64-77. [PMID: 30508658 DOI: 10.1016/j.carres.2018.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
As one of the four fundamental building blocks of life, carbohydrates assume varied and expansive roles in biological contexts. More in-depth understanding of carbohydrates and their interactions, however, is often restricted by our inability to synthesize and subsequently functionalize them in a site-selective manner. This review will summarize recent advances in the site-selective functionalization of carbohydrates using organocatalysts, including achiral catalysts, chiral nucleophilic bases, chiral N-heterocyclic carbenes, and chiral phosphoric acids, with an emphasis on the catalytic nature in each case. As in many endeavors, taking an alternative approach can often lead to success, and selected examples of these achievements will be highlighted as well.
Collapse
|
28
|
Shimada N, Urata S, Fukuhara K, Tsuneda T, Makino K. 2,6-Bis(trifluoromethyl)phenylboronic Esters as Protective Groups for Diols: A Protection/Deprotection Protocol for Use under Mild Conditions. Org Lett 2018; 20:6064-6068. [PMID: 30226778 DOI: 10.1021/acs.orglett.8b02427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The application of 2,6-bis(trifluoromethyl)phenyl boronic acid ( o-FXylB(OH)2; o-FXyl = 2,6-(CF3)2C6H3) as a recoverable and reusable protective agent for diols is described. The resulting cyclic boronic esters are water- and air-stable and tolerant to various organic transformations. Moreover, they can be deprotected under mild conditions. This methodology was applied to the synthesis of a highly conjugated enetriyne natural product with anti-angiogenic activities.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Sari Urata
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Kenji Fukuhara
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Takao Tsuneda
- Fuel Cell Nanomaterials Center , University of Yamanashi , Kofu 400-0021 , Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| |
Collapse
|
29
|
Someya H, Itoh T, Kato M, Aoki S. Regioselective O-Glycosylation of Nucleosides via the Temporary 2',3'-Diol Protection by a Boronic Ester for the Synthesis of Disaccharide Nucleosides. J Vis Exp 2018:57897. [PMID: 30102273 PMCID: PMC6126549 DOI: 10.3791/57897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Disaccharide nucleosides, which consist of disaccharide and nucleobase moieties, have been known as a valuable group of natural products having multifarious bioactivities. Although chemical O-glycosylation is a commonly beneficial strategy to synthesize disaccharide nucleosides, the preparation of substrates such as glycosyl donors and acceptors requires tedious protecting group manipulations and a purification at each synthetic step. Meanwhile, several research groups have reported that boronic and borinic esters serve as a protecting or activating group of carbohydrate derivatives to achieve the regio- and/or stereoselective acylation, alkylation, silylation, and glycosylation. In this article, we demonstrate the procedure for the regioselective O-glycosylation of unprotected ribonucleosides utilizing boronic acid. The esterification of 2',3'-diol of ribonucleosides with boronic acid makes the temporary protection of diol, and, following O-glycosylation with a glycosyl donor in the presence of p-toluenesulfenyl chloride and silver triflate, permits the regioselective reaction of the 5'-hydroxyl group to afford the disaccharide nucleosides. This method could be applied to various nucleosides, such as guanosine, adenosine, cytidine, uridine, 5-metyluridine, and 5-fluorouridine. This article and the accompanying video represent useful (visual) information for the O-glycosylation of unprotected nucleosides and their analogs for the synthesis of not only disaccharide nucleosides, but also a variety of biologically relevant derivatives.
Collapse
Affiliation(s)
- Hidehisa Someya
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Taiki Itoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Mebae Kato
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science; Imaging Frontier Center, Tokyo University of Science;
| |
Collapse
|
30
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
31
|
Leng WL, Yao H, He JX, Liu XW. Venturing beyond Donor-Controlled Glycosylation: New Perspectives toward Anomeric Selectivity. Acc Chem Res 2018; 51:628-639. [PMID: 29469568 DOI: 10.1021/acs.accounts.7b00449] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycans are complex compounds consisting of sugars linked glycosidically, existing either as pure polysaccharides or as part of glycoconjugates. They are prevalent in nature and possess important functions in regulating biological pathways. However, their diversity coupled with physiochemical similarities makes it challenging to isolate them in large quantities for biochemical studies, hence hampering progress in glycobiology and glycomedicine. Glycochemistry presents an alternative strategy to obtain pure glycan compounds through artificial synthetic methods. Efforts in glycochemistry have been centered on glycosylation, the key reaction in glycochemistry, especially with regards to anomeric stereoselectivity in polysaccharides and glycoconjugates. In particular, the stereoelectronic and steric properties of glycosyl donors are commonly used to direct the stereoselectivity in glycosylation reactions. Classic glycosylation strategies typically involve saturated glycosyl donors, proceeding either directly using hydrogen bonds and conformational constraints or indirectly by installing moieties covalently through neighboring group participation and intramolecular aglycon delivery. Over the past years, new glycosylation strategies, tapping on the foundations of transition metal catalysis, have emerged. To leverage the power of coordination chemistry, unsaturated glycosyl donors were introduced. Not only are the number of protection/deprotection steps reduced, the resultant unsaturated glycoside provides opportunities for downstream functionalizations, allowing quick access to a variety of sugars, including rare sugars. Alongside the glycosyl donor, an equally important but neglected aspect for targeting stereoselective glycosylation is the glycosyl acceptor. In the case of dual-directing donors, glycosyl acceptors have proved themselves capable of becoming the dominating factor for stereocontrol. Interestingly, rational manipulation or selection of glycosyl acceptors with particular nucleophilicity and p Ka values can lead to different stereoselectivities, thereby proving the tunability of such acceptors to favor the formation of one anomer over the other stereoselectively. By further venturing beyond substrate controlled stereoselectivity, we are presented with the opportunity to effect stereoselective glycosylation through glycosylating reagents. Of the key reagents, stereoselective catalyst stands out as a greener and efficient alternative to direct stereoselective control with stoichiometric substrates. Recently, investigations into this approach of stereocontrol presented an intriguing range of stereoselectivities, achieved by merely varying the nature of catalysts used. Another crucial effort in glycochemistry is enhancing the efficiencies of glycosylations, by reducing the number of preparative steps before or during glycosylation. Through using transient masking groups or one-pot synthetic strategies, these streamlined approaches provide enormous convenience and practicability for oligosaccharide syntheses. This Account presents mainly our advancements beyond the conventional donor-controlled strategies over the past decade, with emphasis placed on mechanistic explanations of anomeric selectivities, thereby providing perspectives to inspire further progress toward a generalized unified strategy for preparing every type of glycan.
Collapse
Affiliation(s)
- Wei-Lin Leng
- School of Physical & Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Hui Yao
- School of Physical & Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jing-Xi He
- School of Physical & Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Xue-Wei Liu
- School of Physical & Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
32
|
Dimakos V, Garrett GE, Taylor MS. Site-Selective, Copper-Mediated O-Arylation of Carbohydrate Derivatives. J Am Chem Soc 2017; 139:15515-15521. [DOI: 10.1021/jacs.7b09420] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Graham E. Garrett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
33
|
Manhas S, Taylor MS. Boronic Acids as Phase-Transfer Reagents for Fischer Glycosidations in Low-Polarity Solvents. J Org Chem 2017; 82:11406-11417. [DOI: 10.1021/acs.joc.7b01880] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sanjay Manhas
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
34
|
Someya H, Itoh T, Aoki S. Synthesis of Disaccharide Nucleosides Utilizing the Temporary Protection of the 2',3'-cis-Diol of Ribonucleosides by a Boronic Ester. Molecules 2017; 22:E1650. [PMID: 28974027 PMCID: PMC6151833 DOI: 10.3390/molecules22101650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/24/2017] [Accepted: 09/29/2017] [Indexed: 11/16/2022] Open
Abstract
Disaccharide nucleosides are an important class of natural compounds that have a variety of biological activities. In this study, we report on the synthesis of disaccharide nucleosides utilizing the temporary protection of the 2',3'-cis-diol of ribonucleosides, such as adenosine, guanosine, uridine, 5-metyluridine, 5-fluorouridine and cytidine, by a boronic ester. The temporary protection of the above ribonucleosides permits the regioselective O-glycosylation of the 5'-hydroxyl group with thioglycosides using a p-toluenesulfenyl chloride (p-TolSCl)/silver triflate (AgOTf) promoter system to afford the corresponding disaccharide nucleosides in fairly good chemical yields. The formation of a boronic ester prepared from uridine and 4-(trifluoromethyl)phenylboronic acid was examined by ¹H, 11B and 19F NMR spectroscopy.
Collapse
Affiliation(s)
- Hidehisa Someya
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Taiki Itoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
35
|
Mancini RS, Lee JB, Taylor MS. Sequential Functionalizations of Carbohydrates Enabled by Boronic Esters as Switchable Protective/Activating Groups. J Org Chem 2017; 82:8777-8791. [DOI: 10.1021/acs.joc.7b01605] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ross S. Mancini
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jessica B. Lee
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
36
|
Tay JH, Argüelles AJ, DeMars MD, Zimmerman PM, Sherman DH, Nagorny P. Regiodivergent Glycosylations of 6-Deoxy-erythronolide B and Oleandomycin-Derived Macrolactones Enabled by Chiral Acid Catalysis. J Am Chem Soc 2017; 139:8570-8578. [PMID: 28627172 PMCID: PMC5553906 DOI: 10.1021/jacs.7b03198] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work describes the first example of using chiral catalysts to control site-selectivity for the glycosylations of complex polyols such as 6-deoxyerythronolide B and oleandomycin-derived macrolactones. The regiodivergent introduction of sugars at the C3, C5, and C11 positions of macrolactones was achieved by selecting appropriate chiral acids as catalysts or through introduction of stoichiometric boronic acid-based additives. BINOL-based chiral phosphoric acids (CPAs) were used to catalyze highly selective glycosylations at the C5 positions of macrolactones (up to 99:1 rr), whereas the use of SPINOL-based CPAs resulted in selectivity switch and glycosylation of the C3 alcohol (up to 91:9 rr). Additionally, the C11 position of macrolactones was selectively functionalized through traceless protection of the C3/C5 diol with boronic acids prior to glycosylation. Investigation of the reaction mechanism for the CPA-controlled glycosylations revealed the involvement of covalently linked anomeric phosphates rather than oxocarbenium ion pairs as the reactive intermediates.
Collapse
Affiliation(s)
- Jia-Hui Tay
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - Alonso J. Argüelles
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - Matthew D. DeMars
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109 United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| |
Collapse
|
37
|
Silvestri AP, Dawson PE. Base-catalyzed diastereoselective trimerization of trifluoroacetone. Org Biomol Chem 2017; 15:5131-5134. [PMID: 28594047 PMCID: PMC5584686 DOI: 10.1039/c7ob01094j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic fluorocarbons have unique properties that facilitate their self assembly and adhesion to both inorganic and biological substrates. Incorporation of these moieties into valuable constructs typically require complex synthetic routes that have limited their use. Here, the base-catalyzed diastereoselective synthesis of 6-methyl-2,4,6-tris(trifluoromethyl)tetrahydro-2H-pyran-2,4-diol is reported. Trimerization of trifluoroacetone in the presence of 5 mol% KHMDS delivers one of four diastereomers selectively in 81% yield with no column chromatography. Temperature screening revealed the reversibility of this trimerization and the funneling of material into the most thermodynamically stable oxane. Subsequent functionalization with boronic acids is reported.
Collapse
Affiliation(s)
- Anthony P Silvestri
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
38
|
Traboni S, Bedini E, Iadonisi A. Solvent-Free One-Pot Diversified Protection of Saccharide Polyols Via Regioselective Tritylations. ChemistrySelect 2017. [DOI: 10.1002/slct.201701033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 I-80126 Naples Italy
| | - Emiliano Bedini
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 I-80126 Naples Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 I-80126 Naples Italy
| |
Collapse
|